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Abstract

Strategies to reduce obesity have become public health priorities as the prevalence of obesity has 

risen in the United States and around the world. While the anti-inflammatory and 

hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are 

well known, their antiobesity effects and efficacy against metabolic syndrome, especially in 

humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 

PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, 

however, published research suggests that though n-3 PUFAs may not aid weight loss, they may 

attenuate further weight gain and could be useful in the diet or as a supplement to help maintain 

weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition 

and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating 

adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting 

adipogenesis and altering epigenetic mechanisms.

Keywords

Adipocytes; Fish oil; Metabolic syndrome; Obesity; Omega-3 polyunsaturated fatty acids; Weight 
loss

1. Introduction

The American Medical Association recognizes obesity as a disease [1] and considers it a 

major public health problem. In the United States, 36.5% of adults are obese [2], while 

approximately 39% of the world’s adult population is overweight and more than 13% are 

obese [3]. Obesity increases morbidity risks for heart disease, type 2 diabetes mellitus 
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(T2DM) and some types of cancer [4]. Metabolic changes associated with these diseases 

comprise metabolic syndrome (MetS), which is diagnosed when three of the following five 

conditions exist: abdominal obesity, elevated triglycerides (TG), reduced high-density 

lipoprotein (HDL) cholesterol, high blood pressure and elevated fasting blood glucose [5].

Lipids are key macronutrients in the human diet. The type and proportion of dietary fatty 

acids consumed impact health and whole-body physiology [6]. Research has shown that 

saturated fatty acids (SFAs) are detrimental to health, while monounsaturated (MUFAs) and 

polyunsaturated fatty acids (PUFAs) offer health benefits [7]. In the diet, fatty fish and fish 

oil rich in omega-3 (n-3) PUFAs, such as eicosapentaenoic acid (EPA) or docosahexaenoic 

acid (DHA), have demonstrated cardioprotective, anti-inflammatory and 

hypotriglyceridemic properties. Hence, these fatty acids may assist in the treatment and 

prevention of obesity comorbidities, especially by improving individual components of the 

metabolic syndrome [7–9]. Therefore, the effect of n-3 PUFAs on body weight and body 

composition is of particular interest.

In this review, we provide an update on the effects of n-3 PUFAs on obesity and MetS in 

both animal and human studies, highlighting potential mechanisms for n-3 PUFAs in 

reducing body weight, improving body composition and counteracting the adverse metabolic 

consequences of obesity.

2. Adipose tissue and obesity

Body fat is primarily stored in adipose tissue, a connective tissue composed of adipocytes, 

preadipoctyes, vascular endothelial cells, fibroblasts and various types of immune cells, 

including adipose tissue macrophages [10]. Adipose tissue is an active endocrine organ that 

secretes numerous hormones, including leptin and adiponectin, and cytokines (adipokines) 

such as interleukin (lL)-6 [11]. Three major types of adipose tissue have been identified: 

white adipose tissue (WAT), brown adipose tissue (BAT) and beige (“brite”) adipose tissue. 

WAT is primarily responsible for energy storage in the form of TG and the release of fatty 

acids during periods of fasting; it is mainly located in two distinct depots, as subcutaneous 

adipose tissue or visceral adipose tissue [10]. The adipocytes of visceral fat surrounding 

internal organs are more metabolically active than those of subcutaneous adipose tissue and 

thus contribute to the risks of cardiovascular disease and T2DM [12]. BAT plays a key role 

in thermogenesis and is mainly found above the clavicle and scapula in adults [12]. Obesity 

leads to adipose tissue dysfunction, which is mechanistically linked to the pathogenesis of 

insulin resistance in the liver and in skeletal muscle (Fig. 1) and may result in MetS [13].

While weight loss via lifestyle modification is the primary treatment in the management of 

obesity and its comorbidities, compliance is difficult. Adjunct treatments for the 

management of obesity include pharmaceuticals [14], surgery [15] and dietary supplements 

[16]. Despite these measures, however, the prevalence of obesity has continued to rise. Thus, 

alternative strategies to assist in weight loss and reduce body fat are necessary. Natural 

bioactives such as n-3 PUFAs present few side effects and so may be safer than other 

modalities for the treatment of obesity. This review summarizes current basic and clinical 

research and mechanistic insights regarding the effects of n-3 PUFAs on obesity.
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3. Omega-3 fatty acids

3.1. Synthesis and metabolism

The human body can synthesize many fatty acids, but not linoleic acid (LA; omega-6; C18:2 

n-6) or α-linolenic acid (ALA; C18:3 n-3), which must be consumed in the diet. ALA is the 

precursor for EPA (C20:5 n-3),docosapentaenoic acid (DPA; C22:5 n-3) and DHA (C22:6 

n-3) in the human body (Fig. 2) [6]. Many studies have found low conversion rates of ALA 

to EPA and DPA, and little to no DHA synthesis [17,18]; hence, any direct benefits of these 

very long chain fatty acids depend on dietary intake [17]. Both dietary intake and fatty acid 

desaturase activity determine plasma n-3 PUFA levels [19]. A balanced n-6:n-3 fatty acid 

ratio (1:1 to 2:1 is optimal) is important for homeostasis and normal development 

throughout the lifespan. High n-6 PUFA intake in the Western diet increases the n-6:n-3 ratio 

to a range from 10:1 to 20:1 and may play a role in the pathogenesis of obesity and related 

diseases [19,20].

3.2. Sources of omega-3 PUFAs

Dietary sources of n-3 PUFAs are much less abundant than n-6 PUFAs. ALA is synthesized 

by plants from LA and can thus be found in green leafy vegetables, seeds such as flaxseed 

(linseed), nuts and legumes. Vegetable oils such as sunflower, corn, perilla, canola and 

soybean also provide ALA but are much more abundant in LA. Fish, such as salmon, tuna, 

trout, mackerel, anchovy, bluefish, herring, mullet, sturgeon and sardines, are also rich 

sources of n-3 PUFAs, particularly EPA and DHA. Lean fish, such as cod, store lipids in 

their liver, and for this reason, cod liver oil is a good source of n-3 PUFAs. Fatty fish, such 

as salmon, mackerel, sardines and tuna, store lipids throughout their bodies and are good 

whole sources of n-3 PUFAs [6].

The 2015 Dietary Guidelines for Americans recommend consuming about 8 oz per week of 

seafood, which would provide about 250 mg/day of EPA and DHA [21]. The recommended 

intake for n-3 PUFAs corresponds to consuming fish twice weekly, including one serving of 

oily fish. Even though there is ample evidence for a role of n-3 PUFAs in modulating 

chronic diseases, an optimal dose has not been agreed upon, and recommendations vary 

based on governing body. The U.S. Food and Drug Administration has stated that levels up 

to 3 g/day are generally recognized as safe [22], although other authorities have reported no 

adverse effects at up to 5–6 g/day [23]. It has been suggested that the bioavailability of n-3 

PUFAs is improved by emulsification. Emulsified n-3 PUFA is more easily exposed to 

pancreatic lipase and colipase, enhancing its digestion. Additionally, emulsified n-3 PUFA is 

easily transported into enterocytes, thus increasing fatty acid absorption [24,25].

3.3. Dietary omega-3 PUFA intake, obesity and metabolic disorders

Dietary fish intake is considerably higher in people of the circumpolar arctic regions and 

relatively much lower in those living in the United States, Australia, France and the United 

Kingdom. Fish intake closely reflects n-3 PUFA consumption, with intakes of approximately 

3 to 4 g/day by Eskimos, 5 to 6 g/day by Japanese, 0.189 g/day by Australians and 0.25 

g/day by Europeans and North Americans [26,27]. After it was reported that Japanese and 

Eskimo populations had healthier metabolic profiles associated with elevated plasma n-3 
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PUFA levels attributed to high fatty fish intake [28], many prospective studies began to 

examine whether fish or fish oil intake prevents the development of obesity.

The Health Professional Follow-up Study suggested that men with a high level of fish 

consumption were less likely to be overweight [29]. In contrast, the Nurses’ Health Study 

found that women with higher fish intake (two or more fish meals per week) had a higher 

risk of being overweight [30]. In China, data from the Shanghai Women’s and Men’s Health 

studies found similar indices of body mass among groups of varying fish intake [31]. 

Clearly, findings of prospective studies regarding the beneficial effects of fish intake on 

obesity are far from agreement. The evident discrepancies may have arisen due to differing 

or inadequate methods of data collection on fish intake (food frequency questionnaires), 

differences in cooking methods and other unaccounted for lifestyle practices (exercise, etc.) 

from study to study and among different study populations.

Plasma, erythrocyte and tissue n-3 PUFA concentrations are largely determined by 

consumption and thus may be taken to accurately reflect n-3 PUFA consumption. Plasma 

levels of fatty acids reflect recent intake, whereas tissue levels of fatty acids reflect long-

term intake [32,33]. Erythrocyte fatty acid content (i.e., the omega-3 index) correlates with 

fatty acid intake and parallels tissue concentrations and thus is more reflective of long-term 

intake [34]. An increase in n-6: n-3 ratio [35] and overall lower serum phospholipid n-3 

concentrations, particularly of DHA have been associated with obesity, specifically waist 

circumference measures [36] in obese adolescents [35] and obese adults [36]. Thus, 

prospective studies on the relationship between plasma and erythrocyte fatty acid content 

and the long-term risk of obesity are warranted to clarify this issue.

4. Omega-3 PUFA in animal studies

Animal studies performed to investigate the antiobesity effects of n-3 PUFA have used a 

variety of models, diet compositions, and n-3 PUFA compositions and doses. Such 

differences across experimental designs complicate the interpretation of their results into 

cohesive and conclusive findings (Table 1).

4.1. Omega-3 PUFA, energy intake and obesity

Studies relating effects on body weight and energy intake with n-3 PUFA supplementation 

are inconsistent; while some show either decreased [37,38] or increased energy intake [39], 

most show unchanged energy intake with the addition of n-3 PUFA or with varying n-3 

PUFA doses [40–57]. Only one study performed with female mice reported decreased 

energy intake with no significant effect on body weight [38].

Supplementation with n-3 PUFA prevented high-fat (HF)-diet-induced weight gain in a 

number of rodent studies, most of which supplemented an HF diet provided from the start, 

concurrent with inducing obesity [41,43,45,48,49,51]. Several studies have utilized a design 

that investigated the effectiveness of n-3 PUFA to reverse diet-induced weight gain and 

related metabolic changes by adding n-3 PUFA to the HF diet at approximately midstudy 

[46,47,58,59]. Our lab found that mice on an EPA reversal diet (6 weeks of HF followed by 

5 weeks of HF-EPA) had body weights similar to mice fed the HF-only diet [47]. In a 
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different study, body weight decreased significantly at the beginning of the 6-week reversal 

period, returning to weights similar to the low-fat-fed group for the remainder of the study 

(18 weeks total) [58]. Taken together, these studies suggest that antiobesity effects of N-3 

PUFA in mice are predominantly seen when it is fed from the start rather than introduced 

after obesity is already established.

4.2. Omega-3 PUFA and insulin resistance

Obesity leads to insulin resistance, which is at least in part responsible for the pathogenesis 

of MetS [13]. Most weight loss interventions improve insulin resistance. Similarly, most 

animal studies document a beneficial effect of n-3 PUFAs on insulin sensitivity [60]. Since 

n-3 PUFAs induce weight loss in rodent models of obesity, it is difficult to state whether 

there are direct effects of n-3 PUFAs on insulin sensitivity. By contrast, we have shown 

weight-independent benefits of EPA on insulin sensitivity in HF-diet-induced obese 

C57BL/6J mice. These EPA-fed mice had significantly improved homeostatic model 

assessment of insulin resistance (HOMA-IR) scores when compared to HF-fed mice, despite 

similar body weights [47].

4.3. Animal study conclusions

Thus far, most rodent studies have shown an antiobesity effect of n-3 PUFA, while fewer 

studies have found no change in body weight [37,39–41,44–46,49,51–57,59,61,62]. These 

studies do suggest that n-3 PUFA plays a role in reducing adipose tissue mass [40], 

particularly in the epididymal [39,42,43,46,49,52,53,56,57,61–64] and retroperitoneal 

locations [37,39,41,46,49,57]. Differences in the outcomes of studies on the effects of n-3 

PUFA on body weight could be due to differing animal models of obesity (genetic vs. diet-

induced obesity), the content of the diet (HF vs. high sucrose), the n-3 PUFA (EPA or DHA) 

formulation, the form of n-3 PUFA (TG form or as ethyl ester) provided or various 

combinations of these factors. Differences in n-3 PUFA dosage and duration may contribute 

to differences in outcomes as well. Failure to assess energy expenditure also limits 

meaningful comparisons. The combination of calorie restriction and n-3 PUFA 

supplementation may be the most effective strategy for reducing weight and improving body 

composition [54]. Interestingly, Ruzickova et al. extrapolated findings from their animal 

study to humans to suggest that with a daily intake of 100 g dietary fat, 11 g of EPA/DHA 

would be required to limit weight gain [42]. Few animal studies have considered translation 

to human studies since the amounts of n-3 PUFA, as EPA, DHA or both, in animal studies 

far exceed amounts feasible in humans [42,45,64]. It should be noted, however, that human 

studies of fish oil intake among Eskimo and Japanese populations have shown beneficial 

effects of these fatty acids even at intake levels below 11 g/day. Since these populations 

consume more fish and less red meat, it is plausible that a relatively lower arachidonic acid 

(AA) intake leading to a decreased n-6:n-3 ratio is contributing to the beneficial effects 

observed.

5. Omega-3 PUFA and weight loss in humans

There are a variety of approaches to investigating the effects of n-3 PUFA on body weight, 

body composition and energy intake in human interventions that use different types of fish 
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and varying levels of fish oil content, particularly EPA and DHA (Table 2). Fish and fish oil 

have also been used in addition to a variety of weight loss and dietary interventions of 

different durations with or without an exercise regimen. Participants have ranged from 

healthy to obese, with a variety of obesity-associated disorders, including T2DM, 

hyperinsulinemia and other features of MetS. The control, or type of placebo, which consists 

of assorted oils containing n-6 PUFA, such as sunflower, corn, soybean and paraffin oils, 

also varies among studies.

With n-3 PUFA supplementation alone, studies report no change in body weight (Table 2). 

One study in healthy adults supplemented with fish oil diets demonstrated decreased body 

fat mass, basal respiratory quotient and increased basal lipid oxidation when dietary intake 

was controlled [65]. Another study found reduction in fat mass along with significantly 

increased lean mass (fat-free mass) despite no alterations in total body mass, resting 

metabolic rate (RMR) or respiratory exchange ratio when compared to placebo 

supplementation [66]. Participant-reported diet diaries indicate significant reductions in 

carbohydrate, fat and total caloric intake with n-3 PUFA supplementation in one study [67], 

but others show no change in energy intake [68–71]. Since most studies only report total 

caloric intake, the effect of n-3 PUFA supplementation on macronutrient and energy intake 

should be repeated in larger studies to conclusively determine the role of n-3 PUFA in 

weight loss in humans.

5.1. Omega-3 PUFA in combination with dietary interventions

Weight loss results appear more promising when n-3 PUFA supplementation is combined 

with calorie restriction (Table 3), but it is difficult to draw conclusions due to the variety of 

calorie restriction programs in different studies. Greater improvements in metabolic 

parameters, such as improved insulin resistance and decreased TGs, were attained with 

combined n-3 PUFA supplementation and calorie restriction compared to calorie restriction 

alone [72–74] or replacement of SFA [71]. Interestingly, results appear to be independent of 

the source, form or dose, i.e., different fish species (salmon, tuna, sardines, etc.) or fish oil 

capsules, of n-3 PUFA supplied [72,73,75]. This was confirmed by Thorsdottir et al., who 

compared the effects of various fish (cod or salmon) and fish oil (DHA/EPA capsules) in 

conjunction with 30% calorie restriction on weight loss in young, overweight adults for 8 

weeks. After 4 weeks, men receiving cod, salmon or fish oil capsules lost approximately 1 

kg more than those on 30% calorie restriction alone. The fish species and fish oil capsules 

supplied various amounts of n-3 PUFA: 0.3 g/day from cod, 3.0 g/day from salmon and 1.5 

g/day from fish oil capsules, yet the n-3 PUFA dose did not influence weight loss outcomes. 

This suggests that variations in weight loss benefits may not depend solely on variations in 

n-3 PUFA dosages from study to study [76].

Rapid weight loss, induced by a very low calorie diet, alters adipose tissue and serum fatty 

acid composition [77,78]. Supplementation with n-3 PUFA during rapid weight loss 

increases serum n-3 PUFA concentrations [79] and may help prevent unfavorable changes in 

fatty acid tissue composition and essential fatty acid deficiency [77]. Some studies have 

utilized n-3 PUFA supplementation prior to a weight loss intervention, such as dietary 

restriction and/or an exercise regimen, and reported significant reductions in weight [80], 
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while others observed no changes in body mass index (BMI) or body composition, 

particularly in insulin-resistant individuals [81]. Nonetheless, this type of study design 

should be refined and pursued further due to the relationship between tissue/plasma/

erythrocyte n-3 PUFA concentrations and obesity. It will be important to verify if increasing 

n-3 PUFA concentrations prior to interventions would aid in weight loss and ameliorate 

obesity related metabolic dysfunctions.

5.2. Omega-3 PUFA and exercise

Others have explored the influence of n-3 PUFA in conjunction with exercise and with or 

without a dietary intervention to determine if the addition of n-3 PUFA leads to greater 

weight loss (Table 4). With the addition of n-3 PUFA to an exercise regimen and dietary 

intervention, only one study has shown a decrease in body weight [82]. However, only a few 

such studies have been conducted, and the dietary intervention consisted of nutritional 

counseling rather than a prescribed diet [83,84].

The combined effects of n-3 PUFA and exercise are currently unknown. Well-designed 

placebo-controlled randomized clinical trials are lacking [85], as they require healthy and 

lean participants [86]. Differences in the intensity and forms of exercise (i.e., aerobic or 

resistance training) employed prevent valid comparisons across studies. The addition of n-3 

PUFA to aerobic training without dietary intervention has resulted in decreases in fat mass 

[87]. Furthermore, the addition of n-3 PUFA to resistance training without dietary 

intervention resulted in increases in lean mass [88] and improved muscle quality [89].

5.3. Limitations in human studies

Overall, findings on the effects of n-3 PUFA in humans are inconclusive. Improvements in 

study design and analyses could help resolve apparent inconsistencies in the effects of n-3 

PUFA on weight and body composition. For example, sex, metabolic phenotype and 

geographic location should be taken into consideration in addition to n-3 PUFA 

supplementation. There is also a case for evaluating translation to real-world weight-loss 

diets, which are complicated by the need to control for eating behavior and physical activity. 

Even when participants are supplied with food, outpatient studies are difficult to translate 

because measurements of adherence to the recommended interventions [90] generally rely 

on self-reporting. Hence, studies using inpatient feeding and analysis of energy utilization 

should be carried out [91].

Failure to assess energy expenditure in human studies limits our understanding of the 

associations between n-3 PUFA status and decreased adiposity, weight loss and energy 

balance, especially when energy intake is unchanged. This highlights the need for tightly 

controlled studies, similar to that of Hall et al., to validate fuel partitioning and n-3 PUFA 

influence on metabolism in humans. Unfortunately, work of this nature is expensive, labor 

intensive and generally of short duration with small sample sizes [91].

Other limitations on current human studies of n-3 PUFA supplementation include the use of 

less reliable anthropometric methods [92] and failure to dose according to body weight to 

meet the threshold of tissue membrane n-3 PUFA phospholipid enrichment [93]. Finally, it is 

of utmost importance to utilize a standardized method, such as the omega-3 index, to assess 
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n-3 PUFA status, the biological effects of n-3 PUFA and n-3 PUFA related metabolites [34]. 

Future human studies should employ this method to verify that n-3 PUFA consumption 

parallels n-3 PUFA concentrations in the body.

6. Mechanisms by which n-3 PUFA improve adiposity and metabolic 

disorders

There are several proposed mechanisms by which n-3 PUFA could work in reducing body 

weight and improving the metabolic profile (Fig. 3). These include alterations in adipose 

tissue gene expression; changes in adipokine release; adipokine-mediated or adipokine-

related pathways; appetite suppression; alterations in carbohydrate metabolism; increases in 

fat oxidation; increases in energy expenditure (possibly through thermogenesis); activating 

mechanisms involved in muscle anabolism; and, lastly, influence on epigenetics.

6.1. Omega-3 PUFA and adipogenesis

Adipose tissue expansion in obesity occurs via adipocyte hypertrophy (enlargement of 

adipocytes) and hyperplasia (increase in adipocyte number due to adipogenesis). The latter 

is associated with smaller adipocyte size and a metabolically healthy phenotype. Both n-3 

and n-6 PUFAs can bind and/or regulate transcriptional factors that control genes involved in 

preadipocyte differentiation. PUFAs, particularly AA and its metabolites, serve as ligands 

for peroxisome proliferator-activated receptors (PPAR) gamma (PPARγ) and delta (PPARδ) 

to induce fat cell differentiation and accelerate maturation by elevating lipoprotein lipase 

expression in vitro [94,95]. Elevated concentrations of n-6 and n-3 PUFA in human 

subcutaneous tissue correlate with reduced adipocyte size; increased SFA concentrations 

lead to increased fat cell size [96]. Differences in fatty acid concentrations are more strongly 

associated with abdominal subcutaneous than visceral adipose tissue [35].

Studies performed in clonal adipocytes (3T3-L1) also demonstrate up-regulation in PPARγ 
expression, adipogenesis and lipid droplet formation after the addition of n-3 PUFA [43,97]. 

Taken together, these studies suggest that n-3 PUFAs promote adipogenesis and a healthy 

expansion of adipose tissue during positive energy balance, promoting a metabolically 

healthy phenotype.

6.2. Adipose tissue inflammation

Chronic low-grade inflammation and changes in adipokine patterns are key factors in the 

pathogenesis of metabolic derangements in obesity (Fig. 1). Indeed, a relationship exists 

between BMI, body fat percentage and inflammatory markers [98]. Omega-3 PUFAs inhibit 

nuclear transcription factor kappa B, a key transcription factor in cytokine gene expression 

and inflammation [99]. In humans and in vitro, n-3 PUFAs also have a documented role in 

reducing cytokines, including 1L-1 [100,101], 1L-6 [102] and TNF-α [100,103], which are 

all elevated in obesity. (For an extensive review of mechanisms of n-3 PUFA and adipose 

tissue inflammation, see Kalupahana et al., 2011).

Omega-3 PUFAs act as agonists for different members of the free fatty acid receptor family 

(FFARs) present on a variety of cell types involved in both energy homeostasis and the 
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inflammatory response. A number of saturated and unsaturated long-chain fatty acids can 

activate FFAR1 and FFAR4 [104,105]. Agonist stimulation that impedes the inflammatory 

response occurs through activation of the G-protein-independent signaling pathway through 

interaction with β-arrestin proteins, which may further interact with the transforming growth 

factor kinase protein (TAK1) and binding protein (TAB-1). Stimulation of FFAR4 or β-

arrestin inhibits lipopolysaccharide (LPS)-mediated release of inflammatory cytokines, 

including TNF-α and 1L-6 in the macrophage-like cell line RAW264.7. In fact, decreased 

macrophage infiltration into adipose tissue has been shown in mice fed an n-3-PUFA-

enriched diet, possibly via activation of FFAR4 (G-protein-coupled receptor 120). Since n-3 

PUFAs are unable to reduce adipose tissue macrophage infiltration in FFAR4 knockout 

mice, this highlights the mechanistic importance of FFAR4 in mediating the anti-

inflammatory effects of n-3 PUFA [106]. Furthermore, fish oil supplementation (4 g n-3 

PUFA/day) in obese humans has been associated with decreased M1 macrophage presence 

in adipose tissue and subsequent decreases in proinflammatory markers, such as IL-8 [107]. 

Accordingly, monocytes differentiate preferentially into M1 macrophages when treated with 

human postprandial triglyceride-rich lipoproteins following a meal rich in saturated fatty 

acids, versus a meal high in MUFA or PUFA, after which they shift towards M2 

macrophages [108].

Furthermore, n-3 PUFAs halt inflammatory processes by inhibiting activation of the NLRP3 

(nucleotide-binding oligomerization domain-like receptor; NLR family, pyrin domain 

containing 3) inflammasome via an arrestin-FFAR4-dependent pathway [109], which 

triggers a caspase-dependent cascade, resulting in the release of proinflammatory cytokines 

[110]. The n-3 PUFA DHA acts through FFAR1 or FFAR4 to suppress caspase-1 activity via 

formation of a β-arrestin-2/NLRP3 or NLRP1b complex and thus decrease the release of 

proinflammatory cytokines [109].

Omega-3 PUFAs also influence lipid rafts, which are cholesterol- and sphingolipid-rich 

areas of the plasma membrane [111] that can form signaling platforms [112,113]. 

Incorporation of n-3 PUFAs into plasma membranes disrupts lipid rafts [114] and hence 

could mediate anti-inflammatory and antichemotactic n-3 PUFA properties.

6.3. Adipokine secretion

Several studies have shown that n-3 PUFAs modulate adipokine secretion. Obese individuals 

have high plasma leptin levels [115] suggestive of leptin resistance. Conversely, weight loss 

leads to parallel decreases in plasma leptin levels [116]. This weight-loss-associated 

decrease in leptin could contribute to hunger and a lower metabolic rate and ultimately lead 

to weight regain [117]. EPA supplementation attenuates the decrease in blood leptin levels 

that occurs during weight loss in obese women, suggesting a potentially significant role of 

EPA in weight loss maintenance [118]. Indeed, EPA increases the production of leptin in 

rodents and cultured adipocytes [37,119], suggesting a direct effect of n-3 PUFA on leptin 

production. However, the few studies that have assessed the role of n-3 PUFA in weight 

maintenance have found no significant effect on weight or blood leptin concentrations 

between n-3-PUFA-supplemented subjects compared to other weight loss groups [120,121]. 
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Omega-3-PUFA-mediated effects on leptin are dependent on a number of factors, such as 

diet composition and energy balance, which could cause conflicting results.

Independent of body weight, both animal [37,48,122] and human [123,124] studies have 

found significant increases in blood levels of the insulin-sensitizing adipokine, adiponectin, 

following n-3 PUFA consumption. EPA appears to regulate adiponectin levels at the 

translational or posttranslational level rather than at the transcriptional level [123]. It has 

been proposed that the anti-inflammatory properties of n-3 PUFA supplementation induce an 

increase in adipocyte adiponectin production [123] and improve leptin sensitivity [125]. This 

type of interplay could have a significant influence on body weight regulation. An inverse 

relationship between serum adiponectin concentrations and TNF-α has also been 

demonstrated in ob/ob mice [123] and in overweight and insulin-resistant children following 

n-3 PUFA supplementation [126].

Fatty acid-binding proteins are cytosolic proteins that bind long-chain fatty acids and 

promote transport to several organelles. Fatty acid-binding protein 4 (FABP4; adipocyte 

FABP, A-FABP; or aP2) is secreted from both macrophages and adipocytes and functions as 

an adipokine [127]. An elevated FABP4 serum concentration is associated with obesity, 

insulin resistance and hypertension [128]. Adipocytes are the predominant contributors of 

circulating FABP4. During lipolysis, FABP4 functions in a nonclassical secretion pathway 

[129]. Omega-3 PUFA dose-dependently reduced FABP4 secretion in 3T3-L1 adipocytes 

and reduced serum FABP4 concentrations in humans [130]. Omega-3-PUFA-mediated 

reductions in FABP4 could also be due in part to reduced expression of transcription factors 

involved in adipocyte differentiation, including PPARγ2 and C/EBPα [130]. Another 

possible mechanism by which FABP4 levels are lowered by n-3 PUFA is through the β-

adrenergic receptor [129] since n-3 PUFAs reduce sympathetic nerve activity and thus may 

lower FABP4 serum level [130]. Taken together, n-3 PUFAs modulate adipokine secretion 

by exerting anti-inflammatory effects and promoting a metabolically healthy phenotype.

6.4. Appetite suppression

In addition to leptin, central and peripheral peptides and hormones involved in food intake 

and energy expenditure signaling pathways are targets for n-3-PUFA-derived 

endocannabinoids and thus may be implicated in the prevention and treatment of obesity. A 

subanalysis of the study conducted by Thorsdottir et al. reported elevated sensations of 

fullness in the participants who consumed higher n-3 PUFA content meals (fatty fish and 

fish oil) compared to those who consumed lower n-3 PUFA content meals (control and lean 

fish) both immediately and 2 h after consuming the meal. Feelings of hunger were 

consistently lower in participants who ate the meal higher in n-3 PUFA content [131]. 

Therefore, it is possible that increased feelings of satiety following a meal high in n-3 PUFA 

content could aid weight loss by reducing subsequent food intake. Appetite suppression 

could also be mediated through FFAR4 (GPR 120). Omega-3 PUFAs are agonists for 

FFAR4 [132], which elicits the secretion of cholecystokinin, a peptide hormone that is 

synthesized and released from the small intestine and has roles in hunger suppression [133].
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6.5. Insulin resistance

Adipose tissue inflammation is at least in part responsible for obesity-associated insulin 

resistance. Since n-3 PUFAs alleviate adipose tissue inflammation as outlined above, 

reducing adipose tissue inflammation is a possible mechanism for n-3-PUFA-associated 

improvements in insulin sensitivity observed in animal models.

Hepatic insulin resistance in which both glucose production and lipogenesis are increased is 

characteristic of the metabolic dysregulation seen in obesity and T2DM. This dysregulation 

is attributed to reductions in proximal insulin signaling kinases, such as P13K and AKT, 

which hinder gluconeogenesis, as well as activation of mTORC1 and p70S6K, which control 

lipogenesis [134,135].

Fibroblast growth factor (FGF) 21, which is produced by the liver, adipose tissue and 

skeletal muscle, has been shown to reduce both hepatic glucose production and plasma 

glucose levels, while it also increases insulin sensitivity and adipocyte glucose uptake [136]. 

Circulating FGF21 levels are elevated in diet-induced obese mice [137] and obese and type 2 

diabetic humans [138], suggesting obesity-related FGF21 resistance. Omega-3 PUFAs 

attenuate HF-diet-induced increases in FGF21 [139] with associated reductions in 

hyperglycemia, hypertriglyceridemia and plasma insulin levels [140,141]. This could be a 

potential mechanism by which n-3 PUFAs improve insulin resistance.

Omega-3 PUFA supplementation prevents insulin resistance in muscle of rats fed an HF diet 

[142], partly by improving glycogen synthesis [143]. Omega-3 PUFAs also decrease fat 

content in muscle and maintain normal PI3K activity and expression and transcription of 

GLUT 4 receptors in muscle and thus improve myotubule glucose uptake. Omega-3 PUFAs 

also promote inhibition of hepatic glucose production [142].

Hence, n-3 PUFAs may be a valuable nutritional tool for preventing or diminishing muscular 

and hepatic insulin resistance associated with obesity. However, n-3 PUFAs appear 

ineffective once T2DM is established [144].

6.6. Lipid metabolism

In both animal and human studies of n-3 PUFA supplementation, reductions in weight or fat 

mass were not accompanied by changes in energy intake (Tables 1–4). Omega-3 PUFAs can 

partition dietary fuel away from storage and toward oxidation by suppressing lipogenic 

genes and activating genes that encode for mitochondrial and peroxisomal fatty acid 

oxidation in both the liver and muscle.

Given their cardioprotective properties, n-3 PUFAs can improve endothelial function in 

patients with varying metabolic profiles [145], possibly through increased production of 

nitric oxide [146]. Furthermore, during exercise, fish oil has been shown to increase arterial 

dilation and blood flow to skeletal muscle [147]. Hence, improved blood flow may increase 

the delivery of fats to be utilized as energy in skeletal muscle, especially during exercise.

Regulation of lipid metabolism may vary by n-3 PUFA type, as well as by fat depot. For 

example, EPA is preferentially directed towards β-oxidation, while DHA and DPA are 
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spared from catabolism and deposited in tissues [148]. Moreover, gene expression of fatty 

acid synthase [149], hormone-sensitive lipase, lipoprotein lipase and phosphoenolpyruvate 

carboxykinase in retroperitoneal fat is decreased with DHA and mixed EPA/DHA 

supplementation but not with EPA supplementation alone [41].

Portions of hepatic TG are secreted via very low density lipoprotein (VLDL), which delivers 

TG to peripheral tissues, such as WAT. Hepatic VLDL secretion is enhanced in obese 

individuals [150] possibly due to increased fatty acid delivery, elevated glucose and insulin 

concentrations, as well as impaired fat oxidation, which increases fatty acid esterification 

into TG [151]. Omega-3 PUFAs reduce lipogenesis and reduce hepatic VLDL secretion 

[51]. In vitro, n-3-PUFA-treated HepG2 cells have decreased hepatic VLDL secretion [152] 

and reduced apolipoprotein B100 production [153]. This has been validated in both DHA- 

and n-3-PUFA-supplemented animals [154]. Hence, through inhibition of VLDL formation, 

n-3 PUFAs could limit the supply of fatty acids to adipocytes and thereby limit adipocyte 

size and mass. In a deregulated system, n-3 PUFAs would also limit the amount of fatty 

acids delivered to muscle and liver. Additionally, in animal models, n-3 PUFAs modulate 

cholesteryl ester transfer protein mediated exchanges, resulting in increased blood HDL 

cholesterol and possibly apolipoprotein A-1 concentrations [155,156].

Omega-3 PUFAs alter expression and nuclear localization of both the transcription factor 

sterol-regulatory element-binding protein-1 (SREBP-1) and the carbohydrate response 

element binding protein (ChREBP), which control several lipogeneic genes, including those 

regulating cholesterol and fatty acid synthesis [154,157]. Nuclear translocation of ChREBP 

is inhibited by n-3 PUFAs and thus results in reduced expression of lipogenic and glycolytic 

genes, including FAS and pyruvate kinase respectively [158]. Furthermore, n-3 PUFAs 

suppress hepatic lipogenesis by reducing both messenger RNA (mRNA) and active protein 

expression of SREBP-1c, which results in reduced expression of many genes involved in 

lipogenesis, including FAS and acetyl-coA carboxylase [159–161]. Reduced SREBP-1c 

expression, via n-3 PUFA, has been attributed to inhibited transcription of nascent precursor 

SREBP-1c, accelerated transcript decay and reduced levels of the mature cleaved form of 

SREBP-1c [159,160], possibly through inhibition of proteolytic processing and reduced 

feed-forward activation of the Srebf1 gene. This inhibition could be due to interference with 

insulin signaling pathways, which promotes the proteolytic processing of SREBP-1c, 

potentially via an AKT-dependent mechanism [162,163].

The role of liver X receptor (LXR) is controversial. In vivo, EPA suppression of SREBP-1c 

promoter activity is dependent upon an intact SRE but not LXR response elements, 

suggesting that decreased transcription of nascent SREBP-1c with n-3 PUFA treatment 

results from decreased availability and thus reduced feed-forward activation [163]. In 

contrast, others indicate a role in the inhibition of LXRα in reduced SREBP-1c expression 

with n-3 PUFA, but this may be dependent upon cell types [164]. Accelerated degradation of 

SREBP-1c mRNA has also been proposed as a mechanism for reduced SREBP-1c 

expression [165]. Omega-3 PUFAs inhibit SREBP-1c cleavage processing, but the cleavage 

sites are unknown [166].
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Activation of AMP-activated protein kinase by n-3 PUFA can also suppress SREBP-1c 

cleavage and nuclear translocation, perhaps via serine phosphorylation and/or by blocking 

activation of the insulin-responsive mechanistic target of rapamycin complex 1 (mTORC1)/

S6K-signaling pathway [167]. SREBP-1c synthesis, transport and maturation are increased 

with insulin [162].

PUFAs, prostaglandins and leukotrienes can all act as ligands for PPARs. PPARs are 

transcription factors that form heterodimers with retinoid X receptors in the promoter 

regions of several genes involved in lipid and glucose metabolism [168,169]. For example, 

n-3 PUFA activation of PPARα decreases lipogenesis by suppressing FAS activity 

[161,170]. However, lipogenesis suppression by n-3 PUFA does not require PPARα 
activation [171].

PPARγ acts as a master regulator of adipogenesis and controls several genes and adipokines 

in lipid and glucose metabolism. Omega-3 PUFAs act as ligands for PPARγ and modulate 

several PPARγ target genes in mice [172] and 3T3-L1 adipocytes [97]. Omega-3 PUFAs 

enhance PPARγ binding to PPAR-response element in the promoter region of vascular 

endothelial growth factor-A, which promotes adipogenesis and alleviates hypoxia-induced 

adipocyte inflammation and insulin resistance [173]. It has been suggested that PPARγ 
plays a significant role in the ability of n-3 PUFA, specifically DHA, to stimulate M2 

macrophage polarization and thereby reduce inflammation since these results are not seen in 

PPARγ knockdown RAW264.7 cells [174].

Omega-3 PUFAs have been shown to increase mitochondrial biogenesis and fatty acid 

oxidation in the liver [175,176], adipose tissue [43] and small intestine [177] of rodents, 

possibly through PPARα and Cox3 induction [175,178,179]. PUFA-controlled genes 

involved in lipid oxidation and thermogenesis include mitochondrial HMG-CoA synthase 

[180], peroxisomal acyl-CoA oxidase [64,181], hepatic CPT-1 [154], FABP [127] and fatty 

acid transporter proteins [182].

Activation of PPARα can also increase fatty acid oxidation. Increases in fatty acid oxidation 

by n-3 PUFA may also be mediated by AMPK, a known regulator of cellular energy 

metabolism. AMPK up-regulation by n-3 PUFA has been demonstrated in both adipose 

tissue and cultured adipocytes [55].

Taken together, n-3 PUFAs regulate lipid metabolism, favoring fatty acid oxidation and 

suppression of lipogenesis and leading to a favorable lipid profile and adipocyte metabolism.

6.7. Thermogenesis

Many have examined cold- and diet-induced thermogenesis mediated by mitochondrial 

uncoupling proteins (UCPs) in the presence of n-3 PUFA [43,48,54]. UCPs are inner 

mitochondrial proteins that function to transport hydrogen ions across the mitochondrial 

inner membrane. We have recently shown that BAT from EPA-supplemented mice expresses 

higher levels of thermogenic genes, such as PRDM16, peroxisome proliferator-activated 

receptor-gamma coactivator-1alpha and UCP1 [183].
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Omega-3 PUFAs increase mitochondrial oxidative capacity in WAT [43] and skeletal 

muscle, possibly through UCP-3 up-regulation [48], but not in BAT or liver [43]. However, 

because most studies were carried out at 20°C, it is unclear whether increases in 

mitochondrial oxidative capacity are n-3 PUFA mediated or cold induced. Janovska et al. 

reported no differences in body weight but decreased epididymal fat mass after feeding an 

HF diet supplemented with n-3 PUFA in mice kept at 30°C, indicating that n-3 PUFA could 

attenuate body fat accumulation even at thermoneutrality and independent of cold-induced 

thermogenesis [52]. Mechanisms underlying the role of n-3 PUFA in possible induction of 

energy expenditure and prevention of body fat accumulation should be investigated further at 

various temperatures since thermogenic markers are activated even at 22°C [183].

6.8. Lean mass

The mechanism by which n-3 PUFAs have the potential to increase lean mass is not fully 

understood but likely involves both catabolic and anabolic pathways. Increased lean mass 

would result in improved body composition and possibly improved metabolism. Even 

though increases in RMR have been demonstrated with increases in lean mass [184], post-

n-3 PUFA supplementation increases in lean mass are not always accompanied by increases 

in RMR [66]. Future studies are needed to examine the relationship between n-3 PUFA 

changes in lean mass in relation to RMR since metabolic rate significantly influences body 

weight.

Omega-3 PUFAs have been shown to attenuate muscle protein breakdown in isolated 

muscles of mice [185]. Increases in protein synthesis may be mediated by n-3 PUFA 

activation of the mTOR-p70s6k signaling pathway [186], a key pathway in muscle cell 

growth. Similarly, Clark et al. reported increased whole-body protein turnover under insulin 

stimulation but did not see significant increases in lean mass following 9 months of n-3 

PUFA supplementation [187]. Certainly, changes in protein dynamics may not translate to 

increases in protein mass.

One possible mechanism of n-3 PUFA in increasing lean mass is the alteration of protein 

dynamics related to n-3 PUFA anti-inflammatory properties [66] since proinflammatory 

cytokines like TNF-α can increase protein degradation via ATP-ubiquitin-dependent 

pathways [188].

Another such potential mechanism relates to the ability of n-3 PUFA to lower cortisol levels 

[189]. Noreen et al. reported decreases in cortisol with n-3 PUFA supplementation but noted 

a significant correlation between cortisol level and changes in body composition [66]. Others 

have shown that a reduction in fat mass does not lower cortisol production [190]. Hence, n-3 

PUFA supplementation may modulate cortisol levels so as to improve body composition 

[66]. Furthermore, proinflammatory cytokines such as 1L-6 have been shown to increase 

blood levels of cortisol [191], which increases protein catabolism [192]. Hence, anti-

inflammatory properties of n-3 PUFA could aid in disrupting this pathway. However, 

increased muscle protein synthesis with n-3 PUFA supplementation is not likely mediated by 

changes in inflammation in a healthy population [186]. Further investigations are needed to 

elucidate the mechanisms by which n-3 PUFAs alter protein dynamics to increase lean mass.
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6.9. Epigenetics and microRNA

Epigenetics may be an important contributor to many chronic diseases, including obesity 

[193,194]. Limited studies have examined n-3 PUFA and epigenetic modifications even 

though the expression of several genes involved in metabolic homeostasis is regulated by 

DNA methylation. The few that have been conducted report conflicting evidence for DNA 

methylation and n-3 PUFA. In a population-based study, n-3 PUFA intake was associated 

with DNA methylation in Alaska Yup’ik people [195]. A few studies have reported that fish 

oil supplementation did not alter the methylation pattern of genes [196,197], including leptin 

and the leptin receptor, in mouse epididymal fat [196]. It may be that n-3 PUFAs work 

through epigenetic mechanisms other than methylation [197]. In diet-induced obese mice, 

leptin expression may be regulated by n-3 PUFA via changes in methyl-CpG-binding 

domain protein 2 and histone modifications [198]. Since an HF diet has been shown to cause 

changes in the methylation of gene-specific promoter regions in the liver [199] and WAT 

[200], the influence of n-3 PUFAs on epigenetic modifications warrants further 

investigation.

MicroRNAs (miRNAs) are short noncoding RNAs that act as posttranscriptional regulators 

of genes by acting as sequence-specific inhibitors of mRNA. These miRNAs target 

transcription factors to indirectly affect entire signaling pathways. It has been documented 

that miRNAs act as key regulators in the pathogenesis of metabolic disease by affecting 

inflammation [201] and lipid metabolism [202].

Recent studies have shown n-3 PUFA to modulate miRNA expression [201,203,204]. A diet 

enriched in PUFA correlated to changes in circulating miRNAs, specifically miR-106a, 

along with changes in other miRNAs related to lipid metabolism and adipokine secretion in 

healthy women [203]. In animal models, n-3 PUFAs suppress inflammation through down-

regulation of miR-19b-3p, −146b-5p and −183–5p by targeting toll-like receptor, NOD-like 

receptor, RIG-l-like receptor, mitogen-activated protein kinase and transforming growth 

factor-β pathways [201]. In obese rats, DHA has been shown to counteract obesity-related 

increases in hepatic miR-33a and miR-122, thus improving lipid metabolism via decreased 

SREBP2 and FAS expression, respectively [204]. Therefore, fully characterizing n-3 PUFA 

modulation of miRNA involved in key pathways, such as lipid metabolism and 

inflammation, is warranted and could play a key role in targeting MetS and obesity-related 

therapies.

7. Future perspectives

Both animal and human studies have examined the beneficial effects of combining n-3 

PUFA with other dietary supplements and pharmaceuticals including antidiabetic drugs, L-

alanyl-L-glutamine [205], as well as α-lipoic acid [118] and krill oil [206]. Animal studies 

using the combination of n-3 PUFA and rosiglitazone have reported significantly greater 

reductions in body weight [63,143], enhanced oxidation of fatty acids [207] and 

counteraction of lipogenesis than with rosiglitazone therapy alone [63]. Omega-3 PUFA 

supplementation in addition to antidiabetic pharmaceuticals could attenuate body weight 

gain caused by pharmaceuticals and should be further investigated [208].
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8. Conclusions

The management of obesity has shifted from a narrow focus on BMI to the wider field that 

includes the complications of obesity, with the goal to reduce obesity-associated 

comorbidities [209]. While n-3 PUFAs have not yet shown consistent benefits in terms of 

weight loss in humans, improvements in the metabolic profile of obese individuals have 

been demonstrated. Therefore, n-3 PUFAs may be an important adjunct to obesity 

management along with lifestyle modification and pharmacotherapy. Further study of the 

genetic and epigenetic molecular targets related to metabolism, appetite and energetics could 

aid the discovery of novel therapeutic targets for obesity-associated metabolic disorders.
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Abbreviations

ALA α-linolenic acid

AA arachidonic acid

BMI body mass index

BAT brown adipose tissue

DHA docosahexaenoic acid

DPA docosapentaenoic acid

EPA eicosapentaenoic acid

FABP fatty acid-binding protein

FFAR free fatty acid receptor family

FGF fibroblast growth factor

HDL high-density lipoprotein

HF high-fat

IL interleukin

LA linoleic acid

MetS metabolic syndrome

MUFA monounsaturated fatty acid

PPAR peroxisome proliferator-activated receptor
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PUFA polyunsaturated fatty acid

SFA saturated fatty acid

TG triglycerides

T2DM type 2 diabetes mellitus

UCP uncoupling protein

VLDL very low density lipoprotein

WAT white adipose tissue
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Fig. 1. 
Adipose tissue, liver and skeletal muscle cross talk in obesity and insulin resistance. The 

liver maintains normoglycemia during fasting via glycogenolysis and gluconeogenesis. 

Following a meal, increased glucose delivery to the pancreas stimulates insulin secretion, 

which acts on the liver, adipose tissue and skeletal muscle. The primary action of insulin on 

the liver is to suppress hepatic glucose output, while insulin increases glucose uptake by the 

skeletal muscle and adipose tissue. Insulin additionally inhibits lipolysis in adipose tissue. In 

obesity, changes in adipokines produced and released from adipose tissue, such as decreased 

adiponectin and increased TNF-α and other inflammatory cytokines, coupled with increased 

free fatty acids contribute to hepatic and skeletal muscle insulin resistance.
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Fig. 2. 
Metabolism of omega-6 and omega-3 polyunsaturated fatty acids. LA is an essential n-6 

PUFA that is metabolized to AA and further to proinflammatory eicosanoids. ALA is an 

essential n-3 PUFA that is metabolized to EPA, DPA and DHA. Eicosanoids derived from 

the metabolism of EPA, DPA and DHA also aid in the regulation of inflammation and are 

considered more anti-inflammatory. ISOPS, isoprostanes; COX, cyclooxygenases; LOX, 

lipooxygenases.
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Fig. 3. 
Mechanisms mediating effects of n-3 PUFA on liver, adipose tissue and skeletal muscle 

metabolism. Omega-3 PUFAs increase fatty acid oxidation in the liver, adipose tissue and 

skeletal muscle, thus limiting fat storage in these tissues. Omega-3 PUFAs also decrease the 

production and release of proinflammatory adipokines. In skeletal muscle, n-3 PUFAs 

promote protein synthesis. All mechanisms depicted here contribute to an improved 

metabolic profile.
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