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Abstract

Following two decades of more than 400 clinical trials centered on the “one drug, one target, one 

disease” paradigm, there is still no effective disease modifying therapy for Alzheimer’s disease 

(AD). The inherent complexity of AD may challenge this reductionist strategy. Recent 

observations and advances in network medicine further indicate that AD likely shares common 

Correspondence to Feixiong Cheng, Ph.D., Lerner Research Institute, Cleveland Clinic, Tel: +1-216-444-7654; Fax: +1-216-636-0009, 
chengf@ccf.org.
Author Contribution
F.C. conceived the study. J.F. performed all data analysis and wrote the draft manuscript. L.B., A.A.P., J.L, R.N. provided the 
comments and critically reviewed the manuscript. F.C., J.F., A.A.P., and J.C. wrote and critically revised the manuscript. All authors 
critically revised and gave final approval of the manuscript.

HHS Public Access
Author manuscript
Med Res Rev. Author manuscript; available in PMC 2020 November 01.

Published in final edited form as:
Med Res Rev. 2020 November ; 40(6): 2386–2426. doi:10.1002/med.21709.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other 

diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and 

therapeutic development, and construct relevant endophenotype networks to guide future 

therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: 

amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and 

lysosomal dysfunction. We further consider how this endophenotype network framework can 

provide advances in computational and experimental strategies for drug-repurposing and 

identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. 

We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting 

multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and 

interactomics (protein-protein interactions) are essential for successful drug discovery. We 

describe experimental technologies for AD drug discovery including human induced pluripotent 

stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies 

that may be integrated with multi-omics in a network medicine methodology. In summary, 

endophenotype-based network medicine methodologies will promote AD therapeutic development 

that will optimize the usefulness of available data and support deep phenotyping of the patient 

heterogeneity for personalized medicine in AD.
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1. Introduction

1.1. Emerging challenges in Alzheimer’s disease drug discovery

Alzheimer’s disease (AD), first described in 1907 by Alois Alzheimer,1 is a highly-prevalent 

and progressive neurodegenerative disorder with gradual cognitive decline and memory loss. 

It is characterized by accumulation of extracellular amyloid plaques as well as intracellular 

neurofibrillary tangles (NFTs).2 AD and other dementias are a major global health 

challenge, with 43.8 million affected people worldwide in 2016.3 High-throughput 

technologies, such as next-generation sequencing (NGS), have rapidly led to a robust body 

of genetic and genomic data in multiple national AD genome projects, including the 

Alzheimer’s Disease Sequencing Project (ADSP)4 and the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).5 Genome-wide association studies (GWAS) have 

identified over 40 AD susceptibility loci.6–8 Despite this progress in understanding of AD 

genetic risk, there are still only six drugs approved by the U.S. Food and Drug 

Administration (FDA) for treatment of AD symptoms: four cholinesterase inhibitors 

(tacrine, donepezil, galantamine, and rivastigmine), one N-methyl-D-aspartate (NMDA) 

receptor antagonist (memantine), and one fixed combination of donepezil and memantine. 

None of these drugs are effective in modifying the underlying biology of AD. The current 

failure rate in AD clinical trials (2002–2012) is estimated at 99.6%.9,10 146 investigational 

drug candidates in clinical trials have been halted due to safety and efficacy concerns (Fig. 

1A) in the past two decades (1998–2017). After examination of the mechanistic classes in 

AD clinical trials from the Alzforum database,10,11 agents targeting amyloidosis (23.4%), 
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neurotransmission (27.5%), neuroinflammation (10.2%), tauopathy (6.6%), and others 

(32.4%) have been identified as the predominant categories for discovery (Fig. 1B). To date, 

no drugs in these categories have been approved by the FDA.

1.2 Networks and cell systems can help therapeutic development

Researchers have long sought to uncover single molecular defects that cause human 

diseases, with the goal of developing “magic-bullet” targeted therapies. However, the “one 

drug, one disease” reductionism-informed paradigm overlooks the inherent complexity of 

most diseases. This reductionist paradigm has often led to treatments that are inadequate or 

fraught with adverse side effects (Fig. 2A). Existing data resources, including genetics, 

transcriptomics, proteomics, radiomics (brain imaging data), and interactomics (protein-

protein interactions [PPI]), hold promise for fostering therapeutic discovery but have not yet 

been fully integrated into the AD field. Importantly, cellular systems and molecular 

interactome network perturbations underlie disease processes in unanticipated ways (Fig. 

2B). The field of ‘network medicine’ is an emerging discipline that seeks to redefine human 

disease and therapeutics, offering a non-invasive approach to identifying novel biomarkers 

and therapeutic targets.12

A network medicine approach to AD rests on the underlying hypothesis that cellular 

networks gradually adjust to chronic processes of disease initiation and progression, leading 

to progressive shifts in local and global network properties and system states that underlie an 

evolving pathogenesis of AD. Although AD is often described as a ‘disease of the genome’, 

it may be more appropriately described as a ‘disease of the interactome’.13–16 Genome 

alterations such as amplification, deletion, translocations and mutations are the primary 

genetic events of AD. But such events can meaningfully manifest in human cells only if they 

encode disease-specific changes or perturbations in the interactome network that influences 

relevant systems properties of the affected brain. Thus, therapeutic interventions need to 

address more broad perturbations of AD systems, rather than genomic events alone.16

Emerging technologies and concepts are transforming drug discovery;17 knowledge of the 

network of molecular determinants of disease and drug targets in the protein-protein 

interaction (PPI) network (the human interactome) is essential for identification of candidate 

treatments including drugs approved from non-AD indications (e.g., repurposing).18 Novel 

recently developed approaches, such as drug-disease network proximity that shed light on 

the relationships between drug targets and diseases (i.e., molecular determinants in disease 

modules within the PPIs), may efficiently screen for novel indications19 and design of 

combination20 therapies from approved drugs. Drug repurposing or repositioning could 

significantly shorten the time and reduce the cost of drug discovery compared to lengthy and 

expensive de novo campaigns.21 There are nearly 30 FDA-approved drugs currently in 

preclinical or clinical investigations for potential repurposed treatment of AD (Table 1 and 

Fig. 3).

In this review, we discuss recent advances in computational and experimental strategies that 

could drive drug repurposing for treatment of individuals manifesting or at risk for AD 

dementia.
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2. Endophenotype Networks Meet Alzheimer’s Drug Discovery

The gold standard for a definite diagnosis of AD is amyloid aggregated into plaques and 

hyperphosphorylated tau into tangles.22 The amyloid hypothesis, an assumption that 

accumulation of the peptide amyloid-beta is the main cause of the condition, has dominated 

research on AD for more than 25 years.23 However, several high-profile clinical trials of 

anti-beta-amyloid drugs for AD ended in disappointment. In addition to issues of timing of 

treatment with respect to the presumed pathological cascade, dosing of treatment, and 

adverse effects, it has been proposed that oligomers or fibrils might be insufficient or 

inappropriate targets.22

AD shares intermediate endophenotypes with other diseases. For example, amyloidosis and 

tauopathy are essential factors in many neurodegenerative diseases.24 Systematic 

identification of the underlying pathogenesis and disease modules within endophenotype 

networks across the genome, transcriptome, proteome, and human interactome, as opposed 

to pursuit of individual mutations (i.e., amyloid precursor protein [APP] mutations) or single 

mutated genes (such as SCNA), may thus serve as a foundation for predictive disease 

modules (Fig. 4). We have identified six endophenotype hypotheses in AD: (i) amyloidosis, 

(ii) tauopathy, (iii) neuroinflammation, (iv) mitochondrial dysfunction, (v) vascular 

dysfunction, and (vi) lysosomal dysfunction (Fig. 5). We acknowledged the existence of 

additional endophenotypes in AD, including oxidative stress,25 proteostasis26,27 and 

synaptic dysfunction28 that are also worthy of consideration, and which will be the subject 

of future investigation. In addition, we highlight new opportunities for endophenotype 

network-informed, in silico drug repurposing in AD.

2.1. Amyloidosis.

Amyloidosis proposes that an imbalance between production and clearance of brain amyloid 

β (Aβ) triggers a complex pathological reaction that leads to AD, including tau 

phosphorylation, tangle formation, synaptic loss, neuronal death, and cognitive impairment.
23,29 This hypothesis is supported by evidence that nearly one percent of AD cases are 

caused by mutations of key genes involved in Aβ processing, including APP, presenilin-1 

(PSEN1) and PSEN2.30,31 APP is cleaved by α-, β-, and γ-secretases via two pathways 

(non-amyloidogenic and amyloidogenic), which produce distinct peptides.32,33 In the non-

amyloidogenic pathway, proteolysis of APP by α- and γ-secretases yields nonpathogenic 

fragments, including sAPPα. By contrast, the amyloidogenic pathway involves cleavage by 

β- and γ-secretases, leading to production of sAPPβ and Aβ. The production of Aβ 
monomers leads to the production of oligomers that are toxic to brain cells inducing synaptic 

damage, NFT formation, and neuronal death.34,35 Fbrils of Aβ oligomers aggregate into 

plaques.

Preclinical studies support the amyloid hypothesis.36,37 Amyloid-based therapeutic 

approaches, including decreasing Aβ production, inhibiting Aβ oligomerization or 

fibrillization, and accelerating Aβ degradation and clearance, reduce plaque deposition, 

reverse cognitive deficits, and improve other dystrophic processes in AD animal models.34,38 

Although the “amyloid hypothesis” has dominated AD research for more than 20 years, no 

specifically-designed anti-amyloid agent is approved by the FDA. One possible reason is 
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that amyloid may be a result, not cause, or is part of a complex network of causes of AD.39 

The limited success of the anti-amyloid therapies is shifting the field focus on to other 

therapeutic opportunities. For example, recent novel therapeutic approaches to fostering 

neuronal survival have shown efficacy in TgF344-AD rats, a model of AD based on the 

amyloid and related inflammatory processes.40

2.2. Tauopathy

NFTs composed of hyperphosphorylated tau are another key neuropathological feature in 

patients with AD.41 Tau is encoded by a single gene, microtubule-associated protein tau 

(MAPT), on human chromosome 17, and missense mutations in the MAPT gene have been 

identified in inherited cases of the most common tauopathy, a key mechanism of AD.42,43 

Tau is found mainly in axons of the neuron, where it binds to microtubules to stabilize their 

structure. Under pathological conditions, there is an aberrant increase of intraneuronal 

hyperphosphorylated tau in the cytosol. This blocks tau’s interaction with microtubules, 

leading to axonal flow disruption.44 Mechanistically, hyperphosphorylated tau polymerizes 

into paired helical filaments and straight filaments, preceding tau aggregation into NFTs.45 

Inhibitors of kinases and activators of phosphatases that mediate tau-related processes are 

being considered for potential intervention. In addition, and in support of the network 

hypothesis, liraglutide, an approved glucagon-like peptide 1 receptor agonist, was recently 

shown to confer a constellation of beneficial effects on neuronal physiology that ultimately 

ameliorated AD-like tau pathology in mice models.46,47 Multiple anti-tau drug repurposing 

trials are under investigation, including pitavastatin,48 bexarotene,49 and minocycline.50

2.3. Neuroinflammation

Neuroinflammation refers to the inflammatory response in the central nervous system (CNS) 

secondary to neuronal insult.51 This response involves activation and recruitment of immune 

cells, particularly microglia and astrocytes, and it is regulated by production and release of 

cytokine signaling molecules.52 Increased levels of pro-inflammatory cytokines (e.g. tumor 

necrosis factor alpha [TNFα] and interleukin-1β [IL-1β]) have been observed in the serum 

and brain of AD patients in comparison to control subjects53, suggesting a significant role of 

glia-dependent neuroinflammation in AD progression. Microglia, the resident immune cells 

of the brain, represent 10%–15% of the cells of the brain and another potential target for 

AD. These cells play crucial roles, not only in regulating synaptic plasticity and remodeling 

neuronal circuits in the adult brain but also as a first line of immune defense in the face of 

brain injury and neurodegenerative disorders.54 In AD, microglia bind to soluble Aβ 
oligomers and Aβ fibrils via cell-surface receptors such as Toll-like receptors, which activate 

microglia and trigger the inflammatory reaction.55 Recently, it was demonstrated that 

microglial dysregulation in the TgF344 rat model of AD was linked to neurodegeneration 

and behavioral aberrations in a model of exposure to chlorpyrifos, an organophosphate 

pesticide that has been epidemiologically linked to increased incidence of AD.56 Microglia 

are important players in synaptic pruning during early brain development.57 Microglia 

mediate synapse loss in AD via a complement-dependent pathway,58 and C3 depletion 

reduced the number of phagocytic microglia, decreased synapse loss, and rescued cognitive 

deficits in a mouse model of AD.59 Interestingly, aberrant and sustained microglial 

activation was recently implicated as a potential etiologic factor in the increased risk of AD 
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following occupational exposure to chlorpyrifos pesticide.56 Astrocytes, the most abundant 

type of glial cells, serve an essential role in neuronal survival and maintenance. Reactive 

astrocytes accumulate around senile plaques in postmortem brain tissue from subjects with 

AD.60 Like microglia, activated astrocytes release cytotoxic cytokines and interleukins, 

thereby exacerbating neuroinflammation. Accumulating evidence demonstrates that 

impairment in astrocyte reaction to external injury can trigger or exacerbate 

hyperphosphorylation of tau as well as Aβ pathologies, leading to neuronal dysfunction.61 

Despite independent roles in neuroinflammation, there is growing evidence for intense 

interactions between microglia and astrocytes in AD.62 First, microglia-secreted cytokines 

can activate astrocytes, which leads to loss of physiological functions and become neuronal 

toxicity.63 In addition, the complement system is important in microglia-astrocyte crosstalk; 

astrocyte-secreted complement factor C3 interacts with microglial C3a receptor (C3aR), 

which mediates β-amyloid pathology and neuroinflammation in AD mouse models.64

Recent omics advances especially on single-cell or single-nucleus RNA-sequencing have 

also shed light on a major role of immune cells (microglia and astrocytes) in AD.65–67 For 

example, Michal et al. identified a population of disease-associated astrocytes (DAAs) in an 

AD mouse model via single-nucleus RNA sequencing. DAAs appeared at an early stage of 

AD and increased in abundance with disease progression.65 Using single-cell RNA-

sequencing, Ido et al. found the disease-associated microglia type (DAM) from brains of the 

5XFAD mouse model.66 They showed that DAMs were activated sequentially by TREM2-

independent and -dependent mechanisms.66 Targeting neuroinflammation may offer future 

therapeutic or preventive strategies for AD. For example, perindopril, an angiotensin 

converting enzyme inhibitor, significantly attenuated cortical expression of the CD11b 

microglial markers and ameliorated microglial-mediated neuroinflammation in the 5XFAD 

mouse model.68 Currently, perindopril is undergoing a Phase II trial (NCT02085265) for 

treatment of hypertensive mild-moderate AD dementia patients.

Recent studies indicate a significant role for the brain-gut-microbiota axis in 

neuroinflammation in AD.69–71 Bacteria populating the gut microbiome excrete substantial 

lipopolysaccharides (LPSs) and amyloids. These LPSs and amyloids change the gut 

microbiota composition, increase permeability of the gut barrier, and propagate immune cell 

activation that augments inflammatory processes. This ultimately leads to impairment of the 

blood-brain barrier and promotes neuroinflammation.72 For example, porphyromonas 
gingivalis induces an inflammatory response in the liver through increased expression of the 

pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and 

interleukin 1 beta (IL-1β), which subsequently leads to neuroinflammation and cognitive 

impairment in mice.73 Another study reported that Bacteroides fragilis lipopolysaccharide 

exposure to human primary neurons served as a potent inducer of the pro-inflammatory 

transcription factor NF-kB (p50/p65) complex, a potent trigger for neuroinflammation.74 

Thus, targeting neuroinflammation via modulation of gut microbiota may offer an approach 

to AD treatment. GV-971, a marine-derived oligosaccharide, targeting the gut microbiota 

with the aim of reducing neuroinflammation, was recently approved in China to improve 

cognition in mild to moderate AD dementia.75
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2.4. Mitochondrial dysfunction

Mitochondrial homeostasis plays a key role in synaptic plasticity, learning, and memory,76 

and Swerdlow and Khan have proposed a mitochondrial cascade hypothesis for AD.77 This 

hypothesis suggests that while regulation of mitochondrial baseline activity is genetically 

based, it can be influenced by environmental factors, such that the histologic changes 

associated with AD will be triggered once mitochondrial function falls below a critical 

threshold.78,79 This emphasizes that mitochondrial dysfunction lies at the core of neural 

degeneration, driven by metabolic abnormalities, and can lead to classic AD pathology. 

Mitochondrial dysfunction drives excessive production of reactive oxygen species (ROS), 

leading to the aberrant amyloidogenic processing of APP and subsequent formation of Aβ 
species and Aβ plaques.80 Aβ can initiate a destructive cycle to adversely affect 

mitochondrial function and integrity in vitro and in vivo.81 Mitochondrial dysfunction can 

trigger hyperphosphorylation of tau, microtubule depolymerization, and NFT-like pathology, 

while hyperphosphorylated tau can reciprocally further exacerbate mitochondrial 

dysfunction.76,82 Several mitochondria-targeting compounds with potential efficacy in AD 

have been identified, such as piracetam, simvastatin, and curcumin.83 However, preclinical 

data indicate beneficial effects, randomized clinical trials did not meet primary outcomes.83 

Possible explanation for the high attrition rate of therapeutic candidates include introduction 

too late in the process or lack of efficacy at the target.

2.5. Vascular dysfunction

The vascular hypothesis of AD was first proposed by Torre in 1993.84 Vascular risk factors 

and normal aging lead to vascular dysfunction; with AD there is pathological accumulation 

of Aβ in the parenchyma and blood vessels that further potentiates neurodegeneration.85 

This hypothesis is supported by subsequent epidemiological, pathological, and clinical 

studies.86–88 Recent in vivo studies on animals demonstrate that both Aβ and tau lead to 

blood vessel abnormalities and blood-brain barrier (BBB) breakdown,89,90 serving as an 

early biomarker of brain dysfunction independent of Aβ and tau.91 AD is strongly associated 

with several cardiovascular diseases, such as cerebrovascular disease,86 hypertension87 and 

atherosclerosis.88 Imaging studies have identified decreased blood flow prior to Aβ 
deposition in the brains of both AD mouse models and human patients.92 Several AD 

genetic risk factors are involved in vascular processes, including apolipoprotein E-4 

(APOE4), PICALM, CLU, APP, and PSEN1.93 Vascular dementia, often coexisting with 

AD, has emerged as the leading cause of age-related cognitive impairment.94 Preventative 

and therapeutic prospects to repair vascular damage or to increase cerebral blood flow have 

shown potential in treating patients with vascular dementia.39,94

The vascular hypothesis raises the possibility that some cardiovascular drugs may be 

repurposed for AD. Nine FDA-approved cardiovascular drugs are currently in nonclinical 

studies or clinical trials for AD, including eight antihypertensive drugs and one drug for 

cerebral and peripheral vascular disease (Table 1 and Fig. 3). For example, angiotensin 

receptor blockers (ARBs) are reported to decrease the incidence of dementia.95 In vivo 
studies have revealed that valsartan, telmisartan, and losartan all reduce amyloid burden and 

alleviate spatial learning and memory deficits in AD mouse models.96–98 Carvedilol (an 

approved ARB for hypertension) significantly attenuated brain oligomeric Aβ levels and 
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cognitive deterioration in two independent AD mouse models.99 However, a completed 

clinical trial (NCT01354444) suggested that carvedilol treatment was not significantly 

associated with improvement in AD. Several calcium channel blockers (e.g. nimodipine, 

nilvadipine, and isradipine) have been tested in nonclinical or clinical investigations for AD 

(Table 1). A combination of nimodipine with galantamine is currently being assessed in a 

clinical trial (NCT00814658) of patients with dementia. Another calcium channel blocker, 

isradipine, reduced the neurotoxic consequences of Aβ accumulation in vivo or in vitro.
100,101 Tadalafil (Cialis) and Sildenafil (Viagra), two phosphodiesterase 5 (PDE5) inhibitors 

approved for erectile dysfunction and pulmonary hypertension, are being examined for 

treatment of dementia. Tadalaril is undergoing a Phase II trial (NCT02450253) to treat 

patients with vascular dementia, while sildenafil has been reported to improve cognitive 

function and memory and to reduce tau hyperphosphorylation in an AD mouse model.102 

Other PDE types, such as PDE4 and PDE9, are considered promising targets for the 

treatment of AD.103,104 For example, a PDE4 inhibitor etazolate (NCT00880412) as well as 

a PDE9 inhibitor BI-409306 (NCT02240693) are being investigated in Clinical trials for 

treatment of AD. Collectively, FDA-approved cardiovascular drugs have potential for 

treating vascular dementia and may impact AD.

2.6. Lysosomal dysfunction

Numerous studies have shown substantial links between AD pathogenesis and lysosomal 

dysfunction.105–107 Lysosomes are membrane-bound organelles involved in the degradation 

and recycling of extracellular material via endocytosis and phagocytosis.105 The endo-

lysosomal and autophagic networks (autophagy-lysosomal networks) are crucial for both the 

production of toxic Aβ and the clearance of misfolded or aggregated proteins.108 The 

lysosomal dysfunction in AD includes perturbed trafficking of lysosomal enzymes and 

accumulation of their substrates such as APP and its metabolites.106,109 Lysosomes, housing 

over 60 unique hydrolytic enzymes, are a prominent site of APP processing, Aβ uptake, and 

Aβ production.110 It has been reported that inhibition of lysosomal function leads to Aβ 
accumulation and memory deficits in AD mouse models.111 Enhancing lysosomal activity 

with the transcription factor EB (TFEB) reduces the amount of APP C-terminal fragments 

and Aβ production.109 These studies highlight the therapeutic potential of improving 

lysosomal activity implicated in AD pathogenesis. In addition, previous studies have shown 

that some lysosomal proteins are dysregulated in AD patients, including the lysosomal 

enzyme cathepsin D and lysosome-associated membrane protein 1 (LAMP1).106 Several 

genetic risk genes for late-onset AD (LOAD) are functionally related to lysosomal 

dysfunction, including APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2.108 

Therapeutic intervention against AD by targeting lysosome dysfunction, while promising, 

has not yet entered a stage of being assessed in clinical trials.

2.7. Other endophenotypes

In addition to the six endophenotypes discussed, there are several additional endophenotypes 

in AD, including oxidative stress,25 proteostasis26,27 and synaptic dysfunction.28 Oxidative 

stress involves in multiple biological processes in AD, such as Aβ deposition, tau 

hyperphosphorylation, and tangle formation. The detailed molecular mechanisms and 

genetics of oxidative stress in AD were comprehensive described in a previous Review.25 
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Proteostasis refers to the dysfunction in protein homeostasis, leading to the accumulation of 

protein aggregates.26 Targeting endoplasmic reticulum acetylation to improve proteostasis in 

the secretory pathway can rescue AD in a mouse model.27 Synaptic dysfunction is closely 

related to cognitive decline in AD patients, as well as learning and memory deficits in 

various AD transgenic mice.28 Mechanically, Aβ induces dysfunction of neuronal synapses 

through distinct cell surface receptors, while tau protein leads to synaptic toxicity via 

pathological modification, localization, and propagation.28 In summary, elucidation of 

various endophenotypes, including oxidative stress, proteostasis, and synaptic dysfunction, 

will offer novel mechanisms and therapeutic targets for AD therapeutic development.

2.8. Deep endophenotyping

Since each endophenotype above has a contributing role in AD pathogenesis, it is unlikely 

that each endophenotype exists and functions independently of each other. Several lines of 

evidence have demonstrated synergistic roles for amyloid and tau in AD. Reducing 

endogenous tau levels prevents cognitive impairment in APP transgenic mice, without 

altering Aβ levels or plaque load.112 Kim et al. showed that the Aβ42/40 ratio, but not total 

Aβ amount, regulated tau pathology in a three-dimensional (3D) human neural cell culture 

system.113,114 An intense crosstalk exists between Aβ deposition, tau pathology and 

neuroinflammation. Blurton et al. found that elevated tau led to microglia-mediated Aβ 
clearance in an AD transgenic mouse model overexpressing hyperphosphorylated tau. 

Mechanically, microglia increased phagocytic capacity to accelerate the clearance of 

insoluble Aβ and decrease plaque load.115 Microglia are positively correlated with tau 

pathology, and activating microglia accelerates tau pathology in tau-transgenic mice.116 

Activated microglia release substantial pro-inflammatory cytokines and further affect tau 

hyperphosphorylation in neurons.117 Depleting microglia blocked tau propagation in a virus-

based mouse model. Specifically, microglia spread tau through exosome secretion, and 

inhibiting exosome synthesis reduced tau propagation in vitro and in vivo.118 In addition, 

mitochondrial dysfunction as well as vascular dysfunction have been strongly associated 

with tau pathology in AD.82,90 Collectively, deep endophenotyping approaches are urgently 

needed to identify the distinct endophenotypes for AD and their interactions.

In recent years, various bioinformatic or network-based approaches have provided tools for 

mechanistic examination of endophenotypes implicated in AD.19,119 For example, the 

Multi-objective Analyzer for Genetic Marker Acquisition (MAGMA) algorithm was utilized 

to explore whether genetic risk of AD (such as AD GWAS candidate genes) impact different 

endophenotypes.15 Fig. 6 presents a proof-of-concept of AD disease module (molecular 

determinants of disease pathobiology/physiology in the human interactome network).120 The 

102 unique genes within the module include 31 amyloid genes, 11 tau genes, 12 amyloid & 

tau gene, and 48 other genes. This implies both amyloidosis and tauopathy are key 

components of the AD module. In addition, there is a significant gene overlap (12 

overlapping genes, P = 1.82 × 10−27, Fisher’s exact test) between the two endophenotypes 

(amyloidosis and tauopathy). The above network analysis highlights the proof-of-concept of 

amyloid and tau endophenotypes as well as high inter-relatedness in AD pathogenesis.
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2.9. Endophenotype impact on different stages of AD pathology

Emerging studies have suggested that different endophenotypes have differential impact 

across different stages of AD progression. For example, a recent study measured 

mitochondrial complex I availability quantitatively in the human brain, suggesting that 

mitochondrial dysfunction in the parahippocampus manifests in the early stages of AD.121 

Hansson et al. found that both of neuroinflammation and cerebrovascular dysfunction were 

early events occurring at the presymptomatic stage of AD by measure of biomarkers in CSF.
122 Hansson et al. used 18F-AV-1451 tau positron emission tomography (PET) and structural 

magnetic resonance imaging (MRI) to examine whether early- and late-onset AD showed 

differential, regional tau pathology and atrophy patterns.123 They found the early-onset AD 

group had greater uptake than the late-onset group in prefrontal, premotor, and inferior 

parietal cortex, exhibiting distinct tau PET retention patterns in different stages of AD.123

3. Omics Resources in AD

Databases that collect and store high-throughput experimental data are essential for 

development of network-based disease modules for better understanding of pathobiology 

and drug repurposing in AD. We describe five types of bioinformatics resources: (1) 

genomics (including GWAS, whole-genome/exome sequencing, targeted gene sequencing, 

and functional genomics); (2) transcriptomics (including microarrays and RNA-seq); (3) 

radiomics (brain imaging); (4) pharmacogenomics (including drug-target network and drug-

induced transcriptome [drug-gene signatures]), and (5) interactomics (i.e., PPIs). The details 

of these resources are provided in Table 2.

3.1 Genomics

Genome-wide association studies (GWAS).—The Genetics of Alzheimer’s Disease 

Data Storage Site (NIAGADS), funded by the National Institute on Aging (NIA), is a 

national genetic and genomic data repository for AD. To date, NIAGADS has collected 64 

datasets including 84,220 samples across 12 data types (accessed in May, 2020). NIAGADS 

GenomicsDB, is a sub database that provides publicly available NIAGADS summary GWAS 

statistics datasets for AD.124 The Alzheimer’s Disease Genetics Consortium (ADGC) is 

funded by NIA to conduct GWAS studies for identification of risk genes in LOAD. AlzGene 

is a database that comprehensively catalogs all GWAS studies in the field of AD. AlzGene 

covers 1,395 studies, 695 genes, 2,973 polymorphisms, and 320 meta-analyses.125

Whole-exome/genome sequencing studies.—The Alzheimer’s Disease Sequencing 

Project (ADSP), launched in 2012, has sequenced and analyzed genomes to identify a wide 

range of AD risk or protective gene variants including whole-exome sequencing (WES) data 

from brain tissues (i.e., hippocampus and prefrontal cortex) from nearly 11,000 individuals 

and whole-genome sequencing (WGS) data of brain tissues from nearly 600 individuals.4 

The Accelerating Medicines Partnership - Alzheimer’s Disease (AMP-AD) concentrates on 

identifying novel, clinically relevant therapeutic targets and discovering biomarkers to 

validate existing therapeutic targets. The AMP-AD data and analysis results are stored in the 

AMP-AD Knowledge Portal, including various genomic, metabolomic and proteomic data 

from over 15,000 individuals.126
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Functional genomics.—Functional genomics databases, such as The Genotype-Tissue 

Expression (GTEx),127 Encyclopedia of DNA Elements (ENCODE) Consortium,128 

Roadmap Epigenomics,129 FANTOM5,130 and DASHR,131 provide genotype-tissue 

expression, molecular regulatory profiling, and epigenetic information to examine gene 

regulatory networks in human diseases including AD.132 The GETx (version 7) stores the 

tissue-specific gene expression and regulation data generated from 11,688 samples from 714 

donors across 53 tissues (including 13 brain regions).127 The ENCODE Consortium aims to 

build a comprehensive constituent list of functional elements in the human cell for studying 

the epigenomic signatures of cells.128 The National Institutes of Health (NIH) Roadmap 

Epigenomics Consortium was launched to establish global maps of regulatory elements 

based on integrative analysis of 111 reference human epigenomes.129 The Human 

Epigenome Atlas (Release 9), a product of the NIH Roadmap Epigenomics Consortium, has 

thus far collected 2,804 genome-wide datasets, including 1,821 histone modification 

datasets, 360 DNase datasets, 277 DNA methylation datasets, and 166 RNA-Seq datasets.129 

DASHR v2.0 is an integrative database of small human noncoding RNAs with detailed 

annotations in human tissues and cell types. Small human noncoding RNAs regulate diverse 

tissue-specific cellular processes by associating with transcription factor complexes or 

binding to micro RNAs. As of May of 2020, DASHR contains 1,678,800 small noncoding 

RNA loci from 802 data sets covering 185 tissues or cell types.131

3.2 Transcriptomics

AlzData, a high throughput data collection database, analyzed 20 original microarray 

datasets from four brain regions in 684 AD patients and 562 controls.133 The regions include 

entorhinal cortex, hippocampus, temporal cortex, and frontal cortex. In 2015, Matarin et al. 

launched a Web server (MOUSEAC) that stores both RNA-seq and microarray data across 

three brain regions (hippocampus, cortex, and cerebellum) in five lines of AD model 

transgenic mice. These mouse models include four amyloid transgenics (mutant human APP, 

PSEN1, or APP/PSEN1) and one tau transgenic (mutant human MAPT gene).134 Tsai et al. 

performed large-scale single-cell transcriptomic analysis across six major brain cell-types 

from prefrontal cortex of 48 individuals with varying degrees of AD pathology. The six 

types include excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, 

microglia, and oligodendrocyte progenitor cells.135 This unique resource provided a 

comprehensive cellular-level description of the landscape of transcriptional alterations of 

AD pathology. Importantly, this single-cell study revealed cell type-specific and shared gene 

expression perturbations, disease-associated cellular subpopulations, and sex-biased 

transcriptional patterns.135 Recently, Polo et al. generated a single-cell atlas of entorhinal 

cortex from patients with AD across six cell types, including microglia, astrocytes, neurons, 

oligodendrocyte progenitor cells, oligodendrocytes, and endothelial cells. This resource 

further contributes to better understanding of cellular heterogeneity and defining functional 

changes at single-cell resolution for AD brain.136

3.3 Radiomics

Recent advances in imaging techniques, such as magnetic resonance imaging (MRI) and 

PET, have greatly increased our knowledge of AD pathobiology.137,138 ADNI is a 

longitudinal multicenter study, funded in 2004, with the goal of collecting, validating and 
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utilizing data, including MRI, PET images, and cerebrospinal fluid (CSF)/blood biomarkers 

as clinical endpoints to evaluate drug responses in AD trials. According to the statistics in 

the AD drug development pipeline report of 2019, the most common biomarkers as outcome 

measures in Phase II and Phase III clinical trials included CSF amyloid, CSF tau, volumetric 

MRI, and amyloid PET.139 The newest ADNI update (version3) contains imaging data for 

483 elderly controls, 1,001 subjects with mild cognitive impairment (MCI), and 437 subjects 

with AD dementia, enabling the sharing of data among researchers around the world.
5,140,141

3.4 Pharmacogenomics

Pharmacogenomics resources, including physical drug-target interactions and functional 

drug-induced gene signatures, offer new insights into understanding molecular mechanism 

of drugs and also provide resources for in silico drug repurposing in AD.

Physical drug-target interactions.—There are several common physical drug-target 

interaction databases, such as DrugBank,142 DrugCentral,143 DGIdb,144 and TTD.145 

DrugBank is a comprehensive database with detailed drug and target information. As of 

May of 2020, the current version of DrugBank 5.1.6 includes 13,543 drug entries containing 

4,002 approved drugs (2,630 small molecules), 131 nutraceuticals and over 6,358 

experimental drugs.142 DrugCentral, an open-access online drug compendium, integrates 

structure, target and indication information for approved drugs. DrugCentral (2018 release) 

contains 4,531 approved drugs, including 2,094 FDA-approved agents and 2,437 drugs 

approved by other regulatory agencies.143

Functional drug-gene signatures.—Functional drug-induced gene signatures, such as 

provided by DSigDB,146 CMap (v2.0),147 LINCS,148 DRUG-Seq,149 open TG-GATEs,150 

Drug Gene Budger (DGB),151 Mantra 2.0,152 and NFFinder,153 provide connections among 

diseases, genetic perturbation, and drug actions. These databases are utilized to identify the 

molecular mechanism of given compounds for elucidation of side effects and drug 

repurposing. Connectivity Map (CMap2.0) is a reference collection (>7,000) of gene-

expression profiles from four types of cancer cell lines treated with 1,309 bioactive small 

molecules.147 Given the limited number of cancer cell lines, the Library of Integrated 

Network-based Cellular Signatures (LINCS) project produced over 1 million gene 

expression profiles of more than 10,000 compounds tested in nearly 80 different cancer cell 

lines. This large-scale drug-induced expression data repository aims to assist investigators to 

better understand human disease and advance new therapies.148 DRUG-Seq, a high-

throughput platform for drug discovery, captures transcriptional changes profiling 433 

compounds across 8 doses with various chemical and genetic perturbations and can be used 

for exploring molecular mechanisms for novel and existing drugs.149 NFFinder is an online 

server for searching similar transcriptomic profiles in the context of drug repurposing. 

NFFinder integrates expression data from drug-gene signature resources, such as CMap and 

DrugMatrix,154 to connect relationships among drugs, diseases and phenotypes of interest.
153 Drug Signatures Database (DSigDB) collects drug and small molecule-related gene sets 

based on quantitative inhibition and/or drug-induced gene expression profile data. As of 
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February of 2019, DSigDB contains 22,527 gene sets, connecting 17,389 unique compounds 

(1,202 FDA-approved drugs) and their target genes.146

Several limitations of current pharmacogenomics resources should be acknowledged. First, 

most of the physical binding data from public databases, such as DrugBank,142 are tested by 

in vitro assays in engineered cells. It neglects the fact that drug concentrations in the human 

body are affected by pharmacokinetics/pharmacodynamics (PK/PD) properties. Second, 

high concentrations (10 uM) of compounds tested in the LINCS database are far beyond 

achievable ranges in human patients. Standardized databases for quantitative physical 

interaction of drugs with human receptors, such as the Psych-Active Drug Screening 

Program,155 may provide more useful drug-target resources. Finally, CMap as well as 

LINCS are functional drug-induced gene signature databases in cancer cell lines, not cell 

lines biologically relevant to AD.147,148

3.5 Interactomics: The human protein-protein interactome

Human PPIs play a crucial role in understanding human diseases and drug responses19,20 

from a cellular network perspective.156 Recent human interactome studies have suggested 

novel network-based drug-disease or drug-drug relationships by assembling binary, physical 

PPIs from multiple resources.19,20 Several well-known PPI databases, including BioGRID,
157 HPRD,158 Interactome3D,159 STRING,160 MINT,161 and IntAct,162 offer high-quality 

experimental, computationally-predicted, or literature-curated PPIs. BioGRID, a biomedical 

literature-curated database, consists of 1,814,182 protein and genetic interactions across 74 

organisms (including 573,910 interactions in Homo sapiens, version 3.5.185) by extracting 

data from 72,164 publications.157 STRING assembles known and computationally predicted 

PPIs for a large number of organisms. STRING (v11.0) collected 97,587,721 PPIs with 

quantitative confidence scores higher than 0.7 (high confidence) across 2,031 organisms 

(accessed in February of 2019).160 IntAct is an open source database system for molecular 

interaction data, which curates PPI data from the literature and integrates data from 11 

common PPI databases. Currently, it contains 1,050,463 PPIs connecting 115,486 proteins 

from 21,346 publications (accessed in May of 2020).162

3.6 Multi-omics data integration

In addition to the databases providing omics resources for AD, data analysis using 

bioinformatics approaches or tools remains indispensable for developing disease modules. 

Weighted gene co-expression network analysis (WGCNA), an R analytical package, 

provides systems-level insights into high-throughput omics data such as microarray or RNA-

seq datasets.163 The package can be used for describing the correlation patterns among 

genes across omics samples. Allan et al. applied WGCNA to identify distinct modules of co-

expressed microglial genes that are related to AD pathology using existing transcriptomic 

microarray datasets. They predicted distinct DAM sub-populations and validated them in 

AD mouse models. Finally, they performed a connectivity map (CMAP) analysis to 

prioritize selective modulators for DAM profiles using drug-induced transcriptional 

responses in human cell lines.164 Genome-wide Positioning Systems network (GPSnet) is a 

network-based algorithm for in silico drug repurposing. It includes two main components: 

(i) disease module identification from individual patient’s DNA and RNA sequencing 
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profiles, and (ii) network-based drug repurposing.165 In addition to WGCNA and GPSnet, 

another network approach, termed the largest connected component (LCC) approach, can be 

used to build disease modules. The significance of a module is evaluated by counting the 

number of permutations greater than the number of observed LCC formed by the randomly 

selected proteins with a similar connectivity distribution in the human interactome network.
19 Taken together, such computational methodologies offer invaluable tools for disease 

module generation in AD.

4. Computational Approaches for Alzheimer’s Drug Repurposing

The massive growth of bioinformatics resources creates new opportunities to apply 

computational approaches for drug repurposing in AD. Over the last decade, several types of 

computational approaches, including structure-based (e.g. molecular docking),166 ligand-

based (e.g. chemical similarity),167,168 bioinformatics-based,169 network-based, and system 

biology-based methods, have shown potential for in silico drug repurposing in multiple 

complex diseases, including AD. Details about in silico drug repurposing can be found in 

several recent reviews.166,170–173 In this review, we present three types of approaches with 

potential of exploiting the wealth of publicly available multi-omics data in pursuit of AD 

drug repurposing: (i) Genetics-based, (ii) omics-based, and (iii) network-based approaches.

4.1 Genetics-based approaches

More than 40 GWAS studies have been published in AD, which has identified over 40 AD 

risk-associated loci.2,174,175 For example, a recent GWAS study identified 29 risk loci 

(including 13 novel loci) for AD, using meta-analysis of 71,880 cases and 383,378 controls.8 

A systematic analysis of human genetic evidence suggested that GWAS data could greatly 

contribute to novel therapeutic targets and development of new drugs, including identifying 

opportunities for drug repurposing.176,177 Based on these observations, several studies have 

aimed to use GWAS findings to identify novel therapeutic targets for drug repurposing in 

AD. Kwok et al. systematically examined the relationship between existing drug targets and 

GWAS closest genes in AD and assessed whether these genes were targeted by existing 

drugs that could be repurposed for AD. They found several drugs (i.e. afatinib, glatiramer, 

and vandetanib) that target these GWAS-derived genes, including several 

immunosuppressive disease-modifying anti-rheumatic and multiple sclerosis drugs.178 In 

2017, So et al. compared transcriptomes imputed from GWAS data with drug-induced gene 

expression profiles from CMap database.179 By examining drugs in CMap showing opposite 

patterns of expression to diseases in GWAS, they identified repurposable drugs for seven 

psychiatric disorders.179 They further showed that some predictions were validated by 

preclinical or clinical evidence.179 Recently, our group presented an integrated, network-

based methodology to rapidly identify drug targets from GWAS findings and multi-omics 

data integration for AD. We found that one of the agents identified --- pioglitazone (an 

approved anti-diabetes drug) --- is significantly associated with decreased risk of AD in a 

retrospective case-control study.180 However, several limitations exist for current GWAS-

based drug repurposing. First, given that many genome-wide significant loci are in 

noncoding regions, only a small portion of druggable genes could be mapped by GWAS 

analysis181 and the closest-based GWAS genes cannot represent AD-risk genes by 
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regulatory roles of non-coding variants.182 Second, catalogs of genetic variants from GWAS 

that influence human disease traits are incomplete. Identification of high-risk genes from 

GWAS data by uniquely integrating multi-omics data and human interactome networks 

would offer new candidate targets for AD drug repurposing.183

4.2 Omics-based approaches

Owing to the extensive application of high-throughput, next-generation sequencing 

techniques, massive omics data from AD have accumulated, including transcriptomics, 

metabolomics, and proteomics. These complementary omics data shed new insights on the 

pathology expression in AD, and also offer an alternative approach to AD drug discovery.

Transcriptomics.—Transcriptomics measures the expression profiles of genes using 

RNA-seq or microarrays. Reversal of gene expression signatures that may translate into 

clinical benefit offer a means of discovering agents with the potential for drug repurposing.
184,185 Several large scale transcriptome profiling studies have revealed the transcriptome 

landscape in AD, such as the UK Brain Expression Consortium and the Religious Order 

Study (ROS).186–189 In addition, Vargas et al. built a transcriptional regulatory network and 

conducted master regulator analysis to identify potential molecular targets in AD.190 By 

integrating drug-gene signatures from the CMap database with transcriptomic data of human 

hippocampus in AD patients and controls, they identified six FDA-approved drugs with 

potential for therapeutic effect in AD, including cefuroxime, cyproterone, dydrogesterone, 

metrizamide, trimethadione, and vorinostat.190 Siavelis et al. also integrated five AD-related 

microarray data sets from human hippocampus to identify differentially expressed genes 

using three different approaches. Based on these disease signatures, they searched drug 

candidates to reverse disease profiles using four drug repurposing tools, including CMap, 

SPIEDw, sscMap, and LINCSL1000. This effort generated a list of 27 potential anti-AD 

drug candidates (i.e. protein kinase C inhibitors and glycogen synthase kinase 3 inhibitors).
191

Proteomics.—Compared to transcriptomics-based studies, proteomics offers more 

comprehensive characterization of molecular pathways in AD. Multiple proteomics studies 

in patients or mouse models have uncovered potential AD molecular networks.192–195 For 

example, Xiong et al. compared the proteomic profiles of amyloid plaques from AD 

patients, controls, and APP/PS1 mouse models. They found distinct protein expression 

changes among these three types of plaques.192 Wang et al. performed a proteome-wide 

screening approach to identify tau-interacting proteins, and validated Otub1 as a tau 

deubiquitinating enzyme in vitro and in vivo, implying the potential application of Otub1 

inhibitors in tauopathies and AD.196 The analysis of the proteomics and of the sharing 

variations identified by proteomics could reveal pathological mechanisms of AD, which 

might provide novel therapeutic targets for drug repurposing.

Multi-omics.—Multi-omics data integration offers multiple molecular layers to describe 

AD pathogenesis compared to single omics approaches.197 Petyuk et al. integrated DNA 

variation, RNA expression, and proteome profiles to prioritize key targets in LOAD.198 An 

integrative analysis showed that heat shock protein family A member 2 (HSPA2) played a 
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key role, validated in two cell lines.198 Swarup et al. proposed an integrative multi-omics 

approach to reveal the disease mechanisms in frontotemporal dementia. They identified two 

disease-relevant mRNA modules, including a neurodegeneration-associated synaptic [NAS] 

module and a neurodegeneration-associated inflammatory [NAI] module, by uniquely 

integrating RNA-seq and proteomics data from mouse models and AD patients. Specifically, 

they identified miR-203 as a hub driver of an NAS module in vitro and in vivo and showed 

that two histone deacetylase inhibitors (scriptaid and vorinostat) ameliorate miR-203-

induced cell death in vitro.16 Zhang et al. collected a list of 524 AD-associated targets via 

integration of genomics, epigenomics, proteomics and metabolomics data.199 Among 19 

prioritized protein targets linked to 92 existing drugs, they found that myeloid cell surface 

antigen CD33 (CD33) and macrophage migration inhibitory factor (MIF) were prioritized as 

the two highest candidate targets with seven existing drugs relevant to AD.199

4.3. Network-based approaches

Drug discovery in the modern era has become a highly integrated, systems pipeline, 

requiring complementary multi-omics and computational methods.200 Systematic 

identification and characterization of “driver interaction (edge) perturbations”, starting from 

genomes, exomes, transcriptomes, and the human interactome, can serve as a foundation for 

generating predictive, and eventually dynamic, disease network AD models.

Novel approaches, such as network-based drug-disease proximity that shed light on the 

relationship between drugs and diseases,19 can serve as a useful tool for efficiently screening 

potential new AD indications for currently marketed drugs. For example, network proximity 

quantifying the interplay between disease genes and drug targets in the human protein-

protein interactome reveals hundreds of new drug-disease associations in various complex 

diseases.19 This approach aims to calculate the closest distance measured by the average 

shortest path length of all the disease gene nodes to the drug target nodes in the human 

interactome. Since this approach does not take drug affinities for the different targets into 

account, its performance may be further improved by utilizing drug affinity information in 

future studies.201 This approach can also be applied to AD drug repurposing. Here we 

highlight an endophenotype network-based drug repurposing infrastructure for AD drug 

repurposing (Fig. 7). This network framework can integrate multi-omics data (e.g. genomics, 

transcriptomics, proteomics, and metabolomics), drug-gene interactome/signatures, along 

with preclinical or patient validation. The critical infrastructure consists of four key 

domains: (1) an AD endophenotype-based disease module built from multi-omics data (Fig. 

7A); (2) experimental or clinical validation of disease modules (Fig. 7B); (3) repurposable 

drugs prioritized via network proximity analysis (Fig. 7C); (4) in vitro/vivo preclinical 

validation as well as large scale longitudinal patient (i.e., electronic health records) data 

validation (Fig. 7D). Cheng et al. demonstrated that an integration of network proximity-

based approaches and state-of-the-art pharmacoepidemiologic methods can facilitate drug 

repurposing in cardiovascular disease.19 They observed that hydroxychloroquine was 

associated with 24% reduced risk of coronary artery disease compared with leflunomide 

using large-scale patient data, an observation supported by mechanistic in vitro data.19
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Network-based approaches thus show potential in drug repurposing for multiple complex 

diseases, including AD. Several questions that form the basis of the endophenotype-based 

disease module warrant addressing in the future. These include: 1) how to build the detailed 

maps of identified and interpreted AD mutations from genomics data; 2) how to rapidly 

identify data-driven therapeutic targets for personalized diagnosis and treatment from brain-

specific, quantitative network analysis by utilizing multi-omics data rather than single omics 

approaches.

There remain several challenges for CNS drug discovery and development based on current 

approaches. The CNS drug development pipeline should consider the following factors: 

quantitative and validated biomarkers, clinical endpoints, complex PK/PD relationships, and 

the complex interactions of different brain circuits.202 To address these issues, other 

approaches such as quantitative systems pharmacology (QSP) are emerging as new 

computational strategies in CNS drug discovery. QSP, which combines systems biology and 

PK/PD, offers a mechanism-based computer model of relevant neuronal circuits for CNS 

diseases.202,203 It can be used for evaluating drug effects and optimizing the design of 

clinical trials. Collectively, the computational strategies above show promise in exploiting 

multi-omics data in pursuit of AD drug repurposing.

5. Validation of in silico Alzheimer’s Drug Repurposing

Once repurposed drug candidates are identified, experimental validation is required to 

support their efficacy before human clinical trials. Several recent reviews summarize the 

pathological features and limitations of the major experimental models of AD.204–207 Here, 

we briefly discuss three types of experimental validation of drug efficacy in AD: (i) in vitro 
assays (i.e., human induced pluripotent stem cells [iPSCs]), (ii) in vivo assays (including 

transgenic mouse/rat models and other animal models), and (iii) population-based 

retrospective case-control studies using state-of-the-art pharmacoepidemiologic designs.

5.1. iPSC neuron models

iPSCs, generated from patient stem cell-derived neurons to recapitulate key aspects of AD 

pathology, are increasingly used to study AD.208 Accumulating evidence from iPSC lines 

from familial AD (FAD) and sporadic AD patient-derived neurons has revealed 

overproduction of Aβ and tau hyperphosphorylation compared to iPSCs derived from age-

matched non dementia controls.209,210 iPSC neuron models may thus offer an applicable in 
vitro assay for AD drug discovery. For example, Kondo et al. screened and evaluated 

therapeutic candidates for AD using human iPSC-derived neurons, resulting in 27 anti-Aβ 
hits. They further identified a synergistic combination of bromocriptine, cromolyn, and 

topiramate as an anti-Aβ therapeutic cocktail.211 However, there are several drawbacks to 

the iPSC approach. First, to characterize an AD associated phenotype, these cell lines may 

have to be aged, which is difficult to recapitulate in vitro using differentiated neurons. 

Second, iPSC-neuron models do not represent the complex brain condition in vivo, even 

though recent advances in 3D human neural cell culture systems allow more physiological 

interactions between neurons and glia.114
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5.2. Invertebrate animal models

Invertebrate animal models, such as Drosophila and Caenorhabditis elegans (C. elegans), 

have been used to recapitulate AD pathology after genetic manipulation by expressing 

human transgenes of APP, Aβ and/or tau.212,213 For example, Favrin et al. constructed an 

AD drosophila (fruit fly) model which overexpresses the human Aβ42 peptide. 

Transcriptome analysis of AD and control flies found 712 differentially expressed genes 

involved in oxidative stress and innate immunity.214 Transgenic invertebrate models are 

widely used in high-throughput genetic or drug screens. Shim et al. specifically employed 

tauP301L and tauR406W as models of tau-induced neurotoxicity in drosophila for screening 

compounds for the ability to ameliorate tau-induced neurotoxicity in vivo, and identified a 

known protein kinase C alpha (PKCα) inhibitor (Ro 31–8220), in vitro and in vivo.215 

Treatment with Ro 31–8220 reversed tau-induced memory impairment and improved the 

motor functions in this fly model.215

C. elegans is another invertebrate model for target identification and drug screening against 

AD. He et al. used the transgenic C. elegans strain CL2355 expressing neural Aβ to assess 

the neuroprotective activity of seven 2-arylethenylquinoline derivatives. They observed that 

two of them (4b1 and 4c2) reduced Aβ-induced stress, inhibited the expression of neural Aβ 
monomers and toxic oligomers, and protected against cognitive impairment in a C. elegans 
AD model.216 The main advantages of using invertebrates as AD models is their easy 

handling, low cost, and short life span. However, results from invertebrate models need to be 

further validated in animal models or patient data.

5.3. Transgenic mouse/rat models

Rodents are mammals and can be identified by their teeth, including mouse, rat, squirrel, 

beaver, and so on. Rodents (especially mouse and rat) have been the most widely used 

models in biomedical research.206,217 The most commonly used experimental models are 

transgenic rodents that overexpress human mutations (such as APP and PSEN1), which lead 

to formation of amyloid plaque, NFTs, or both. In total, Alzforum lists 177 AD animal 

models, including 169 transgenic mouse models and 8 transgenic rat models.218 Sixty-two 

of the transgenic mouse models for AD overexpress human APP mutants and develop Aβ 
aggregation. For example, the PS2 APP mouse is an AD transgenic model harboring APP 

KM670/671NL and PSEN2 N141I mutations, which develops severe cerebral amyloidosis in 

discrete brain regions.219 However, these APP transgenic mice do not develop NFTs. To 

address this, several transgenic models that overexpress mutated human tau protein have 

been developed. For example, the rTg4510 mouse is a tauopathy model that overexpresses 

the human tau P301L mutation associated with familial frontotemporal dementia; the mice 

develop progressive age-related NFTs, neuronal loss, and behavioral impairments.220 

Recently, Kim et al. reported a novel AD model, the AD-like pathology with amyloid and 

NFTs (ADLPAPT) mouse. This mouse harbors three human transgenes, including APP, 

PSEN1, and MAPT, with six mutations. ADLPAPT mice display neuronal death, an 

accelerated NFT pathology, amyloid plaques and memory deficits at an early age.194 One of 

the most rigorous and faithful rodent models of AD is the TgF344 AD rat. These animals 

overexpress two familial mutations that cause AD (APP K670N/M671L (Swedish) and D-

exon mutant human presenilin-1 (PS1DE9), and develop a well-characterized age-dependent 
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progressive attainment of early neurovascular dysfunction followed by cerebral amyloidosis, 

tauopathy, gliosis, and neuronal cell death, along with depression-like behavior preceding 

cognitive deficits.40,221,222

Transgenic rodent models of AD have been widely used to examine the anti-AD effect of 

drug candidates in vivo.56,223 The resulting measures for drug efficacy include evaluation of 

neuropathological characteristics such as Aβ or tau burden, as well as behavioral assays such 

as fear conditioning, Morris water maze, and the novel object recognition test.224 For 

example, long-term treatment by clozapine, an approved antipsychotic drug, ameliorates the 

Aβ-induced memory impairment and reduces Aβ levels in the Tg-APPswe/PS1dE9 mouse 

model.225 Furthermore, long-term treatment with the P7C3 class of neuroprotective agents 

preserves cognition and neuronal function in TgF344 AD rats without impacting other 

measures of brain pathology (amyloidosis, tauopathy, gliosis).40 However, many cognitive 

functions (e.g. language) are unique to humans and cannot be measured in transgenic 

experimental models. In addition, current transgenic rodents all harbor mutations associated 

with FAD, while most clinical cases of AD are sporadic and lack a known genetic cause. 

Use of the various rodent strains has been criticized as having limited clinical validity; none 

have accurately predicted human benefit from putative AD therapies. AD models do not 

recapitulate all aspects of AD and are not expected to predict complex human outcomes; 

they represent a valuable means of assessing drug effects on specific genetically-engineered 

biology and are valuable laboratory tools to assessing drug mechanisms. Given the 

magnitude of the public health crisis posed by AD, it is therefore imperative to press forward 

with evaluating, in a rigorous and thoughtful way, the efficacy of novel treatment approaches 

in the nonclinical models that are currently accepted by the field. At the same time, other 

complementary clinically-relevant approaches are warranted, such as population-based 

validation using large-scale patient databases.

5.4. Population-based validation

Since drug repurposing focuses on drugs that are already marketed, hypothesis testing is 

possible using large-scale patient-level databases such as MarketScan and Clinformatics 

DataMart databases. Such patient databases are regularly used to generate actionable 

evidence of effectiveness, harm, use, and value of medications, including computationally-

predicted repurposable candidates. The MarketScan databases are a family of administrative 

claims databases that fully integrate many types of data for healthcare research, including 

de-identified records of more than 250 million patients with laboratory results, health risk 

assessments (HRAs), hospital discharges, and electronic medical records.226 Clinformatics 

DataMart Database is a de-identified claims database from a national insurance provider, 

containing detailed longitudinal information. This database has administrative health claims 

data from over 60 million patients across the United States including enrollment records, 

medical claims, and prescription claims.227 Columbia Open Health Data (COHD) is a 

database of prevalence and co-occurrence frequencies between conditions, drugs, 

procedures, and demographics. The lifetime dataset consists of 36,578 single concepts as 

well as 32,788,901 concept pairs from 5,364,781 patients.228
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Recent advances in state-of-the-art pharmacoepidemiologic analyses offer powerful 

approaches to assess the drug user’s disease outcomes in CNS disorders.229,230 Paik et al. 

proposed a drug repurposing framework using both clinical signatures from large-scale 

patient databases and genomics signatures. They predicted and validated that terbutaline 

sulfate, an FDA-approved drug for treatment of asthma, had potential for treating 

amyotrophic lateral sclerosis (ALS) in a zebrafish model.231 In addition, Mittal et al. 

discovered that β2-adrenoreceptor (β2AR) ligands could modulate α-synuclein gene 

(SNCA) through histone 3 lysine 27 acetylation. Conducting longitudinal analyses in 4 

million Norwegians, they found that salbutamol (a β2AR agonist) reduced the risk of 

Parkinson’s disease.232 Animal studies revealed that terbutaline can pass the blood-brain 

barrier of rabbits and salbutamol can pass the blood-brain barrier of rats.233,234 Future 

randomized controlled trials are needed to test clinical benefits of terbutaline and salbutamol 

in individuals with ALS or Parkinson’s disease.

Randomized controlled trials are typically limited in scope owing to a relatively modest 

study size, short follow-up time, and underrepresentation of relevant populations.235 A 

unique strength of routine healthcare data for validating drug repurposing hypotheses 

includes the ability to study large patient populations to detect small differences in 

outcomes. Another strength is the availability of a large number of patient factors recorded 

without any recall bias, including demographics, comorbid conditions, and medication use, 

which allows for high-dimensional covariate adjustment to minimize confounding.236–238 

Several pitfalls exist for routine healthcare data. First, detailed clinical information is 

missing for health insurance claims data despite high-dimensional covariate adjustment. For 

example, lack of common variant genotypes, clinical diagnosis information (i.e. CSF levels 

of Aβ and tau), as well as some comorbidities, may affect the results of 

pharmacoepidemiologic analyses. Second, pharmacoepidemiologic analysis may not be 

suitable for testing the drugs that have fewer patient data and thus are not statistically robust. 

In that case, replication of the associations using multiple large population-based cohorts is 

warranted.

6. Discussion, Perspective, and Future Direction

6.1. Why Alzheimer’s drugs have failed in clinical trials

In the past decades, over 99% of AD clinical trials have failed. Several factors may account 

or contribute to this challenge. First, the transgenic rodent models used in AD preclinical 

studies elucidate only limited aspects of human AD pathobiology.204 For example, AD has 

both Aβ and NFTs in the brain. However, very few transgenic mice models that overexpress 

human familial AD genes have both these key pathologies. Another aspect is that Aβ can 

accumulate in preclinical AD without neurological symptoms, while tau tangles accumulate 

predominantly in the MCI phase of AD.239 The mouse with Aβ and few tau tangles may not 

fully represent the pathobiology of symptomatic AD onset.

Second, lack of sufficiently sensitive clinical outcome measures in clinical trials may 

contribute to some failures particularly in trials of asymptomatic or minimally affected 

individuals. Tools and analyses with greater sensitivity are required to detect drug-placebo 

differences.
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Third, the presence of different population groups may affect the clinical results. For 

example, a randomized control trial demonstrated that pioglitazone showed cognitive 

function improvement in 42 patients with non-insulin dependent diabetes mellitus and mild 

AD,240 while a Phase II study (NCT00982202) of pioglitazone showed no statistically 

significant differences between controls and patients with mild to moderate AD.241

Varying degrees of AD pathology produce clinical syndromes ranging from asymptomatic to 

severely impaired. These boundaries are challenging since many past clinical trials used only 

cognitive tests (such as Clinical Dementia Rating Scale) to define the AD population. It 

cannot be excluded that the so called “MCI due to AD” includes patients without including 

AD pathology.242 More specific approaches, such as fluid biomarkers and brain imaging, 

can be used to measure the stage of disease in trial participants. Biomarkers such as 

concentrations of tau and Aβ proteins in CSF, as well as brain imaging to measure brain 

volume changes and protein deposition, should be evaluated as entry and/or end point 

criteria.243

Lack of drug efficacy is the most common cause of negative trials in AD drug development. 

Agents may lack target engagement or may be administered in too small doses or for too 

short periods of time.244 Factors contributing to clinical trial failures that should be 

accounted for in future AD trials include:

• Targeting the wrong pathophysiological mechanisms

• Using drugs that do not engage with the intended target

• Intervening at the wrong stage of the disease

• Lacking translatable pharmacodynamic and pharmacokinetic (i.e., poor brain 

penetration) biomarkers

• Depending on animal models with poor predictive efficacy

• Failing to address the complexity of AD

• Failing to accurately monitor the complexity of the clinical and biological 

responses to therapeutic intervention

• Administering treatments in too low doses or for too short periods of time during 

trials.

6.2. Challenges of Alzheimer’s drug repurposing

Several barriers and challenges face AD drug repurposing. Drugs predicted to impact AD 

pathophysiology will likely need to be able to cross the BBB. However, over 98% of all 

small-molecule drugs, and nearly 100% of large-molecule drugs, do not cross the BBB.245 

Furthermore, considering the difference of transporter mechanisms between rodent models 

and humans, drugs easily crossing the BBB in animal models may not exhibit brain 

penetration in humans. For example, tarenflurbil showed striking effects on the AD animal 

models, but did not have an optimal brain penetration profile in humans and failed in its 

Phase III trial.246 Thus, drug delivery to the CNS is a major challenge. Development of 

novel drug delivery approaches to the brain may overcome poor brain penetration.247
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Lack of clinical efficacy is another important concern in AD drug repurposing. In the past 

decade, a number of clinical trials with monotherapy have failed to affect AD disease 

progression or symptoms due to lack of efficacy.248 Given the complex pathophysiology of 

AD, combination drug therapy may be necessary for effective treatment. Memantine and 

donepezil are available in an FDA-approved fixed drug combination for the treatment of 

moderate to severe AD.249 This provides a regulatory pathway for combination drug 

treatment in AD treatment. Recent network proximity methodologies can identify clinically 

efficacious drug combinations for specific diseases by quantifying the network-based 

relationships among drug targets and disease modules in the human protein-protein 

interactome.20 Network analysis reveals that drug combinations have predicted therapeutic 

effects when the targets of the drugs both hit the disease module but exist in distinct 

biological neighborhoods.20 This approach offers a network-level view of therapeutic 

combinations in terms of comparative efficacy and adverse drug-drug interactions, which 

can be applied in rational AD drug combination design.20

The third challenge is low research investment by pharmaceutical companies in drug 

repurposing compared with new chemical entity-based drugs. Most repurpose-ready drugs 

have no or limited patent protection, and intellectual property issues decrease the interest of 

pharmaceutical companies in advancing these agents.250 To overcome this challenge, more 

academic research funds and governmental support for this national crisis are required or 

greater legislative protection for time-limited exclusivity for repurposed agents is required.

6.3 Network-based Rational Design of Drug Combination for Alzheimer’s Disease: 
Illustrative Example

Drug combinations, offer increased therapeutic efficacy and reduced toxicity, playing a 

crucial role in treating multiple complex diseases. However, how to identify and validate 

effective combinations is challenged by a combinatorial explosion, driven by both the huge 

number of drug pairs as well as possible dosage combinations. For a network-based 

approach to drug combinations to be effective, the topological relationship between two 

drugs must be understood. A key network-based methodology is that a drug combination is 

likely to be therapeutically effective only if it has a specific relationship to the disease 

module, as captured by the “Complementary Exposure” pattern in targets’ modules of both 

drugs (Fig. 8A).20 Specifically, if we are looking for therapeutically synergistic 

combinations, the two drugs must not only overlap with the disease module, but the two 

drug-target modules need to be separated in the human interactome without overlapping 

toxic mechanisms.251 Carvedilol (NCT01354444) and riluzole (NCT01703117) have been 

repurposed as AD drugs in clinical trials. A previous study showed that both of 10 μM and 

20 μM of carvedilol had neuronal protective effects against endogenous Aβ neurotoxicity in 

mouse Neuro2a cells.252 However, in vitro findings of carvedilol tested at a high 

concentration of 10 μM or 20 μM are still not enough to support that it is a clinically relevant 

dose for central brain action in human subjects. Network proximity analysis reveals that the 

target modules of these two agents have significant network proximity with the APP module 

(Fig. 8B) yet hit separate neighborhoods, suggesting that their combination in AD may have 

potential efficacy without significant synergistic toxicity, based on their “Complementary 
Exposure” pattern. As shown in Fig. 8B, carvedilol can target a key seed gene APP, which 
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connects to several other seed genes (i.e. FYN, GSK3B and SUMO1); riluzole can target 

SCN5A and SCN4B, the two neighborhood proteins of seed gene SNCA and FYN. Using 

these two agents (carvedilol and riluzole) show potential for combination therapy based on 

the network-based “Complementary Exposure” model. PXT864, a combination of 

acamprosate and baclofen, was reported to have potential protective effects on neurons and 

endothelial structures in vitro against Aβ oligomers.253 PXT864, discovered by Pharnext, is 

under a Phase II AD clinical trial [NCT02361424]. We found that acamprosate and baclofen 

were captured by the “Complementary Exposure” pattern (Fig. 8C) in the human 

interactome network, further supporting the proof-of-concept of “Complementary Exposure” 

for rational design of AD drug combinations.

6.4. Individualized drug repurposing in Alzheimer’s disease

The last challenge is to overcome the limitation of clinical “one-size-fits-all, magic bullet 

drug development”. Similar to cancer precision medicine, the way to treat AD may one day 

shift from traditional symptom- and sign-based therapy to individually-tailored biomarker-

guided targeted therapies.254 To address this, the Alzheimer Precision Medicine Initiative 

(APMI) was launched in 2016, aiming to transform healthcare, conventional clinical 

diagnostics, and drug development research in AD.255 Recent advances in next-generation 

DNA/RNA sequencing have made it possible to identify new targets rapidly and to 

repurpose existing drugs for treating heterogeneous diseases by ‘precise’ targeting of 

individualized disease modules.256 For example, Cheng et al. developed a Genome-wide 

Positioning Systems network algorithm for drug repurposing by specifically targeting 

disease modules derived from individual patient DNA and RNA sequencing profiles under 

the human protein-protein interactome network framework.165 An individualized drug 

repurposing approach was proposed for prioritizing personalized drugs for type 1 diabetes 

mellitus.257 Development of individualized network-based drug repurposing approaches by 

unique integration of multi-omics data generated from patient biospecimens could improve 

the success rate of AD drug repurposing (Fig. 9). In addition, the individualized network-

based framework can be applied to AD clinical trials and treatment decisions. For example, 

the patient-specific or subtype-specific disease modules (Fig. 9) could guide therapeutic 

evaluation during clinical trials or optimize new treatments for patients who receive these 

drugs after FDA approval.

In summary, endophenotype network-based approaches show promise in better 

understanding the pathobiology of AD and accelerating drug repurposing, but the process is 

still in its infancy. We believe that network-based drug repurposing represents a valuable and 

complementary approach to promoting AD therapeutic development that will optimize the 

usefulness of available data and support deep phenotyping of the complexity of AD.
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Abbreviation:

AD Alzheimer’s disease

ADGC Alzheimer’s Disease Genetics Consortium

ADNI The Alzheimer’s Disease Neuroimaging Initiative

ADSP The Alzheimer’s Disease Sequencing Project

ALS amyotrophic lateral sclerosis

AMP-AD Accelerating Medicines Partnership - Alzheimer’s Disease

APMI The Alzheimer Precision Medicine Initiative

APP amyloid precursor protein

ARB angiotensin receptor blocker

Aβ amyloid‑β

BBB blood-brain barrier

C. elegans Caenorhabditis elegans

CD33 cell surface antigen CD33

CNS central nervous system

CMap Connectivity Map

CSF cerebrospinal fluid

DAM disease-associated microglia

DGB Drug Gene Budger

DSigDB Drug Signatures Database

ENCODE The Encyclopedia of DNA Elements

FAD familial AD

FDA Food and Drug Administration

GTEx The Genotype-Tissue Expression
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GPSnet Genome-wide Positioning Systems network

GWAS genome-wide association studies

HSPA2 heat shock protein family A member 2

IL-6 interleukin 6

IL-1β interleukin 1 beta

iPSCs human induced pluripotent stem cells

LINCS the Library of Integrated Network-based Cellular 

Signatures

MAGMA Multi-objective Analyzer for Genetic Marker Acquisition

MAPT microtubule-associated protein tau

MCI mild cognitive impairment

MIF macrophage migration inhibitory factor

MRI magnetic resonance imaging

NAI neurodegeneration-associated inflammatory

NAS neurodegeneration-associated synaptic

NFTs neurofibrillary tangles

NGS next-generation sequencing

NIAGADS The Genetics of Alzheimer’s Disease Data Storage Site

NMDA N-methyl-D-aspartate

PDSP Psych-Active Drug Screening Program

PET positron emission tomography

PKCα protein kinase C alpha

PPI protein-protein interaction

PSEN1 presenilin-1

QSP quantitative systems pharmacology

ROS reactive oxygen species

TNF-α tumor necrosis factor alpha

WES whole-exome sequencing

WGCNA Weighted gene co-expression network analysis
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WGS whole-genome sequencing

β2AR β2-adrenoreceptor
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Figure 1. Statistics of current drug development status in Alzheimer’s disease (AD).
(A) Distribution of clinically failed drugs versus approved drugs in the past 20 years (1998–

2017). The data are collected from Adis R&D Insight Database; (B) Distribution of 

mechanistic classes in development of AD drugs. The data are collected from U.S. AD 

clinical trials from the Alzforum database in March 2016.
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Figure 2. Reductionist versus network medicine paradigm for AD pathogenesis and drug 
discovery.
(A) The traditional reductionist paradigm that utilizes routine single omics approaches 

resulting in large bodies of distinct data that are not integrated. (B) Network medicine is 

based on the utilization of state-of-the-art network science tools and systems biology 

approaches to build the integrative model (AD endophenotype) from multi-omics data under 

the human interactome network framework.
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Figure 3. Statistics of repurposed drugs in nonclinical or clinical investigations for Alzheimer 
therapy.
All repurposed drugs in AD clinical trials are collected from clinicaltrials.gov database as of 

July 31, 2019. The inner ring represents Phase III agents; the middle ring shows Phase II 

agents; the outer ring presents Phase I or preclinical drugs. All the drugs are classified into 

four types: cardiovascular drugs, metabolic drugs, nervous systems or mental drugs, and 

others, according to their original indication. The mechanism-of-action of drugs are 

classified into four types: amyloid-related, tau-related, amyloid & tau related, and others.
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Figure 4. A diagram illustrates drug repurposing approach under endophenotype networks of 
amyloid and tau in AD.
Endophenotype networks (i.e. amyloid or tau network) are generated using endophenotype-

specific genetic or genomic data. Drug repurposing opportunities are revealed via integration 

of endophenotype network and drug-target network in human protein-protein interactome.
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Figure 5. Six illustrated endophenotype hypotheses for Alzheimer’s disease.
Six endophenotype hypotheses including amyloidosis (A), tauopathy (B), 

neuroinflammation (C), mitochondrial dysfunction (D), vascular dysfunction (E), and 

lysosomal dysfunction (F). TNFα: tumor necrosis factor alpha; iNOS: inducible nitric oxide 

synthase; IL-6: Interleukin 6; IL-1b: Interleukin 1 beta; APP: amyloid precursor protein.
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Figure 6. Proof-of-concept of disease module for Alzheimer’s disease (AD).
This AD module highlights several network features under the human protein-protein 

interactome: 1) both amyloidosis and tauopathy are the key components of AD module; 2) 

there is a significant gene overlap (12 overlapping genes, P = 1.82 × 10−27, Fisher’s exact 

test) between the two endophenotypes (amyloidosis and tauopathy). The AD module 

includes 227 protein-protein interactions (PPIs) (edges or links) connecting 102 unique 

proteins (including 31 amyloid genes, 11 tau genes, 12 amyloid & tau gene, and 48 other 

genes). AD module is generated based on 144 AD seed genes collected from the literatures.
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Figure 7. An endophenotype network-based drug repurposing infrastructure for AD.
The entire infrastructure is consisted: (A) develop AD endophenotype-based disease module 

from multi-omics data; (B) experimental or clinical validation of disease modules; (C) in 
silico prediction of highly repurposable drugs via network proximity analysis; (D) in vitro/in 
vivo preclinical validation, and population-based validation of in silico drug repurposing.
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Figure 8. Two case studies illustrate proof-of-concept of network-based drug combinations for 
anti-Alzheimer therapy.
(A) The possible exposure mode of disease module to the pairwise drug combinations. An 

effective drug combination will be captured by the “Complementary Exposure” pattern: the 

targets of the drugs both hit disease module, but target separate neighborhoods in the human 

interactome network249. ZCA and ZCB denote the network proximity (Z-score) between 

targets (Drugs A and B) and disease module. SAB denotes separation score of targets 

between Drug A and Drug B. (B) Network proximity analysis illustrates potential drug 

combination (carvedilol plus riluzole) for AD. (C) Network proximity analysis illustrates a 

potential drug combination (acamprosate plus baclofen) for AD. Disease module is 

generated based on 54 genes related to Amyloid hypothesis of Alzheimer’s disease collected 

from the literatures.
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Figure 9. An individualized network-based approach for personalized medicine in Alzheimer’s 
disease (AD).
Individualized disease network modules built from multi-omics data of individual patients 

under the human interatcome network model could improve the success rate of AD drug 

discovery, guide therapeutic evaluation during clinical trials, and optimize new treatment for 

patients with AD and those at risk for AD dementia.
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Table 1.

Summary of FDA-approved drugs that have been or being repurposed for treatment of Alzheimer’s disease.

Drug Class Treatment Drug Phase and Clinicaltrials.gov 
Identifier

Cardiovascular disorder

Cerebrovascular circulatory 
disorders

Dihydroergocristine 
(DB13345)258 Investigational

Hypertension Valsartan (DB00177)96 Investigational

Hypertension Isradipine (DB00270)101 Investigational

Hypertension Telmisartan (DB00966)259 Phase I (NCT02471833)

Hypertension Perindopril (DB00790)260 Phase II (NCT02085265)

Hypertension Losartan (DB00678)261 Phase III (NCT02913664)

Hypertension Carvedilol (DB01136)99 Phase IV (NCT01354444)

Hypertension Nilvadipine (DB06712)262 Phase IV (NCT02017340)

Hypertension Nimodipine (DB00393)263 Phase IV (NCT00814658)

Metabolic disorder

Diabetes Mellitus Liraglutide (DB06655)46 Phase II (NCT01843075)

Diabetes Mellitus Metformin (DB00331)264 Phase II (NCT00620191)

Diabetes Mellitus Pioglitazone (DB01132)265 Phase II (NCT00982202)

Diabetes Mellitus Benfotiamine (DB11748)266 Phase II (NCT02292238)

Hypercholesterolemia Pitavastatin (DB08860)48 Phase II (NCT00548145)

Hypercholesterolemia Atorvastatin (DB01076)48 Phase II (NCT02913664)

Hypercholesterolemia Simvastatin (DB00641)267 Phase II (NCT01439555)

Nervous systems or mental 
disorders

Erectile dysfunction Sildenafil (DB00203)102 Investigational

Erectile dysfunction Tadalaril (DB00820)268 Phase II (NCT02450253)

Aamyotrophic lateral sclerosis Riluzole (DB00740)269 Phase II (NCT01703117)

Depressive disorder Paroxetine (DB00715)270 Investigational

Parkinson Rasagiline (DB01367)271 Phase II (NCT02359552)

Schizophrenia Clozapine (DB00363)225 Investigational

Epilepsy Levetiracetam (DB01202)272 Phase II (NCT03489044)

Urea cycle disorders Benzoic Acid (DB03793)273 Phase II (NCT01600469)

Others

Cutaneous T cell lymphoma Bexarotene (DB00307)274 Phase II (NCT01782742)

Acute promyelocytic leukaemia Tamibarotene (DB04942)275 Phase II (NCT01120002)

Infections Minocycline (DB01017)50 Phase II (NCT01463384)

Malaria Methylene blue (DB09241)276 Phase II (NCT02380573)

Mast cell tumors in animals Masitinib (DB11526)277 Phase III (NCT01872598)

Psoriasis Acitretin (DB00459)278 Phase II (NCT01078168)

Severe acne Isotretinoin (DB00982)279 Phase II (NCT01560585)
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Table 2.

Summary of bioinformatics resources for development of endophenotype-based models in Alzheimer’s 

disease.

Names Description Website

Genomics resources for Alzheimer’s disease

NIAGADS124 

GenomicsDB
Providing publicly available NIAGADS summary genome-wide 
association study (GWAS) statistics datasets for AD and related 
neuropathologies.

https://www.niagads.org/genomics/

ADGC GWAS studies to identify genetic variants associated with risk for 
LOAD

http://www.adgenetics.org/

AlzGene125 A collection of published AD GWAS studies, with random-effects 
meta-analyses for polymorphisms with genotype data.

http://www.alzgene.org/

ADSP4 Whole exome sequence (WES) and whole genome sequence (WGS) 
data covering over 62,100 individuals

https://www.niagads.org/adsp/

AMP-AD126 Genotype, WGS, WES, DNA and methylation assay covering over 
15,000 individuals.

https://www.synapse.org/#!
Synapse:syn2580853/wiki/409840

AlzData133 High throughput omics data collection of AD, including expression 
profiles/differential expression results of individual studies.

www.alzdata.org

GTEx127 An atlas of the tissue-specific gene expression and regulation 
generated from 11,688 samples from 714 donors across 53 tissues.

http://www.gtexportal.org/http://
thebiogrid.org

ENCODE128 1,678,800 sncRNA loci from 802 data sets covering 185 tissues or 
cell types.

https://www.encodeproject.org

Roadmap 
Epigenomics129

2,804 genome-wide datasets, including 1,821 histone modification 
datasets, 360 DNase datasets, 277 DNA methylation datasets, and 
166 RNA-Seq datasets

http://www.roadmapepigenomics.org

FANTOM5130 A comprehensive map of regulatory elements in the human genome. http://fantom.gsc.riken.jp/5/

DASHR131 1,678,800 sncRNA loci from 802 data sets covering 185 tissues or 
cell types.

http://dashr2.lisanwanglab.org/

Transcriptomics

AMP-AD126 Microarray and RNA-sequencing data from individuals. https://www.synapse.org/#!
Synapse:syn2580853/wiki/409840

ADGC Microarray and RNA-sequencing data from individuals. http://www.adgenetics.org/

MOUSEAC134 Providing RNASeq and microarray differential expression gene in 
four lines of “amyloid” transgenic mice (mutant human APP, 
PSEN1, or APP/PSEN1) and “TAU” transgenic mice (mutant human 
MAPT gene)

http://www.mouseac.org

Tsai et al135 Single-cell transcriptomics analysis cross six major brain cell-types 
from prefrontal cortex of 48 individuals with varying degrees of AD 
pathology

Polo et al136 Single-cell transcriptomic analysis of entorhinal cortex samples from 
control and Alzheimer’s disease brains (n = 6 per group) across six 
cell types

http://adsn.ddnetbio.com

Radomics (imaging data)

ADNI5 Providing MRI and PET image data covering 483 elderly controls, 
1,001 MCI and 437 AD patients.

http://adni.loni.usc.edu/

Pharmacogenomics resources

DrugBank142 A comprehensive database with the detailed drug and target 
information.

https://www.drugbank.ca/

DrugCentral143 A drug compendium containing drug information approved by FDA 
and other regulatory agencies.

http://drugcentral.org

PDSP155 A standardized database for quantitative interaction of drugs with 
human receptors

http://pdspdb.unc.edu/
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Names Description Website

DGIdb144 A database containing drug-gene interactions and the druggable 
genome

http://www.dgidb.org/

TTD145 Information on the therapeutic targets. http://bidd.nus.edu.sg/group/ttd

DSigDB146 A resource that connects 17 389 unique compounds (1202 FDA-
approved drugs) and their target genes.

http://tanlab.ucdenver.edu/DSigDB/
DSigDBv1.0/

CMap (v 2.0)147 Gene-expression signatures to connect small molecules, genes, and 
disease

https://www.broadinstitute.org/cmap/

LINCs148 Library of integrated network-based cellular signatures http://www.maayanlab.net/LINCS/LCB/

DRUG-seq149 A high-throughput platform for drug discovery, captures 
transcriptional changes profiling 433 compounds across 8 doses.

NA

open TG-GATEs150 A large-scale toxicogenomics database toxico.nibio.go.jp/english/index.html

Drug Gene Budger 
(DGB)151

Ranking drugs to modulate a specific gene based on transcriptomic 
signatures

http://amp.pharm.mssm.edu/DGB/

Mantra 2.0152 A collaborative resource for drug mode of action and repurposing 
using transcriptional profiles

http://mantra.tigem.it/

NFFinder153 Identify connections between drugs, diseases and phenotype based 
on transcriptomic data.

http://nffinder.cnb.csic.es/

Interactomics: human protein-protein interactome

BioGRID157 An interaction repository containing 1,658,808 protein and genetic 
interactions

http://thebiogrid.org

HPRD158 HPRD Release 9 contains 41,327 human PPIs http://www.hprd.org

Interactome3D159 A database for the structural annotation and modeling of PPIs http://interactome3d.irbbarcelona.org

STRING160 Functional protein association networks database (>2000 million 
PPIs)

http://string-db.org

MINT161 Experimentally verified interaction database (126,712 PPIs) mined 
from refereed journals

http://mint.bio.uniroma2.it/mint

IntAct162 A molecular interaction database containing over 870,000 PPIs from 
literature curation.

https://www.ebi.ac.uk/intact/
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