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Serum metabolomics approach 
to monitor the changes 
in metabolite profiles 
following renal transplantation
Ivana Stanimirova1*, Mirosław Banasik2, Adam Ząbek3, Tomasz Dawiskiba4, 
Katarzyna Kościelska‑Kasprzak2, Wojciech Wojtowicz5, Magdalena Krajewska2, 
Dariusz Janczak4 & Piotr Młynarz5*

Systemic metabolic changes after renal transplantation reflect the key processes that are related 
to graft accommodation. In order to describe and better understand these changes, the 1HNMR 
based metabolomics approach was used. The changes of 47 metabolites in the serum samples of 19 
individuals were interpreted over time with respect to their levels prior to transplantation. Considering 
the specific repeated measures design of the experiments, data analysis was mainly focused on the 
multiple analyses of variance (ANOVA) methods such as ANOVA simultaneous component analysis 
and ANOVA-target projection. We also propose here the combined use of ANOVA and classification 
and regression trees (ANOVA-CART) under the assumption that a small set of metabolites the binary 
splits on which may better describe the graft accommodation processes over time. This assumption 
is very important for developing a medical protocol for evaluating a patient’s health state. The results 
showed that besides creatinine, which is routinely used to monitor renal activity, the changes in levels 
of hippurate, mannitol and alanine may be associated with the changes in renal function during the 
post-transplantation recovery period. Specifically, the level of hippurate (or histidine) is more sensitive 
to any short-term changes in renal activity than creatinine.

Chronic kidney disease (CKD) is a global public health issue1–3 with an estimated prevalence of 8–16% world-
wide. The state of CKD is recognized as either a kidney function decrease with a glomerular filtration rate of less 
than 60 mL/min per 1.73 m2, or as a presence of the kidney damage markers such as structural abnormalities 
or albuminuria, or as a presence of both conditions for at least three months4–8. The frequency of the disease 
depends on its two most common causes, which are diabetes and hypertension in all high- and middle-income 
countries5,6. Some other possible causes of CKD that include glomerulonephritis, polycystic kidney disease, 
obstructive uropathy, vesicoureteral reflux, recurrent pyelonephritis, and the chronic use of some medications, 
are less common6. The devastating complications of CKD include an increased incidence of cardiovascular dis-
ease, hyperlipidemia, anemia and osteodystrophy7, which cause a decreased quality of life, but most importantly, 
which are associated with premature mortality2. According to the Global Burden of Disease Study ranking, CKD 
was the 12th most common cause of death globally in 20158,9.

End-stage renal disease (ESRD) patients require a dialysis therapy or renal transplantation in order to survive6, 
however, transplantation is always the best therapeutic option for them10–12. Successful kidney transplantation 
doubles11 or even triples12 the life expectancy of the ESRD patients that are listed for transplantation, while, the 
annual death rate for all patients on dialysis is more than ten times higher compared to the transplant recipients11. 
Despite the significant improvement in the results of kidney transplantation, which are expressed by more than 
90% of 1-year grafts survival, still only about 50% of patients preserve graft function for more than 10 years13. 
Many immunological and non-immunological factors are responsible for this and not all of them are known 
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yet14–17. Creatinine is routinely used in clinical practice as an indicator of kidney dysfunction, but it has been 
reported18 that its level becomes perturbed only as a result of strong kidney damage when a therapeutic interven-
tion may be ineffective. Up to 30% of grafts with stable creatinine may also experience ‘smoldering’ rejection19. 
Moreover, determining the levels of immunosuppressants in serum also seems not to be sufficient enough, and 
a renal biopsy is too invasive. It is not surprising then that transplantologists are still looking for some additional 
indicators, e.g. some possible biomarkers in order to improve the post-transplantation results. A technique that 
may help to increase the knowledge about the mechanisms of graft adaptation and its insufficiency and may 
possibly be useful for developing a non-invasive method for transplant monitoring is metabolomics. The reason 
is that changes in the concentrations of metabolites in the blood samples of graft recipients reflect the changes 
in graft function, the processes of humoral or cellular rejection, immunsouppressant toxicity or in other fac-
tors over time. NMR spectroscopy is a powerful analytical method for obtaining comprehensive profiles of the 
metabolite signals without separating, derivatizing and pre-selecting the measurement parameters. Because of 
its high degree of reproducibility and suitability in clinical settings, NMR spectroscopy has been preferred for 
monitoring the metabolite changes that occur in urine samples from patients with kidney transplants20 (it is 
also the technique of choice in our study). In general, in order to describe and interpret the biochemical changes 
that are associated with the progress of recovery over time, the multivariate data analysis that is required for this 
purpose should reflect the specific dynamic structure of the data21. Traditionally, principal component analysis 
(PCA) has been used to examine whether there are some patients that have different recovery profiles and to 
identify the metabolites that are responsible for these differences, while the discriminant variant of partial least 
squares regression (PLS-DA) has been used to interpret the before-after transplantation changes by polling the 
individual metabolic profiles of a large number of patients in one of these two groups. Both methods explain 
the total variation in the data, and this may not be optimal when the analysis is focused more on modeling the 
individual variation of patients or when a specific design of experiments is assumed. For example, to monitor 
transplant patients in a short (2-week) recovery period, a strategy combining the modeling of the NMR measure-
ment data of the urine samples that were collected from each patient using the orthogonal projection to latent 
structures (OPLS) approach and comparing each individual OPLS effect profile, which is associated only with the 
individual metabolic variation over time, with the profiles of other patients using PCA, has been proposed. This 
strategy is specifically oriented towards determining whether a patient is moving towards recovery or whether 
some health complications can be expected22.

In this study, we attempt to identify which serum metabolites are most important when describing the short- 
or longer-term (up to 6 months) graft accommodation. For this purpose, the levels of 47 metabolites in the serum 
samples of 19 patients that had a renal transplant were monitored over time. All of the metabolite changes are 
typical for the normal recovery process. Taking into account the repeated measures structure of the data, the 
focus of our methodology for analysis is on explaining the metabolic changes across all patients over time and 
interpreting the inter-patient metabolic changes. Specifically, using the repeated measures analysis of variance 
(ANOVA) enabled us to partition the total variability of the data for each serum metabolite into a variability 
associated with the recovery progress over time, variability due to the individual differences among patients and 
error variability. Next, the collection of factor mean estimates for each serum metabolite can be analyzed using 
multivariate methods such as PCA, simultaneous component analysis (SCA), discriminant partial least squares 
regression (PLS-DA or with PLS-DA followed by the target projection method, TP23. Multiple ANOVA methods 
such as ANOVA-PCA24, ASCA25, AoV-PLS26 or ANOVA-TP27 have gained popularity in metabolomics in recent 
years. The latter ANOVA-PLS method enables the variables that are important to be selected using the selectiv-
ity ratio, SR, approach. The SR values for metabolites are evaluated after the target projection or target rotation 
transformation of the PLS components, which ensures that only metabolites that are related to the modeled 
groups are selected. The same objective is met by OPLS using a different algorithm. The main assumption in 
using multivariate methods for selecting metabolites is that a linear combination of metabolites is responsible 
for the differences in modeled groups. However, there might be a small set of metabolites, the orthogonal binary 
splits on which at given threshold values can form mutually exclusive regions in the data space, that contain as 
homogeneous groups of samples as possible. Binary data splitting is obtained from the classification and regres-
sion trees (CART​28) method and its results are visualized as a binary tree, which contains a number of nodes 
associated with the data subgroups. The results are easily interpreted and can serve to create a diagnostic speci-
fication scheme for successfully determining a patient’s health state. Here, we also propose the combined use of 
ANOVA and CARTfor identifying the metabolites that are responsible for the short- or long-term before-after 
transplantation variations.

We are convinced that a comparison of the results from the above-mentioned methods will give useful 
information about the possible set of metabolites that can be used to predict the progress of recovery. It is also 
important to be able to asses whether the metabolites that are characteristic for a short recovery period can also 
be used for the longer-term monitoring of kidney function.

Results
Investigating metabolic changes across all of the individuals over time.  In order to gain insight 
into the data structure, the NMR data were organized in a two-way table as (19 individuals × 4 time points) × 47 
metabolites of the dimensions 76 × 47 and were PQN-normalized and centered. Serum samples were collected 
before renal transplantation (defined as ‘T0’) and after the transplant surgery at three time points defined as time 
‘T1’ (1 day), ‘T2’ (7–10 days) or ‘T3’ (6 months) after transplantation. The time intervals (with an extension of 
the monitoring time) were set in agreement with our previous findings on how the post-transplantation metabo-
lomic recovery processes can be controlled in patients.
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As was mentioned earlier, with PCA, the total variance in the experimental data is explained and this might 
not be optimal for the highly structured data that are obtained from a time-course experiment. For a better 
description of the ‘time’ effect, the multiple ANOVA methods were used for the analysis. The main idea of these 
methods is to split the total variation of each metabolite (each column of the original PQN-transformed matrix) 
according to the repeated measures ANOVA design and to analyze the respective factor matrices using multi-
variate methods. A comparison of the results from PCA and the ANOVA-PCA or ASCA method for the ‘time’ 
effect is presented in Supplementary Sect. 2 of the supplementary material of this article. Compared to PCA, in 
ANOVA-PCA and ASCA, there was a clearer distinction between the groups of samples before and after trans-
plantation and among the groups of samples from the entire post-transplantation period when the discriminant 
partial least squares regression, PLS-DA, combined with the target projection approach was used to model the 
factor matrix on the reduced residuals, e.g. ANOVA-TP. The residual matrix that is summed with the factor ‘time’ 
matrix does not contain the inter-individual variation, which helps in describing the within-group variation bet-
ter. The best representation of the within-group variance that was obtained from ANOVA-TP is shown in Fig. 1a 
along with the respective 90% confidence ellipses for the centroids. The projections are color-coded according to 
the experimental time points. The respective target transformation loadings are presented in Fig. 1b. The most 
important metabolites are indicated in red and their mean concentration levels over time are listed in Table 1. 
They were selected as those that had mean selectivity ratio values larger than 1.0. The selectivity ratio value was 
calculated for each metabolite as the ratio between the metabolite variance that was explained by the PLS-DA 
model of a selected complexity and its residual variance after the target projection transformation. This means 
that the larger value of this ratio than 1.0, the greater importance of a metabolite was. A bootstrapped procedure 

Figure 1.   Projection of the samples in the space spanned by the first two latent components that were obtained 
from (a) ANOVA-TP using all of the metabolites along with the 90% confidence ellipses, which were placed 
at the centroids of the groups that were defined according to the ‘time’ factor, (b) The respective projections 
of metabolites on the first two PCs that were obtained from the ANOVA-TP. The most important metabolites 
are indicated by red bars. All of the metabolites with the mean selectivity ratio values, which were estimated 
by the bootstrapping procedure and were larger than 1.0 are finally considered being important. (c) Histogram 
constructed for the selectivity ratio values for the pyruvate metabolite that were obtained from 10,000 
bootstrapped samples. The vertical red line illustrates the mean value of the selectivity ratio (mean SR = 1.6), 
which is also listed in Table 1. and (d) Projection of the samples in the space spanned by the first two latent 
components that were obtained from ANOVA-TP using selected metabolites.
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with a block replacement was used to estimate the average selectivity ratio and its uncertainty. An exemplary 
histogram that was constructed for 10,000 selectivity ratio values from the block bootstrapping procedure for 
the pyruvate metabolite is shown in Fig. 1c. The vertical red line indicates the average selectivity ratio value, 
which in this case is equal to 1.6. The projections of the samples that were represented only with the selected 
variables are presented in Fig. 1d.

Looking at the projections presented in Fig. 1b,d, it can be pointed out that after transplantation the individual 
patients had relatively higher levels of valine, alanine, glutamine, methionine, GPC + APC, mannitol, glucose 
and lower levels of creatinine, citrate, myo-inositol, lactate, histidine, hippurate and adenine compared to the 
metabolite levels that were determined before transplantation. These changes are also indicated by the mean 
content values that are listed in Table 1. Although there was a clear distinction among the samples of ‘T1’, ‘T2’ and 
‘T3’ in Fig. 1a, the projections of the same samples that were represented by a reduced number of metabolites, 
overlap somewhat in Fig. 1d. This may be explained by the fact that the individual metabolic differences over 
these specific time points after transplantation were not explained well by the metabolites that were selected 
using ANOVA-TP. This was also confirmed by the low percentages of the sensitivities for the samples of ‘T1’, 
‘T2’ and ‘T3’. Once again there was a very clear distinction between the ‘before’ and ‘after’ metabolic states. The 
sensitivity and specificity of the models with selected metabolites are presented in Supplementary Table S1 in 
the supplementary material.

As was mentioned earlier, we were also interested in finding a small number of metabolites using CART, the 
binary splits of which at given threshold values are responsible for the metabolic changes in individuals over 
time. The binary tree for the ANOVA ‘time’ factor matrix summed with the residual matrix (the same matrix as 
in ANOVA-TP) using the categorical response variable, which is associated with ‘time’, is presented in Fig. 2. This 
methodology combines ANOVA and CART and hereafter, it will be referred to as ANOVA-CART.

An important observation, which can be observed in Fig. 2, is that hippurate was the metabolite that enabled 
the samples that had been collected before transplantation to be distinguished with fairly high sensitivities of 
94.7% (ANOVA-CART, Supplementary Table S1) and high specificities of 96.5%. Higher values of hippurate 
were also characteristic for the individuals before transplantation which was in agreement with the results from 

Table 1.   Multivariate and descriptive statistics for the NMR variables that were found to be most important 
using the ANOVA-TP approach. Bootstrapping was used to estimate the mean selectivity ratio (SR) ± standard 
deviation (SD) for each metabolite. The mean SR values ± SD of the pairwise models are only listed for those 
metabolites that had P-values lower than 0.05.

Metabolites

ANOVA-TP 
(all time 
points)
Mean SR 
(≥ 1.0) ± SD

Mean contents of metabolites ± SD
ANOVA-TP 
T0/T1
(mean SR 
(≥ 1.0) ± SD)

ANOVA-TP 
T0/T2
(mean SR 
(≥ 1.0) ± SD)

ANOVA-TP 
T0/T3
(mean SR 
(≥ 1.0) ± SD)

ANOVA-TP 
T1/T3 
(mean SR
(≥ 1.0) ± SD)T0 T1 T2 T3

Valine 1.5 ± 0.8 27.26 ± 6.44 31.31 ± 4.51 31.70 ± 5.39 38.63 ± 5.23 2.4 ± 1.4 1.3 ± 0.8

Alanine 2.6 ± 1.3 53.49 ± 11.10 58.78 ± 15.36 76.72 ± 17.16 78.87 ± 17.06 2.1 ± 0.7 2.0 ± 0.8

Methionine 1.9 ± 0.8 9.57 ± 1.29 11.80 ± 2.26 12.72 ± 2.10 12.75 ± 1.69 1.3 ± 0.7 2.4 ± 0.9 2.2 ± 0.9

Pyruvate 1.6 ± 0.6 18.00 ± 6.89 9.79 ± 4.28 6.86 ± 2.16 8.63 ± 3.67 1.6 ± 1.5 3.4 ± 1.6 3.1 ± 1.1

Glutamine 1.5 ± 0.7 56.47 ± 6.29 61.20 ± 8.85 70.91 ± 12.40 73.86 ± 10.25 1.3 ± 0.6 2.1 ± 0.7 1.6 ± 0.8

Citrate 1.8 ± 1.0 12.74 ± 3.82 8.21 ± 3.00 8.26 ± 1.60 8.88 ± 1.77 1.1 ± 0.8 2.5 ± 1.4 1.6 ± 0.8

Creatinine 3.9 ± 2.5 66.75 ± 27.50 39.57 ± 15.74 34.08 ± 18.03 25.56 ± 4.81 1.5 ± 0.8 1.5 ± 1.0 3.2 ± 1.6 1.1 ± 0.4

GPC + APC 1.6 ± 0.7 23.40 ± 6.93 36.98 ± 11.47 36.68 ± 7.81 38.51 ± 6.45 1.3 ± 0.6 2.5 ± 1.3 3.1 ± 2.1

Mannitol 1.3 ± 1.0 37.53 ± 9.57 54.32 ± 20.98 43.00 ± 16.08 33.10 ± 4.53 1.1 ± 0.4

myo-Inositol 2.0 ± 1.0 15.17 ± 5.50 11.17 ± 5.00 8.65 ± 3.47 5.89 ± 2.22 1.4 ± 0.8 3.3 ± 1.3 1.4 ± 0.7

Lactate 10.8 ± 26.8 152.16 ± 49.37 95.88 ± 24.85 121.44 ± 36.64 145.22 ± 36.47 1.5 ± 1.0 1.4 ± 0.7

Glucose 3.2 ± 5.3 63.80 ± 30.13 100.86 ± 41.23 109.42 ± 37.96 101.70 ± 21.66 1.1 ± 0.6 1.4 ± 0.6 1.8 ± 1.0

Histidine 1.0 ± 0.5 2.55 ± 0.96 0.78 ± 1.12 0.70 ± 1.12 0.92 ± 1.50 3.0 ± 1.7 2.3 ± 1.3 1.7 ± 1.4

Hippurate 2.2 ± 0.9 14.43 ± 8.88 3.03 ± 2.31 3.11 ± 0.62 3.88 ± 1.04 1.6 ± 0.8 1.8 ± 0.6 1.6 ± 0.5

Adenine 1.6 ± 1.0 4.56 ± 3.60 1.04 ± 0.39 1.16 ± 0.41 1.44 ± 0.48 1.1 ± 0.4

Leucine 30.06 ± 6.39 34.07 ± 5.46 31.74 ± 5.52 36.02 ± 4.48 1.0 ± 0.8

3-Metyl-2-ox-
ovaleratte 4.18 ± 0.69 3.31 ± 0.60 3.50 ± 1.11 4.38 ± 0.72 2.1 ± 1.7 2.0 ± 1.0

Choline 17.65 ± 4.25 12.59 ± 3.01 13.42 ± 3.04 16.38 ± 2.79 1.4 ± 0.8 1.1 ± 0.8

Tyrosine 5.39 ± 0.99 7.21 ± 2.19 7.72 ± 2.22 8.13 ± 2.02 1.0 ± 0.6 1.3 ± 0.7 2.1 ± 1.1

3-Hydroxy 
isobutyrate 3.66 ± 0.95 4.54 ± 1.47 3.95 ± 1.41 3.40 ± 0.75 1.1 ± 0.7

Acetone 4.10 ± 2.27 5.41 ± 2.67 4.29 ± 2.21 3.24 ± 0.89 1.1 ± 0.4

Propylene 
glycol 3.88 ± 0.89 3.52 ± 0.48 3.72 ± 1.03 4.48 ± 0.88 1.1 ± 0.5

Succinate 3.54 ± 1.71 6.29 ± 3.50 7.00 ± 2.93 4.90 ± 2.50 1.5 ± 0.8

Betaine 11.46 ± 2.87 13.48 ± 2.17 14.40 ± 2.21 12.48 ± 2.35 1.7 ± 1.1
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the ANOVA-TP. However, for ANOVA-CART, only one metabolite was used for this discrimination and the 
threshold value for this metabolite was identified. Values lower than the threshold values for hippurate (< 6.66) 
were found for the majority of individuals after transplantation in ANOVA-CART. Please note that the data are 
PQN-transformed and only the ‘time’ variation was modeled. Values of mannitol that were lower than 38.90 
(Fig. 2, Table 1) were characteristic for the majority of individuals who were six months after renal transplanta-
tion (‘T3’). Compared to the results from the ANOVA-TP, ANOVA-CART offers an enhanced sensitivity and 
a comparable specificity (see Supplementary Table S1 in the supplementary material). Considering the larger 
number of metabolites (19 metabolites) that were selected in ANOVA-TP, ANOVA-CART is to be preferred in 
this case. The most difficult distinction was for the metabolic state in the intermediate period after transplanta-
tion (T1 and T2). Relatively poor sensitivity values were obtained from the ANOVA-TP, even though fairly high 
specificities were found. Better sensitivities and fairly high specificities were found for the ANOVA-CART when 
the binary split was performed on alanine. From this comparison, one can conclude that three metabolites such 
as hippurate, mannitol and alanine may be enough to characterize the metabolic changes over time with good 
sensitivities and specificities. It should be noted that these results are interpreted more in an explorative context 
here and are not being used solely to interpret the performance of the various models.

Another way to characterize the metabolic changes is to look at the pairwise-group comparisons. For example, 
it might be interesting to find which metabolites best characterize the ‘before’ and ‘after’ (T0 vs. T1 or T0 vs. T2) 
transplantation conditions, e.g. which metabolites are associated with the changes after a relatively long period of 
time following the transplantation (T0 vs. T3) or that characterize only the changes in the post-transplantation 
period (T1 vs. T3), and furthermore, to possibly answer the question of whether the levels of the same metabolites 
are expected to be perturbed in all of these cases. The results of the pair-wise comparisons that were obtained 
from ANOVA-TP are presented in Fig. 3. The ANOVA-TP for any of the two-group analyses produced one 
target projection loadings vector and one scores vector. Once again, the bootstrapping procedure was used to 
estimate the average value of the selectivity ratio for each metabolite. The cut-off value for the selectivity ratio 
was determined to be 1.0. The metabolites that were found to be important are presented in Table 1. The P-value 
of each metabolite (its loading value) was also calculated using the bootstrapping procedure.

The results from ANOVA-TP showed a clear distinction between any two groups of the samples that were 
represented by all of the variables using only one latent variable due to the better description of the within-group 
variation. Again, a decrease in the levels of creatinine, hippurate, lactate, adenine, citrate, choline, pyruvate and 
GPC + APC was observed along with increasing levels of glucose and tyrosine in the individuals after transplanta-
tion (Fig. 3a). A similar tendency was observed for the longer period of observation (T0 vs. T3).

Additional metabolites that were found to be important were valine, alanine, leucine, and glutamine, the levels 
of which increased during this period of time, while the level of myo-inositol decreased. The results of all of the 
before-after models not only indicated a decrease in the creatinine level, which was an expected observation, 
but also some important changes in the levels of other metabolites. If one investigates the changes only after 
transplantation (model T1 vs. T3), several characteristic metabolites such as mannitol, 3-hydroxy-isobutyrate, 
acetone and propylene glycol, the levels of which appear to decrease with the time after the kidney intervention, 
are considered to be important. The pairwise ANOVA-CART models are presented in Fig. 4, while the pairwise 
CART models are presented in Supplementary Fig. S3 in the supplementary material.

Trees that are presented in Fig. 4 and the values of the sensitivities and specificities that are listed in Sup-
plementary Table S1 confirm the results from the four-group models. Once again, only one metabolite, hip-
purate, was enough to distinguish between the samples from the same individuals who were ‘before’ and ‘after’ 
transplantation (T0 vs. T1). Values lower than 8.73 for the ANOVA-CART model were characteristic for the 
samples after renal transplantation (T1). Compared to the ANOVA-TP, only one variable was needed with the 
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Figure 2.   Classification tree that was constructed for 76 blood samples collected from 19 individuals with a 
target variable that described all four time points. The tree was grown using the ‘time’ factor matrix that was 
obtained from ANOVA summed with the residual matrix (ANOVA-CART).
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ANOVA-CART, which gave a sensitivity and specificity of 94.7%, to describe T0 vs. T1 changes. A surrogate 
variable, the split on which gave the same ANOVA-CART performance, was histidine. All of the patients who 
were after transplantation also had levels of histidine that were lower than 1.67. When investigating the longer 
before-after period (T0 vs. T2), the same performance in terms of sensitivities and specificities was obtained 
using ANOVA-TP and ANOVA-CART, but once again only one variable (hippurate) was used in ANOVA-CART 
(Fig. 4b) and CART (Supplementary Fig. S3). What is important to emphasize here is that the levels of hippurate 
in almost all of the patients with the exception of one patient were lower than 8.73 1 day after the transplantation, 
but all of the patients had hippurate levels lower than 8.77 after seven to ten days post-transplant. Six months after 
renal transplantation, all of the patients had a level of pyruvate that was lower than 13.32 with respect to its level 

Figure 3.   Target projection scores (a,d,g,j) and loadings (b,e,h,k) vector that were associated with the ‘time’ 
effect from the ANOVA-TP with all of the metabolites as well as the target projection scores (c,f,i, l) from the 
ANOVA-TP with selected metabolites (Table 1) for T0 vs. T1 (a–c), T0 vs. T2 (d–f), T0 vs. T3 (g–i) and T1 vs. 
T3 (j–l).
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T2: 19

b)

Mannitol

< 44.10 ≥ 44.10

T1: 17
T3:   0

T1:   2
T3: 19

Hippurate

< 8.73 ≥ 8.73

T0: 18
T1:   1

T0:   1
T1: 18

Pyruvate

< 13.32 ≥ 13.32

T0: 19
T3:   0

T0:   0
T3: 19

a)

c) d)

Hippurate

< 8.77 ≥ 8.77

T0: 19
T2:   0

T0:   0
T2: 19

b)

Mannitol

< 44.10 ≥ 44.10

T1: 17
T3:   0

T1:   2
T3: 19

Figure 4.   Classification trees that were obtained from the ANOVA-CART for the blood samples that had 
been collected from 19 individuals with the target variable describing (a) the ‘before’ and ‘after’ transplantation 
samples (T0 vs. T1), (b) T0 vs. T2, (c) T0 vs T3 and the period after transplantation (d) T1 vs. T3.
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before transplantation (Fig. 4c). This was indicated by ANOVA-CART from the data for the longest before-after 
period (T0 vs. T3). Both methods, ANOVA-TP and ANOVA-CART, had the same best performance (Supple-
mentary Table S1). A surrogate variable in ANOVA-CART was tyrosine, however, its level changed differently 
than pyruvate. Six months after transplantation, all of the patients had tyrosine levels that were higher than 6.76, 
although it was lower before transplantation. Analysis of the results from CART for the PQN data showed that 
after transplantation, all of the patients had levels of creatinine that were lower than 37.51 (Supplementary Fig. S3 
in the supplementary material), while only two of them had such a low level of creatinine before transplanta-
tion. This analysis suggests that the hippurate level could be useful for investigating the short and longer (up to 
7–10 days) periods of changes after transplantation, while the changes in the level of pyruvate seem to be more 
sensitive than the changes in the level of creatinine in a much longer term (up to 6 months) of ‘before’ and ‘after’ 
monitoring. Finally, if one is interested in only monitoring the period after transplantation, it seems that the 
changes of mannitol are enough to obtain a good sensitivity and a specificity of 100%. A level of mannitol that 
was lower than 44.10 was characteristic for all of the individuals that were up to six months after transplantation, 
while a higher level of mannitol was only found in 17 of them one day after transplantation (Fig. 4d).

Investigating the inter‑individual metabolic changes.  In order to investigate the inter-individual 
metabolic changes, the ASCA method was used, because these differences seemed to be more pronounced. The 
individual trajectories only will be discussed for exploratory purposes. The results are presented in Fig. 5.

Even though the general tendencies for the metabolite changes over time were similar for the majority of indi-
viduals, some individuals may have different trajectories of changes. As was mentioned earlier, only the patients 
with the serum profiles that are associated with normal recovery were considered in our study. Figure 5a from 
the ASCA indicates several such subjects/individuals. These subjects were nos. 2, 9 and 12. Their trajectories, 
which are presented in Fig. 5b, mainly indicated changes in glucose, lactate, alanine, creatinine and mannitol 
(with high absolute loading values). These metabolites were also found important with ANOVA-TP. Subject no. 9 
showed different tendency of changes in levels of the lactate and creatinine compared to the majority of individu-
als. Compared to time T1, the level of lactate was lower before (T0) transplantation, while the level of creatinine 
was higher after (T1) transplantation compared to the sample that was collected before graft intervention. An 
increase in the level of glucose is also observed. The level of glucose was highest among all subjects. The levels 
of creatinine and mannitol increased further over time (T2), while the level of lactate and glucose decreased. 
These changes indicate a delayed graft function. Furthermore, the trajectory suggests a drop in the creatinine and 
mannitol levels (T2), while the level of lactate increased. The trajectory of subject no. 12 suggests oscillation-like 
changes of glucose and lactate. Compared to the levels of glucose and lactate before transplantation (T0), the level 
of glucose was higher, while the level of lactate was lower after transplantation (T1). Then (at T2), the level of 
glucose decreased and the level of lactate increased, but not as low or high as the initial values. Finally, the level 
of lactate decreased again, while the level of glucose increased. The level of lactate was the highest.

Similar changes of the lactate and glucose levels were observed for individual no. 2, but the level of lactate 
was the lowest and the magnitude of changes was much smaller as the trajectory suggests.

Discussion
Interpreting the changes in the metabolite levels over time.  The course of metabolite changes may 
be characterized by either consecutive increases or decreases or by specific metabolite perturbations between 
specific intervals of time. Some specific metabolite changes were more pronounced when investigating the inter-
individual changes. The most important and significant change in metabolite levels was observed as was expected 
‘before’ and ‘after’ transplantation (T0 and T1) as well as at the beginning and at the end of the adaptation period 
(T1 and T3). The first monitoring time point after transplantation, T1, is considered to be the metastable state, 
in which all of the processes are connected, while the second monitoring time point, T2, is associated with 
the transition stage in which the recovery processes are at different levels of completeness. The duration of the 
adaptation stage very often depends on the graft conditions (age, donor lifestyle etc.), but in clinical practice, the 
adaptation period is supposed to be completed ca. six months after the renal surgery. In general, the molecular 

Figure 5.   Results obtained from ASCA for the inter-individual changes: (a) the centroids of the individuals 
over time that were projected in the space that was spanned by PC1 and PC2, (b) the trajectories for some 
selected individuals in the space spanned by PC1 and PC2 and (c) projections of the metabolites on the PC 1 
and PC2.
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content of serum can vary over time for at least four reasons: (i) long-term hemodialysis processes, (ii) function-
ing of the new graft that affects the entire organism, (iii) the influence of the body on the new organ and (iv) 
the ischemia–reperfusion processes that accompany the metabolome changes of the graft itself. The variation of 
selected serum metabolites is illustrated schematically in Fig. 6. It is very important to emphasize that the kidney 
that is not functioning is usually left in the body and its effect on the entire organism is still unknown.

The results from the ANOVA-TP confirmed the importance of monitoring the creatinine level ’before’ and 
‘after’ transplantation as an indictor of renal transplant function. The results are also in agreement with some 
previous observations that creatinine is a long-term post-transplantation indicator, whose level becomes abnor-
mal in the later stages of kidney dysfunction18. The lack of a decrease or even an increase in creatinine level as 
in subject no. 9 in our study may be explained by a delayed graft function.

An interesting finding here is that hippurate had an increased level before renal transplantation, which then 
decreased throughout the post-operative period. Hippuric acid, a recognised uremic toxin that is associated with 
the gut microbiome29 can be cleared during hemodialysis30. The main route of its elimination is via an active renal 
tubular secretion31 and its dysregulation can be the main reason for its accumulation in the blood32. Further-
more, hippurate was found to be an inhibiting agent for glucose utilization in the muscles33 and an endogenous 
stimulator of ammoniagenesis34. A high level of hippurate is accompanied with a lower level of glucose before 
transplantation. The reason for a low glucose level may be that the blood samples were collected from fasting 
patients. However, the increase in the glucose level after transplantation (T1) can be explained by a short-term 
impaired glucose metabolism. Moreover, after graft transplantation, patients are treated with calcineurin inhibi-
tors and steroids which also increase the glucose level in blood and may lead to insulin resistance and diabetes 
in long-term treatment35–37. In general, during the adaptation period (T2–T3), the glucose level decreased and 
stabilized. Subject no. 12 experienced a lack of stability in the glucose and lactate levels over time, which may 
be explained by the influence of post-transplantation therapy or by a hypoxia/ischemia condition in which the 
level of lactate changes along with the level of pyruvate.

Changes in the glucose level can also be related to changes in the level of valine. As a branched chain amino 
acid (BCAA), valine can participate in glucose metabolism as glucogenic amino acid. Its catabolism was found 
to be preferential for uremic patients38. The increasing trend in the levels of valine in our study is partially in 
agreement with the tendency presented in literature (e.g. valine is not statistically important)39. Furthermore, the 
changes in the glucose level were very similar to those that were observed for glutamine and this can be associ-
ated with the initiation of the TCA cycle. The lowest level of glutamine was observed before transplantation (T0), 
which is in contradiction to the fact that a high level of glutamine is associated with a low glomerular filtration 
rate, GFR, (21–39 ml/min)39. Several animal translation studies have demonstrated that the administration of 
glutamine ameliorates inflammation after an ischemia–reperfusion injury in rats40. Moreover, the level of glu-
tamine decreases in the post-transplantation period (T1–T3).

The higher level of alanine during the adaptation period compared to its level before transplantation can be 
reversibly associated with the levels of pyruvate. In fact, one of these metabolites can be the substrate for the 
other. Another interesting fact is that the ratio of Ala/Gln at all of the time points was close to 1 [from 0.94 (T0) 
to 1.08 (T3)].

The restart of graft functioning is associated with the level of GPC + APC. After renal surgery, its level is the 
highest (T1) and normalizes by the end of the adaptation period (T3). These changes can be explained by the 
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Figure 6.   Schematic representation of the external and internal stimuli that influenced the changes in the 
serum metabolites at T0. The up-regulated metabolites are represented by red arrows while the down-regulated 
metabolites are indicated by blue arrows.
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breakdown of lipids, which is associated with a membrane breakdown and its remodeling activity41. An opposite 
tendency has also been reported in the literature in which a decreased level of GPC was recorded after a sham 
operation, which simulated a renal ischemia–reperfusion injury (IRI) in mice, although its level normalized 
during the adaptation period41.

In our study, the level of methionine increased after transplantation and then its level decreased. This has been 
found to be beneficial for the kidneys42. In general, a low level of methionine is characteristic for chronic kidney 
diseases43, but this is not associated at the baseline GFR. However, in another literature source44, it was shown 
that patients with end-stage renal disease had normal levels of methionine and betaine. The latter metabolite 
fluctuated from a lower to higher level, and was at its lowest level in T3.

Mannitol is a sugar alcohol that was not found in a healthy human serum metabolome45 using NMR spec-
troscopy measurements. Unfortunately, we determined its presence in the serum samples that were collected 
before (T0) and 6 months (T3) after transplantation. Its presence and role are not very clear and it would be a 
bold assumption to state that mannitol is associated with kidney injury and renal diseases46. Even though the 
highest level of mannitol (T1) and myo-inositol, which is another polyol, can be strongly associated with renal 
failure before transplantation, their concentrations decreased in the period of recovery.

Among the metabolites whose content decreased over time were pyruvate, citrate, lactate, histidine and 
adenine. A surprising observation was that the levels of pyruvate and citrate, which are considered to be TCA 
fuel, were higher before transplantation. This might reflect either accelerated glycolysis processes that are shifted 
towards producing pyruvate or with a decreased activity of the TCA enzymes, which is bottleneck that blocks the 
utilization of citrate. However, the fluctuation in the level of succinate may only partially support this hypothesis. 
The results of a comparative study that was carried out showed that there were no differences between a group 
of patients with a long-term hemodialysis who underwent citrate infusions and a control group47. Another pos-
sible mechanism of citrate and pyruvate accumulation can be associated with the hypoxia/ischemia condition48 
prior to transplantation in which an increased level of lactate is observed. The highest level of lactate can also be 
associated with its disrupted disposal and uptake by native kidney49. Furthermore, lactate is a product of the LDH 
transformation of pyruvate: LDH was found to be associated with tubular injury during the short-term post-
transplantation period that concerned ischemic ATN (acute tubular necrosis)50. Lactate also has an increased 
level in patients before hemodialysis51.

Changes in the histidine level52 are closely related to changes in the level of glutamate. This amino acid 
has a protective role as an anti-inflammatory agent because it is a scavenger of reactive oxygen species53,54. A 
decreased level of histidine in urine can indicate an injury to kidney function39,53, while a low level of histidine 
in the serum is characteristic for CKD patients who experience many pathological states54,55. In our study, the 
content of histidine was at its highest level before the kidney replacement therapy, which is not in agreement 
with the findings that have been reported in the literature. The second aromatic amino acid, tyrosine, was down 
regulated before renal transplantation, which could have been associated with the renal biosynthesis of tyrosine 
in the kidneys55, where after the incorporation of graft functioning, the tyrosine level was stabilized in T2 and 
T3. A similar behavior was also found for the choline level, where the level of this metabolite was higher before 
than after graft transplantation, which is in agreement with the literature data56.

The highest level of adenine before transplantation, which is an indication of renal failure, is in a good agree-
ment with the results reported in the literature57–59. Adenine-induced CKD is a frequently used model for inves-
tigating different effects on renal distortion. It was shown experimentally that a long-term feeding of rats with 
adenine may damage the tubules and glomeruli60. An excess of adenine can be utilized by xanthine dehydrogenase 
to 2,8-dihydroxyadenine (DHA)61,which because of its low solubility precipitates in kidney tubules61,62. In our 
study, the excess of adenine in the serum at T0, which was triggered by the renal transplant, was equalized over 
time by its utilisation to other products62,63.

When investigating the fluctuations in the concentrations of the ketobodies, it was observed that 3-hydroxy-
butyrate and acetone were at the highest level in T1, and that their level had decreased by T3. 3-hydroxybutyrate 
can be converted into acetoacetate, which can spontaneously decarboxylate into acetone64. The highest level 
before transplantation can be associated with a lower level of glucose and the ketogenesis processes. 3-methyl-
2-oxovaleric acid, which is a ketoanalogue of isoleucine, is a neurotoxin, an acidogen, and a metabotoxin65. How-
ever, recently, the calcium salt of this compound has been used as an ingredient in supplements that ameliorate 
the risk of a long-term dialysis66. The level of this ketoacid fluctuated in our study.

Although propylene glycol is routinely found in the blood serum at a concentration of 22 μM, it is recognised 
as an “external concomitant” that originates from the cosmetics, food and toothpaste that an individual has 
used42. Its level was higher before graft transplantation and then was maintained at a constant level.

All of these metabolite changes over time are described for the patients who had progressed to better health 
in a six-month period, however, it should also be considered that the unknown activity of a native kidney can 
overlap with the proper functioning of a graft.

Conclusions
In this study, we identified the concentration changes of metabolites that can be used to describe the recovery 
period towards a better health condition after graft transplantation surgery. This was done using the repeated 
measures methodology in ANOVA-TP and ANOVA-CART. The ANOVA-CART is proposed here under the 
assumption that a small set of metabolites the orthogonal splits on which may explain the metabolic differences 
over time better in some cases than a linear combination of the metabolites. The capability of this method was 
justified by the relatively high sensitivities and specificities that were obtained for all of the models. The minimum 
number of metabolites that can be used to monitor renal function includes hippurate, mannitol and alanine. 
Specifically, it was found that the level of hippurate was more sensitive to the changes in renal function, while 
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monitoring the creatinine is appropriate for indicating large changes in renal function such as those before/
after graft surgery. This is a very promising result that needs to be investigated further. It will be interesting to 
determine whether hippurate can be suitable as an additional indicator for a kidney biopsy in the early stages of 
kidney injury. A general unrecognized problem is that the native kidney which is usually not removed during 
the transplantation surgery, may influence the general metabolic picture. Since the renal allografts change the 
metabolic patters dynamically over time, it is not surprising that some metabolites become important only at 
a certain time after renal transplantation, thereby reflecting the molecular processes that are characteristic for 
the recovery of health.

Materials and methods
All experiments were performed in accordance with the Polish legal laws and regulations and the experimental 
protocol was approved by the Bioethical Committee of Wroclaw Medical University (KB148/2013).

The clinical characteristics of the patients are presented in Table 2.

Sample collection.  Peripheral venous blood samples were drawn from all of the participants after over-
night fasting for at least 8hours. Blood samples were collected using Sarstedt S-Monovette system serum tubes 
(Sarstedt AG & Co., Nümbrecht, Germany), which were centrifuged at 1000 × g for 15 min at 4 °C. The serum 
samples were stored in 1.5 ml Eppendorf safe lock tubes and maintained at − 80 °C until the analysis. The study 
group included 19 patients whose levels were monitored over time [defined as time 1 (1 day), 2 (7–10 days) 
or 3 (6 months)] after transplantation and were interpreted with respect to their levels before transplantation 
(defined as ‘T0’).

All experiments were performed in accordance with the Bioethical Committee of Wroclaw Medical University 
(KB148/2013): each subject signed a written informed consent.

Sample preparation for proton NMR spectroscopy.  The serum samples that were collected were 
thawed at room temperature and vortexed. Then, 300 μl of the serum was transferred to a new Eppendorf tube 
and mixed with 700 μl of cold methanol for protein precipitation. Next, the samples were homogenized (Qiagen, 
Tissuelyser LT) for 10 min at 50 Hz and then incubated for 20 min at − 20 °C. The homogenization step and 
incubation were then repeated. Subsequently, the mixtures of serum-methanol were centrifuged for 30 min at 
15,000 rpm at 4 °C. An aliquot of 700 μl of supernatant was transferred to a new Eppendorf tube and then evapo-
rated to dryness in a vacuum centrifuge (JWElectronic WP-03) for 5 h at 1,500 rpm at 40 °C. The dry precipitate 
was dissolved in 600 μl PBS (0.5 M, pH = 7.2, 20% D2O, and 330 μM TSP) and then 550 μl of the mixture was 
transferred to an NMR tube (SP, 5 mm ARMAR Chemicals). The samples were maintained at 4 °C before being 

Table 2.   Demographic and clinical parameters of patients in the study. PRA panem reactive antibodies, HLA 
human leukocyte antigen, CIT cold ischemia time.

Characteristics

Recipient age in years (mean ± SD) 55.5 ± 13.6

Male gender, no (in %) 13 (68%)

Female gender, no (in %) 6 (32%)

Cause of chronic renal failure no.

Chronic glomerutonephritis 6

Diabetic nephropathy 2

Hypertonic nephropathy 3

Interstitial nephritis 3

Polycystic kidney disease 2

Other 3

No. of all of the presensitized patients 8

PRA < 10% 4

PRA 10–50% 3

PRA > 50% 1

No. of HLA mismatches (mean ± SD) 4.6 ± 1.0

Donor age in years (mean ± SD) 46.3 ± 16.3

CIT (mean ± SD) 25.3 ± 4.6

Loss of the graft during 12 months None

Patients with proteinuria in the 12 month None

Characteristics of hypertension Before transplantation Three months Six months 12 months

RR 132/80 132/83 139/80 137/79

No. of antihypertensive drugs 1.5 ± 1.4 1.5 ± 0.8 1.3 ± 0.8 1.6 ± 1.0

Creatinine (mg dL−1) 1.58 ± 0.40 1.49 ± 0.31 1.45 ± 0.35
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measured. The same serum sample preparation and 1H NMR measurement protocols were used in our previous 
study67.

1H NMR measurements.  The NMR spectra of serum were recorded at 300 K using an Avance III spec-
trometer (Bruker, GmBH, Germany) operating at a proton frequency of 600.58 MHz. The NMR spectra were 
recorded using a cpmg1dpr pulse sequence with water presaturation in a Bruker notation. For each sample, 128 
continuous scans were collected with a spin-echo delay of 400 μs; 80 loops; a relaxation delay of 3.5 s; an acqui-
sition time of 2.73 s; a time domain of 64 k and a spectral width of 20.01 ppm. The 1D spectra were processed 
with a line broadening of 0.3 Hz, manually phased, baseline-corrected using MestReNova software (Mestrelab 
Research v11.0) and referenced to the TSP signal δ = 0.0 ppm. The methanol and water resonance signals were 
removed from the data matrix. All of the spectra were normalized to the TSP resonance signal. The alignment of 
the resonance signals was completed using a correlation optimized warping algorithm (COW) and the icoshift 
algorithm, which was implemented in MATLAB (v R2014a, Mathworks Inc.)67.

Methods for data analysis.  Since the levels of 47 metabolites were measured for the same patients over 
time, methods that take into account the repeated measures structure of data were used for the analyses in this 
study. The core of all of these methods is to collect factor mean estimations for the metabolites in respective 
factor matrices using the specific analysis of variance, ANOVA, principal and to explore or model the variance 
of the collected factor matrices using principal component analysis, PCA; simultaneous components analysis, 
SCA; partial least squares-discriminant analysis, PLS-DA or PLS combined with the target projection method, 
TP. With the repeated measures ANOVA model68, the total variability of each metabolite is partitioned into 
the measurement variability that is attributable to the different time points, which is referred to as SStime, the 
variability due to individual differences among patients (SSpatients) and the individual variability at each time 
point, which can be denoted as SSerror. Thus, the respective factor matrices will be of the same sizes 76 (19 indi-
viduals × 4 time points) × 47 metabolites and will represent the effects of ‘time’ and ‘patients’, while the residual 
matrix will contain the individual measurement errors. The multivariate analysis is carried out by the different 
methods. ANOVA-PCA24 uses principal component analysis on any factor matrix summed with the residual 
matrix in order to describe the within-group variance better, while simultaneous component analysis is used for 
the direct analysis of the factor matrices, which is the essence of the ASCA method25. A further improvement 
of the description of the within-group variance can be obtained from the analysis of variance-target projection 
approach, ANOVA-TP27. For the multi-group problem that is studied here, the PLS2 variant enabled working 
with several coded response variables. Because of the closure effect, the four groups in these data (associated 
with the four time measurement points) could be modeled with PLS2-DA using three response variables that 
were coded by − 1 and 1. The model complexity was estimated using the leave-one sample-out approach. Once 
a vector of regression coefficients was obtained for each of the responses, the target projection approach was 
performed. The result is a target projection matrix which has a rank that equals the number of groups minus one. 
The mean and uncertainty of the selectivity ratio23, SR, value for each metabolite were determined using a boot-
strapping procedure with a block replacement. This meant that each of the 10,000 bootstrap samples contained 
the metabolite measurements over time for the individuals that were selected randomly with a replacement (a 
total of 19 individuals). A unitary cut-off value for the selectivity ratios was used here. This selection was made 
after using the discriminating variable test, e.g. the DIVA test69. The P-value for each metabolite was also esti-
mated using a bootstrapping of the loadings after the target transformation. Only P-values lower than 0.05 were 
considered in the interpretation.

The goal of CART is to find some explanatory metabolites for which the binary splits at a suitable threshold 
value form as homogeneous groups of samples as possible. The results are visualized as a binary tree, which 
consists of a number of nodes that represent the subgroups of the data samples. For example, Fig. 4a presents 
a simple binary tree with two terminal nodes. Terminal nodes are the nodes that cannot be split any further. 
The optimal split was obtained at a hippurate value of 8.73 (mean value of a given variable for two neighboring 
samples from the two groups, which led to the largest increase in homogeneity after the binary split). In order 
to obtain the optimal binary splits, entropy was minimized as an impurity function. The most homogeneous 
nodes, e.g. the pure nodes that were obtained from the split, had the lowest value of entropy. The nodes were split 
while the nodes were not pure. The number of nodes was optimized using the so-called cost-complexity pruning 
in order to obtain good prediction properties. In our study, binary trees were constructed for the transformed 
data and for the respective ‘time’ factor matrix summed with the residual matrix, which were obtained from the 
multiple ANOVA analyses. The independent variable represented the respective time points.

All of the calculations were performed on a personal computer (Intel(R) Pentium(R) M, 1.60 GHz with 2 GB 
RAM) using Microsoft Windows XP (service pack 2) operating system using in-house programmed algorithms 
and Statistical Toolbox 8.0 with MATLAB 7.0 (R14).

Ethics approval and consent to participate.  The study protocol was approved by the Bioethical Com-
mittee of Wroclaw Medical University (KB148/2013): each subject signed a written informed consent. We defi-
nitely and unequivocally declare that the research that was described in our manuscript did not involve, in any 
manner, organs procured from prisoners. All transplanted organs were retrieved via the transplant team of the 
Department of Vascular, General and Transplantation Surgery of Wroclaw Medical University in compliance 
with all Polish legal laws and regulations that include organ donation possibility only in the case of no objection 
made by the donor before their death.
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Data availability
The NMR data that were collected and/or analyzed in this study can be obtained from the corresponding author 
upon request.
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