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Concluding Remarks
There is sufficient evidence for the anti-
viral and anti-inflammatory effects of
antimalarials to support further clinical
therapeutic studies for COVID-19 infec-
tions. In particular, pyronaridine has
demonstrated in vitro antiviral effects
on SARS-CoV-2 in a human lung epi-
thelial cell line, while artesunate, in ad-
dition to similar antiviral effects, has
anti-inflammatory effects via IL-6 medi-
ated pathways in other disease states
that suggest it may be beneficial in the
treatment of COVID-19 (Table 1,
Figure 1). Thus, the ACT artesunate/
pyronaridine deserves further investi-
gation as a COVID-19 treatment option.
The safety of this antimalarial combina-
tion is established in malaria in children
and adults, providing some reassur-
ance for studies in COVID-19. Several
Phase II studies are being imple-
mented, and their design may benefit
from the varied mechanisms of action
that have been outlined, including as-
sessment of the broad-spectrum anti-
inflammatory properties of artesunate.
In addition, care should be taken to
test this combination with rigor and
not over promise its potential so as to
avoid the issues that surrounded the
use of hydroxychloroquine.
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In recent months, the parasitology
researchcommunity hasbeen tasked
with investigation of the influence of
parasite coinfection on coronavirus
disease 2019 (COVID-19) outcomes.
Herein, we share our approach to
analyze the effect of the trema-
tode Fasciola hepatica as a modu-
lator of severe acute respiratory
syndrome coronavirus 2 (SARS-
CoV-2) infection and of COVID-19
pathology.

Helminth parasites have adapted to their
hosts during long coevolution processes,
which usually result in chronic disease
with low mortality and variable morbidity.
During this evolutionary coadaptation with
their hosts, including vertebrate hosts,
parasites have contributed to the modula-
tion of several molecular and physiological
host mechanisms, for example, the im-
mune system. Thereby, helminth parasites
trigger a modulated T helper (Th)2 re-
sponse in their vertebrate hosts, resulting
in an immune reaction with a tightly con-
trolled inflammatory component, including
the inhibition of proinflammatory cytokines
and the induction of a hyporesponsive
state involving interleukin-10 (IL-10)-
producing T regulatory (Treg) cell popu-
lations [1]. In addition, the hygiene
hypothesis proposes that the absence
of helminth infections in the population
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Figure 1. Testing the Role of the Helminth Parasite Fasciola hepatica as a Modulator of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Infection and of Coronavirus Disease 2019 (COVID-19) Pathology. F. hepaticamolecules will be tested in vitro and in vivo to assess their influence on viral entry and
replication in lung cells, and on the modulation of lung hyperinflammation driven by a cytokine storm. (A) The in vitro model consists of primary human lung cells that will be
stimulated with defined parasite recombinant proteins and peptides or left unstimulated, and subsequently infected with a vesicular stomatitis virus (VSV) carrying the GFP
reporter and pseudotyped with the SARS-CoV-2 envelope protein S (VSVdeltaG+S). Differences in reporter gene expression between stimulated and unstimulated cells will
be quantified to assess the antiviral effect of different parasite molecules at different concentrations. Stimulated and unstimulated lung cells will be subjected to comparative
proteomic analysis by SWATH to identify the modifications induced by the parasite molecules in treated cells and link these changes to the modulation of viral replication.
Parasite molecules showing an antiviral effect in the VSVdeltaG+S system will be further evaluated in primary human lung cell cultures infected with SARS-CoV-2. (B) The
in vivo model will be established as follows. The mouse model of sterile lung hyperinflammation progressing with a cytokine storm, consisting of the intranasal administration
of bacterial lipopolysaccharide (LPS), will be subjected to intranasal or intraperitoneal administration of F. hepatica recombinant antigens and peptides before LPS
administration to check the preventive potential of the parasite compounds on the lung hyperinflammation (prevention assay) or after LPS treatment to check the treatment
potential of the parasite molecules against the lung hyperinflammation triggered by LPS (treatment assay), compared with the control group (treated with LPS alone). Lungs
from treated and control groups will be studied comparatively, by histopathology and immunohistochemistry, and subjected to protein extraction for comparative proteomic
SWATH analysis. Parasite molecules showing an anti-inflammatory activity in this model will be tested in an in vivo model of COVID-19. Created with BioRender.com.

of developed countries, thus, the lack of
immunological stimuli of helminth parasites
during childhood, has propitiated the rise of
autoimmune diseases with an exacerbated
inflammatory component (e.g., allergy,
asthma, and rheumatoid arthritis, among
others) [2].

We have read with interest the comment
by Bradbury et al. [3] in which the authors
discuss the potential role of helminth
coinfections in the modulation of hyper-
inflammatory responses against severe
acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Severe cases of

coronavirus disease 2019 (COVID-19)
show an exacerbated immune response
affecting the lungs. The innate immune re-
sponse to tissue damage caused by the
virus could result in an acute respiratory
distress syndrome, characterized by the
rapid onset of generalized inflammation in
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the lungs and subsequent death by
respiratory distress [4]. This is due to a
'cytokine storm' in which proinflammatory
cytokines, for example IL-6, dominate
[5]. One of the compounds showing effi-
cacy against this hyperinflammation in
COVID-19 is Tocilizumab, a monoclonal
antibody targeting the IL-6 receptor that is
usually administered to patients with auto-
immune rheumatoid arthritis. Tocilizumab
causes general immunosuppression and
thus, could be of limited use in the current
pandemic. Similarly, a variety of immuno-
suppressive drugs have shown beneficial
impacts on COVID-19, but the risk of
higher viral replication and secondary
infections should be carefully evaluated in
patients treated with immunosuppressive
compounds [6].

Helminth parasites could change the out-
come of COVID-19 infections, in areas
of the world where helminthic infections
are still prevalent, by inducing a modified
Th2 response with a controlled inflamma-
tory component. Notably, in countries of
Africa and Latin America, where helminth
infections are still common, the numbers
of reported COVID-19 deaths are substan-
tially lower than those reported in high-
income countriesi.

The use of specific helminth derivatives as
therapeutic tools of autoimmune diseases
has been proposed. Specifically, the hel-
minth parasite Fasciola hepatica has shown
immunomodulatory properties, and several
molecules from this parasite have been
described as potent immunomodulators
[7]. Derivatives of these molecules in

their synthetic, safe formats have given
rise to promising results; for example, a
68 mer peptide of helminth defense mol-
ecule (HDM) has been shown to inhibit
inflammation and airway hyper-reactivity
in murine experimental asthma [8], and
the fatty-acid-binding recombinant pro-
tein Fh15 blocked the lipopolysaccharide
(LPS)-induced cytokine storm in a murine
model [9]. As a result, recombinant safe-
to-use forms of the above-mentioned
molecules are available.

Devoid of our chronic helminthic infections,
humans could be more susceptible
to not only develop hyperinflammatory
pathology related to different stimuli,
including viruses, but also be more sus-
ceptible to infection by emerging viruses.
Helminth schistosome infection has been
used as a protective anti-inflammatory strat-
egy against viruses such Type A influenza or
murine pneumonia virus by Scheer et al. [10].
Additionally, these authors also showed that
mice with schistosomiasis were significantly
protected against respiratory viral infections
[10]. Furthermore, in mice infected with the
nematodes Heligmosomoides polygyrus
or Trichinella spiralis, these organisms
enhance and reactivate enteric viral infec-
tions by limiting innate and adaptive immune
responses against viruses [11]. These
differences are attributed to the different
immunomodulatory and immunosuppres-
sive responses induced by infection with
Schistosoma mansoni or with H. polygyrus
and T. spiralis [10], mainly in relation to the
antiviral Th1 responses; for example,
S. mansoni elicits a biased Th1 response in
early stages of infection. The influence of

Box 1. Hypothesis on the Potential Modulation by Helminth Parasites of Human Susceptibility to
SARS-CoV-2 Infections and Pathogenesis

As a result of an intricate evolutionary coadaptation process, helminth parasites usually drive a Th2-modified
immune response in infected individuals devoid of the proinflammatory component. In addition, and according
to the hygiene hypothesis, the lack of helminth infections during childhood may result in unmodulated inflam-
matory responses against other stimuli, including viral infections. Furthermore, it has been demonstrated that
helminth parasites are capable of regulating host mechanisms related to viral infection. Consequently, it could
be hypothesized that helminth parasites and their derivatives might influence SARS-CoV-2 entry into host cells
and exert an antipathological (anti-inflammatory) effect in COVID-19 patients.

helminth infections on viral coinfections in
relation to mechanisms deployed by juveniles
of trematode parasites have not been ex-
plored. Interestingly, helminth parasites not
entering or residing in the lung, and derived
products, modulate pulmonary responses
protecting against airway inflammation
[12]. Although helminth coinfections could
be linked to a lower morbi-mortality due
to SARS-Cov-2 in endemic areas, further
studies on the COVID-19 severity in
helminth-endemic areas are needed to
support this hypothesis. Since the ambigu-
ous animal coinfection studies showing
both favorable and unfavorable effects
[10,11] are insufficient to define the role
of helminths and, more importantly, of
specific helminth-derived molecules, on
viral coinfections, studies on the impact
of helminth products in the infection and
pathology of COVID-19 should be ex-
plored. The in vitro and in vivo models of
F. hepatica developed by our group for the
study of host–parasite cross-interactions
and modulations [13] have allowed the
identification and production of several
F. hepatica molecules with potential
modulatory properties. Based on this previ-
ous work, our group, together with a team
specializing in virology, has now been
given a national Spanish project grant to
explore the influence of these parasite mol-
ecules on viral infection and on the modula-
tion of hyperinflammation reactions in lungs
(Figure 1). Our results could help to define
the role of the coevolutionary adaptation
of parasites and humans with regard to
human interaction with pathogenic vi-
ruses (Box 1). In addition, we call on
the research community to propose
and conduct more studies on the
potential influence of the immunomodu-
latory capacity of helminth parasites on
COVID-19 pathology.
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