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Seasonal synchronization 
of foodborne outbreaks 
in the United States, 1996–2017
Ryan B. Simpson, Bingjie Zhou & Elena N. Naumova*

Modern food systems represent complex dynamic networks vulnerable to foodborne infectious 
outbreaks difficult to track and control. Seasonal co-occurrences (alignment of seasonal peaks) and 
synchronization (similarity of seasonal patterns) of infections are noted, yet rarely explored due to 
their complexity and methodological limitations. We proposed a systematic approach to evaluate 
the co-occurrence of seasonal peaks using a combination of L-moments, seasonality characteristics 
such as the timing (phase) and intensity (amplitude) of peaks, and three metrics of serial, phase-
phase, and phase-amplitude synchronization. We used public records on counts of nine foodborne 
infections abstracted from CDC’s FoodNet Fast online platform for the US and ten representative 
states from 1996 to 2017 (264 months). Based on annualized and trend-adjusted Negative Binomial 
Harmonic Regression (NBHR) models augmented with the δ-method, we determined that seasonal 
peaks of Campylobacter, Salmonella, and Shiga toxin-producing Escherichia Coli (STEC) were tightly 
clustered in late-July at the national and state levels. Phase-phase synchronization was observed 
between Cryptosporidium and Shigella, Listeria, and Salmonella (ρ = 0.51, 0.51, 0.46; p < 0.04). Later 
peak timing of STEC was associated with greater amplitude nationally (ρ = 0.50, p = 0.02) indicating 
phase-amplitude synchronization. Understanding of disease seasonal synchronization is essential 
for developing reliable outbreak forecasts and informing stakeholders on mitigation and preventive 
measures.

Globalization of the food supply adds to the challenge of tracking sources of food contamination. According 
to the Centers for Disease Control and Prevention (CDC), 1 in 6 Americans (or 48 million) become sick from 
a foodborne infection annually with 3000 deaths1. These illnesses often span multiple states, cause extensive 
revenue losses for food distributors, and result in millions of pounds of recalled foods2–7. The US Foodborne 
Disease Active Surveillance Network (FoodNet), a collaboration among the CDC, state health departments, 
U.S. Department of Agriculture’s Food Safety and Inspection Service (USDA–FSIS), and the Food and Drug 
Administration (FDA), monitors the nine most prominent foodborne and waterborne illnesses accounting for 
over 90% of the 9.4 million cases occurring annually8. Established in 1996, this surveillance system maintains 
records for Campylobacter, Listeria, Salmonella, Shiga toxin-producing E. coli (STEC), Shigella, Vibrio, and Yers-
inia enterocolitica. Cryptosporidium and Cyclospora were added in 1997; and in 2000, STEC non-O157 was added 
to the list of pathogens commonly transmitted through food8.

In the United States, seasonal increases in cases for Campylobacter, STEC, Listeria, and Salmonella dur-
ing summer months have been demonstrated using FoodNet records9–11. The consistency of foodborne infec-
tion seasonality with co-occurring seasonal peaks has inspired the creation of “infection calendars”12–16. Better 
understanding of infection seasonality allows for the identification of environmental and manmade drivers 
of seasonal infection to improve control measures15,17–19. Standardized methods for characterizing seasonality 
features are needed for effective tracking of how seasonal profiles change over time and across large geographic 
zones20–22. These methods can demonstrate if and how nation-wide policy implementation might delay the onset 
or dampen the intensity of seasonal outbreaks12. Furthermore, comparing seasonality features among infections 
with a common route of transmission may show whether infections with similar seasonal characteristics (peak 
timing, amplitude, duration) might proxy for one another13,15,16 to facilitate the development of new tools for 
disease forecasting.

The synchronization of seasonal peaks across diseases in the same location or across locations for the same 
disease is a characteristic of a spatiotemporal pattern of infections with a common route of transmission. The 
seasonal peaks are merely temporal cumulative clustering of local foodborne outbreaks. In complex system sci-
ences, synchronization is defined as a system’s property in which the dynamics of individual elements of a system 

OPEN

Tufts University Friedman School of Nutrition Science and Policy, Boston, USA. *email: Elena.Naumova@tufts.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-74435-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17500  | https://doi.org/10.1038/s41598-020-74435-9

www.nature.com/scientificreports/

are correlated in time due to nonlinear interactions between elements. Many research fields provide illustrations 
of synchronization, including biology23, trade and finance24, mathematics25, and social sciences26. We argue that 
the synchronization of diseases could be established due to the spatiotemporal alignment of conditions favoring 
the spread of infections sharing common seasonality features. By extension, infections sharing synchronized 
seasonal peaks may share similar environmental and manmade drivers of infection associated with food con-
tamination during production and distribution stages.

The synchronization across diseases in a population can be detected and measured. Surveillance systems 
offer a platform to present time-referenced reported records as an ongoing stream of time series and to assess 
the properties of these time series, namely the seasonal peak timing and amplitude of seasonal oscillations. The 
time series of diseases in specific geographic locations can be correlated across infections in a single location 
or for a single disease across multiple locations. In our earlier works, we illustrated seasonal synchronization 
between six reported enteric infections in Massachusetts16 using a systematic approach for estimating the peak 
timing and amplitude along with their measures of uncertainty21,27 applied to state surveillance records. We 
also demonstrated a possible relationship between annual peaks and amplitudes: early peaks in influenza are 
likely to pair with higher amplitude22. These models parallel more recent efforts taken by the CDC and FoodNet 
surveillance reporting teams28.

In this study, we further developed techniques for defining, characterizing, and comparing seasonal disease 
outbreaks. We applied the proposed methodology to monthly rates of nine infections reported by FoodNet public 
sites in the United States and ten surveyed states (as shown in Fig. 1) and all available years (Supplementary 
Table S1). First, we demonstrated the use of high order characteristics applied to the distribution of monthly 
rates, specifically L-skewness and L-kurtosis, to identify infections with periodic and non-periodic outbreaks. 
Next, we developed annualized and trend-adjusted Negative Binomial Harmonic Regression (NBHR) models 
to estimate the seasonal characteristics for each infection. We applied the δ-methods to derive peak timing and 
amplitude estimates and their confidence intervals for each infection. We introduced three metrics of outbreak 
synchronization: serial synchronization based on serial cross-correlations between time series, phase-phase syn-
chronization based on correlations between peak timing estimates, and phase-amplitude synchronization based 
on correlations across peak timing and amplitude estimates. These techniques allowed us to characterize seasonal 
infections in a standardized manner, identify possible multi-state outbreaks, and potentially enhance near-time 
ensemble forecasting. The proposed standardization of data review and analysis is essential for developing reliable 

Figure 1.   A map of surveyed FoodNet counties as of 2018 (see “Data and methods” section for detail).
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outbreak forecasts and informing stakeholders on mitigation and prevention measures, and scheduling food 
contamination inspections.

Results
Monthly rates and sporadic outbreaks.  The monthly time series of reported rates for nine foodborne 
infections (seven bacterial and two protozoal) are shown as a multi-panel plot of stacked time series and rotated 
frequency histograms for the US from 1996 to 2017 (Fig. 2). The right panel provides a time series for visual 
inspection of the potential periodic nature of the data. The rotated frequency histogram indicates the right-
skewness of the monthly rate distribution, justifying the use of negative binomial regression models. The general 
summary statistics, including GLM-based average monthly rates and the L-skewness and L-kurtosis coefficients, 
are provided in Table 1. GLM-based monthly rates properly calculate confidence interval estimates and demon-
strate differences in intensity across infections and locations. Coefficients of L-skewness and L-kurtosis identify 
time series distributions with stable seasonal behaviors or sporadic outbreaks typically reflected by low or high 
values, respectively.

Nationally, the monthly rates of infections exhibited marked variability of 100-fold difference from ~ 20 
to ~ 0.2 cases per month per 1,000,000 persons (cpm). Based on the average monthly rates and their variability 
we clustered infections in three distinct groups. Salmonella and Campylobacter infections had the highest aver-
age monthly rates of above 10.0 cpm: 12.68 [11.18, 14.37] and 12.17 [10.74, 13.80] cpm, respectively. Shigella, 
Cryptosporidium, and STEC had average monthly rates under 5.0 cpm: 4.84 [4.24, 5.52], 2.04 [1.76, 2.38], and 
1.71 [1.47, 1.99] cpm, respectively. Yersinia, Vibrio, Listeria, and Cyclospora had the lowest average monthly 
rates under 0.5 cpm.

The reported monthly rates of infections vary substantially across states at the magnitude of two to eightfold. 
For infections with overall high rates the fold increase across states was under 5-folds. For example, Campy-
lobacter shows ~ 4.6-fold change with highest average monthly rates in CA and lowest in TN (26.6 [23.5, 30.1] 
cpm vs 5.70 [4.93, 6.59] cpm). For Shigella there was ~ 4.4-fold change with highest rates in CA and lowest in 
CT (7.55 [6.64, 8.59] vs 1.73 [1.49, 2.02] cpm); Salmonella shows ~ twofold change with rates ranging from 17.8 
[15.7, 20.1] cpm in GA to 8.56 [7.54, 9.73] cpm in OR. For protozoal infections, Cryptosporidium had the high-
est rates in MN (4.29 [3.74, 4.92] cpm), and lowest rates in MD (0.71 [0.58, 0.86] cpm), yielding sixfold change. 
Cyclospora exhibited the fold increase of 7.4.

As expected, the occurrence of sporadic outbreaks of high intensity was most notable at the state level. The 
stability of seasonal outbreaks was well detected by L-skewness and L-kurtosis coefficients: low coefficients were 
found for infections with overall high rates and stable seasonality while high coefficients were found for infec-
tions with low monthly rates and sharp sporadic outbreaks. Nationally for Salmonella, these coefficients were 
0.18 and 0.05, respectively, demonstrating a stable, seasonal pattern. In NM, NY and MN, L-skewness exceeded 
the national estimate by ~ 1.3 times and in CO, NM, and OR L-kurtosis exceeded the national estimate by ~ 3.0 
times, indicating the presence of spikes with increased intensity. For infections with overall low rates, like Yersinia, 
Vibrio, Cryptosporidium, and Cyclospora, the large values of L-skewness and L-kurtosis coefficients indicate a 
frequent occurrence of irregular spikes.

Seasonality analysis.  As shown in Fig. 2 and supported by L-moments in Table 1, most of the infections 
exhibited regular periodic increases in incidence indicative of seasonality. Therefore, we estimated peak tim-
ing and amplitude based on Model 2 and results are shown in Table 2 (see Supplementary Table S3 for details). 
Nationwide, all infections except Yersinia exhibited summer peaks ranging from early-June (6.43-month for 
Cyclospora) to mid-August (8.59-month for Shigella). Four infections: Campylobacter, Vibrio, Salmonella, and 
STEC peaked during mid- to late-July (7.30 [7.08, 7.53]; 7.72 [7.59, 7.84]; 7.79 [7.71, 7.87]; and 7.81 [7.66, 7.96], 
respectively). The peak in Campylobacter was significantly earlier than Vibrio (p = 0.015), Salmonella (p < 0.001), 
and STEC (p = 0.005). Three infections: Cryptosporidium, Listeria, and Shigella peaked during August (8.19 
[7.96, 8.43]; 8.35 [8.05, 8.65]; and 8.59 [8.07, 9.11], respectively). Peak timing for Yersinia was inconclusive; peak 
timing of Cyclospora was highly variable (6.43 [5.86, 7.01]). Nationally, the amplitude of seasonal peaks varies 
from 1.27 [1.12, 1.43] for Yersinia to 5.56 [3.55, 8.72] for Cyclospora. 

We compared peak timing estimates to identify seasonal co-occurrences and determine the potential for 
phase-phase synchronization. At the state level, Salmonella peaked during July for all states except GA (8.24 
[8.12, 8.35]) while Campylobacter had the earliest peak in GA and latest in NM (Table 2). The peak of Campylo-
bacter in GA significantly (p < 0.03) preceded peaks in six states: CA, CO, MN, NM, NY, and OR. Similarly, the 
peak of Campylobacter in CA significantly (p < 0.022) succeeded peaks in seven states: CO, CT, MD, MN, NY, 
OR, and TN. Listeria had far more state-level variability between mid-June in GA to mid-September in MN. 
STEC also had large state-level variability (early-July in GA to mid-August in CA). Cryptosporidium had the 
least variability across states (from MN (7.97 [7.73, 8.22]) to CA (8.64 [6.11, 11.16]), yet its peak timing in CT 
significantly succeeded peaks in MN (p = 0.025) and OR (p = 0.048). Although nationally Yersinia peaked at the 
beginning of January, peaks were spread sporadically across states. Like Yersinia, state-specific seasonal peaks 
for Cyclospora were spread over 2 months.

Across states, Salmonella, Campylobacter, Shigella, and STEC had the least variability of amplitude estimates, 
with about 30–70% difference between the highest and lowest amplitudes (Table 2). The high values of peak 
amplitude for Salmonella in GA and for Campylobacter in NM tended to co-occur with late peak timing. Cyclo-
spora and Vibrio had the largest amplitude variability. The large values of peak amplitude co-occur with high 
values for skewness and kurtosis for Vibrio in NY and for Cyclospora in OR.

To depict the relationship between peak timing and amplitude simultaneously with annual trend and reoccur-
rences of seasonal changes for all infections in the US, we combined the traditional time series as a multi-panel 
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Figure 2.   Multi-panel stacked time series plots of monthly reported rates per 1,000,000 persons with median 
rates (red lines) and predicted trend (blue lines) based on Model 1 and Model 5, respectively, accompanied by 
the left-rotated frequency histograms for nine FoodNet-reported infections in the United States for available 
years in 1996–2017. Time series line colour shade indicates more historic vs. more recent data.
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US CA CO CT GA MD MN NM NY OR TN

Bacteria, > 10.0 cpm

Salmonella

 LCI 11.18 11.67 8.438 10.22 15.70 11.23 9.976 11.79 8.605 7.537 10.54

 Rate 12.68 13.23 9.746 11.59 17.78 12.81 11.31 13.79 9.827 8.562 12.11

 UCI 14.37 14.99 11.26 13.14 20.12 14.61 12.83 16.13 11.22 9.726 13.91

 L-Skw 0.178 0.197 0.213 0.226 0.228 0.205 0.231 0.256 0.241 0.179 0.193

 L-Krt 0.046 0.151 0.163 0.117 0.054 0.097 0.131 0.152 0.144 0.152 0.087

Campylobacter

 LCI 10.74 23.52 10.39 12.66 5.667 6.353 13.57 12.48 10.17 14.20 4.932

 Rate 12.17 26.60 11.99 14.34 6.452 7.270 15.37 14.59 11.60 16.08 5.699

 UCI 13.80 30.07 13.83 16.25 7.345 8.321 17.40 17.06 13.24 18.21 6.586

 L-Skw 0.269 0.175 0.219 0.276 0.264 0.178 0.232 0.181 0.218 0.175 0.147

 L-Krt 0.134 0.192 0.153 0.180 0.178 0.108 0.101 0.090 0.115 0.127 0.105

Bacteria, < 5.0 cpm

Shigella

 LCI 4.235 6.642 2.728 1.489 7.654 2.826 3.470 3.941 1.485 1.799 4.609

 Rate 4.835 7.551 3.193 1.733 8.693 3.266 3.972 4.655 1.741 2.083 5.330

 UCI 5.520 8.586 3.737 2.016 9.874 3.774 4.545 5.500 2.040 2.413 6.164

 L-Skw 0.230 0.314 0.373 0.367 0.302 0.514 0.511 0.297 0.444 0.337 0.384

 L-Krt 0.153 0.186 0.251 0.280 0.195 0.395 0.331 0.209 0.313 0.210 0.167

STEC

 LCI 1.470 1.381 2.086 1.428 0.540 0.674 3.155 1.355 1.455 2.243 1.050

 Rate 1.711 1.610 2.455 1.663 0.654 0.814 3.616 1.641 1.707 2.585 1.256

 UCI 1.992 1.878 2.889 1.938 0.792 0.983 4.144 1.988 2.002 2.980 1.502

 L-Skw 0.242 0.330 0.282 0.323 0.234 0.196 0.277 0.215 0.371 0.299 0.254

 L-Krt 0.098 0.198 0.161 0.225 0.141 0.119 0.099 0.141 0.267 0.155 0.142

Bacteria, < 0.5 cpm

Listeria

 LCI 0.196 0.297 0.154 0.376 0.152 0.217 0.098 0.137 0.257 0.189 0.106

 Rate 0.256 0.374 0.213 0.466 0.204 0.284 0.138 0.198 0.331 0.248 0.153

 UCI 0.334 0.472 0.296 0.577 0.273 0.372 0.196 0.287 0.427 0.325 0.221

 L-Skw 0.206 0.255 0.570 0.299 0.229 0.245 0.458 0.640 0.377 0.282 0.268

 L-Krt 0.160 0.146 0.276 0.135 0.124 0.108 0.132 0.335 0.179 0.108 0.042

Vibrio

 LCI 0.208 0.515 0.134 0.331 0.166 0.389 0.110 0.044 0.123 0.221 0.085

 Rate 0.270 0.625 0.189 0.414 0.221 0.486 0.153 0.078 0.174 0.286 0.126

 UCI 0.351 0.759 0.267 0.518 0.293 0.606 0.213 0.140 0.246 0.369 0.188

L-Skw 0.394 0.510 0.540 0.548 0.265 0.399 0.563 0.694 0.539 0.609 0.417

 L-Krt 0.198 0.247 0.192 0.280 0.124 0.123 0.265 0.349 0.209 0.306 0.110

Yersinia

 LCI 0.305 0.415 0.173 0.314 0.396 0.147 0.327 0.067 0.275 0.337 0.206

 Rate 0.384 0.510 0.237 0.394 0.489 0.200 0.409 0.110 0.352 0.420 0.274

 UCI 0.482 0.628 0.324 0.494 0.604 0.272 0.512 0.181 0.451 0.525 0.366

 L-Skw 0.366 0.342 0.395 0.274 0.529 0.300 0.258 0.685 0.235 0.207 0.278

 L-Krt 0.291 0.195 0.061 0.111 0.407 0.069 0.178 0.352 0.075 0.084 0.170

Protozoa, < 5.0 cpm

Cryptosporidium

 LCI 1.758 1.564 1.076 0.956 1.850 0.580 3.740 3.118 1.825 2.202 0.974

 Rate 2.044 1.824 1.292 1.133 2.164 0.706 4.290 3.697 2.127 2.547 1.168

 UCI 2.376 2.127 1.551 1.342 2.532 0.859 4.920 4.384 2.480 2.947 1.401

 L-Skw 0.334 0.436 0.385 0.353 0.210 0.322 0.345 0.356 0.619 0.280 0.415

 L-Krt 0.236 0.270 0.265 0.225 0.183 0.229 0.210 0.237 0.551 0.100 0.306

Protozoa, < 0.5 cpm

Cyclospora

 LCI 0.065 0.085 0.071 0.241 0.151 0.039 0.037 0.039 0.026 0.013 0.011

 Rate 0.098 0.141 0.133 0.311 0.206 0.068 0.074 0.078 0.055 0.036 0.028

Continued
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calendar plot (Fig. 3). Based on the relationship between peak timing and amplitude, all infections exhibited 
summer peaks in tightly formed clusters except Vibrio and Yersinia. The heat map of monthly rates for Salmonella, 
Campylobacter, Shigella, STEC, and Cryptosporidium exhibited distinct seasonal changes in summertime rates.

Trend analysis.  The results of trend analyses are shown in Fig.  2 and Supplementary Tables  S4–S6. In 
Fig. 2, the medians and the predicted trends along with their confidence intervals were obtained from Model 
1 and Model 5, respectively. The contribution of trend and seasonal components for each infection is shown 
in Supplementary Table S4. On the national level, seasonality explains a substantial fraction of variability for 
six infections: Salmonella, STEC, Vibrio, Campylobacter, Listeria, and Cryptosporidium (64, 43, 43, 29, 20, and 
20%, respectively). The contribution of the trend components was most pronounced in Campylobacter, Yersinia, 
Cyclospora, and Vibrio (48, 29, 25, and 20%, respectively). The contributions of linear, quadratic, and cubic trend 
components are shown in Supplementary Table S5. Overall, an adjustment for linear and non-linear trend com-
ponents resulted in < 3% fluctuations in average peak timing and amplitude estimates with < 10% fluctuations for 
Cyclospora, Yersinia, and Cryptosporidium estimates as shown in Supplementary Table S6. This high stability in 
seasonality estimates irrespective of trend specifications justified the use of Model 1 for calculating annualized 
seasonality characteristics and conducting phase-phase and phase-amplitude synchronization analyses.

It is expected that infections with strong trend and/or seasonality components have high autocorrelation, e.g. 
high dependency on the prior month value, which serves as the base for near-term forecasting. We plotted the 
correlation coefficients across lags of 1–3 months for each infection in each state and all states combined (Fig. 4; 
Supplementary Table S7). Nationwide, six infections: Salmonella, Campylobacter, Shigella, STEC, Cryptosporidium 
and Vibrio had strong autocorrelations at 1-month lag (ρ ≥ 0.70; p < 0.001) and moderate autocorrelations at lag 
of 2 months (ρ ≥ 0.42; p < 0.001). At the state level, GA had the strongest autocorrelation patterns for Salmonella 
and Shigella. CA had the strongest patterns for Campylobacter, MN had the strongest patterns for STEC, and 
OR had the strongest patterns for Cryptosporidium. In general, autocorrelations across states for Listeria and 
Vibrio were low across most lags (ρ < 0.45) and thus, support low seasonality and trend contributions as shown 
in Supplementary Table S4.

Synchronization analysis.  It is expected that infections with similar trend and seasonality patterns have 
high cross-correlations, indicating potential synchronization of the shared temporal behavior. Cross-correlation 
estimates between diseases at − 3 to + 3 months lags are shown in Fig. 5 and Supplementary Table S8. Nation-
ally, monthly rates of Campylobacter were strongly correlated with Salmonella at lags − 1 to + 2 (ρ = 0.59, 0.78, 
0.73, 0.50; p < 0.001). Campylobacter was also moderately correlated at lags − 1 and 0 with STEC (ρ = 0.63, 0.66; 
p < 0.001) and Vibrio (ρ = 0.58, 0.63; p < 0.001), and with Listeria at lags − 2 to 0 (ρ = 0.60, 0.69, 0.63; p < 0.001). 
Salmonella was also strongly correlated from lags − 1 to + 1 with STEC and Vibrio as well as moderately cor-
related with Listeria at lags − 1 and 0. STEC was strongly correlated with Vibrio from lags − 1 to + 1 as well as 
Cryptosporidium from lags − 2 to + 1. Vibrio was similarly moderately correlated with Cryptosporidium from lags 
− 2 to 0. These results reaffirm strong similarities in the seasonal patterns across infections.

Nationwide, phase-phase synchronization was most pronounced between Cryptosporidium and Shigella 
(ρ = 0.51, p = 0.019), Listeria (ρ = 0.51, p = 0.019), and Salmonella (ρ = 0.46, p = 0.036) (Supplementary Table S9). 
Strong positive synchronization between Cryptosporidium and Shigella indicates concordance in their seasonal 
behavior; when one peaks later, the other does also (Supplementary Fig. S1). In contrast, no significant synchro-
nization was found between Salmonella and Campylobacter (ρ = 0.07) (Supplementary Fig. S2), indicating that the 
seasonal processes of Salmonella and Campylobacter peak timing are not associated despite peak co-occurrence 
in July. At the state level, phase-phase synchronization varies and for one pair the correlation could be significant 
and positive for one state and negative for another, like Campylobacter-STEC in CT and GA, indicative of discord-
ant patterns. The strongest correlations were found between Salmonella and STEC in NM (ρ = 0.62, p = 0.018) 
and between Salmonella and Campylobacter in MN (ρ = 0.60, p = 0.003).

Examining phase-amplitude synchronization, we found positive correlations indicating that the magnitude 
of seasonal peaks is likely to increase when an infection peaks later in the year for STEC at the national level 
(ρ = 0.50, p = 0.019; Fig. 6), as well as in GA (ρ = 0.58, p = 0.005) (Supplementary Table S10). We also found posi-
tive correlations for Shigella in CA (ρ = 0.63, p = 0.002), GA (ρ = 0.50, p = 0.019), and MN (ρ = 0.43, p = 0.049) as 
well as for Cryptosporidium in CT (ρ = 0.48, p = 0.029) indicating the phase-amplitude synchronization.

Table 1.   GLM-based monthly average rates per 1,000,000 persons accompanied by 95% confidence intervals, 
L-skewness, and L-kurtosis estimates for the nine FoodNet reported infections for the United States and ten 
surveyed states from 1996 to 2017. Note LCI and UCI are lower and upper boundaries for the 95% confidence 
interval (CI), respectively; L-Skw represents L-skewness while L-Krt represents L-kurtosis estimates.

US CA CO CT GA MD MN NM NY OR TN

 UCI 0.148 0.235 0.249 0.400 0.279 0.119 0.146 0.157 0.116 0.106 0.070

 L-Skw 0.697 0.853 0.853 0.740 0.724 0.803 0.805 0.802 0.873 0.865 0.810

 L-Krt 0.508 0.682 0.680 0.501 0.481 0.587 0.581 0.561 0.715 0.690 0.578
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US CA CO CT GA MD MN NM NY OR TN

Bacteria, > 10.0 cpm

Salmonella

 LCI 7.713 7.339 7.175 7.198 8.124 7.513 7.061 7.536 7.050 6.777 7.700

 PT 7.793 7.558 7.528 7.430 8.236 7.649 7.260 7.845 7.226 7.078 7.841

 UCI 7.874 7.777 7.881 7.663 8.349 7.784 7.458 8.153 7.402 7.379 7.982

 LCI 1.678 1.425 1.317 1.559 2.031 1.712 1.470 1.666 1.710 1.318 1.768

 AMP 1.704 1.470 1.377 1.615 2.079 1.757 1.515 1.730 1.776 1.373 1.818

 UCI 1.731 1.514 1.438 1.672 2.127 1.802 1.560 1.794 1.841 1.428 1.868

Campylobacter

 LCI 7.077 6.887 7.051 6.989 6.669 7.023 7.253 7.571 7.297 6.986 6.983

 PT 7.304 7.528 7.291 7.224 6.973 7.272 7.408 7.809 7.491 7.188 7.196

 UCI 7.530 8.168 7.530 7.459 7.277 7.521 7.563 8.048 7.686 7.390 7.410

 LCI 1.454 1.152 1.523 1.520 1.401 1.551 1.651 1.734 1.579 1.410 1.476

 AMP 1.502 1.211 1.591 1.572 1.463 1.615 1.689 1.794 1.630 1.454 1.525

 UCI 1.550 1.270 1.659 1.624 1.524 1.678 1.726 1.854 1.681 1.498 1.575

Bacteria, < 5.0 cpm

Shigella

 LCI 8.070 7.788 8.450 6.631 7.782 6.550 6.696 8.401 7.308 8.315 7.440

 PT 8.589 8.558 8.834 7.629 8.812 7.611 7.824 8.949 8.657 9.221 9.360

 UCI 9.108 9.328 9.219 8.627 9.842 8.672 8.953 9.498 10.01 10.13 11.28

 LCI 1.236 1.208 1.779 1.141 1.148 1.306 1.156 1.497 1.149 1.219 0.991

 AMP 1.305 1.317 1.931 1.296 1.250 1.510 1.369 1.636 1.355 1.355 1.154

 UCI 1.374 1.426 2.083 1.451 1.351 1.714 1.582 1.775 1.562 1.491 1.318

STEC

 LCI 7.655 7.800 7.074 6.977 6.817 7.626 7.661 7.262 7.604 7.864 6.916

 PT 7.806 8.262 7.429 7.411 7.232 7.942 7.836 7.611 7.995 8.083 7.299

 UCI 7.957 8.724 7.784 7.845 7.647 8.257 8.011 7.960 8.385 8.301 7.683

 LCI 2.233 1.732 1.802 1.758 1.743 1.939 2.613 1.864 2.198 2.406 1.747

 AMP 2.306 1.904 1.968 1.932 1.875 2.066 2.714 2.000 2.396 2.542 1.873

 UCI 2.379 2.076 2.133 2.106 2.008 2.194 2.815 2.136 2.594 2.679 2.000

Bacteria, < 0.5 cpm

Listeria

 LCI 8.048 4.292 8.025 7.794 5.229 7.800 8.736 7.895 8.028 7.755 7.019

 PT 8.351 7.027 8.648 8.196 6.481 8.345 9.383 8.755 8.627 8.317 8.624

 UCI 8.654 9.762 9.272 8.597 7.733 8.889 10.03 9.614 9.226 8.879 10.23

 LCI 1.497 0.937 1.949 1.832 1.092 1.571 1.752 2.034 1.854 1.611 1.052

 AMP 1.572 1.118 2.406 2.018 1.257 1.742 2.012 2.596 2.079 1.793 1.263

 UCI 1.646 1.298 2.863 2.203 1.423 1.913 2.273 3.158 2.305 1.974 1.475

Vibrio

 LCI 7.592 7.707 7.328 7.560 7.257 7.337 7.178 7.388 7.265 7.652 6.977

 PT 7.718 7.914 7.764 7.786 7.667 7.499 7.628 8.648 7.603 7.844 7.459

 UCI 7.844 8.121 8.200 8.011 8.076 7.662 8.078 9.907 7.941 8.036 7.940

 LCI 3.893 5.540 3.182 4.867 2.113 5.644 2.417 1.697 3.611 8.254 2.227

 AMP 4.020 5.817 3.576 5.211 2.269 5.851 2.742 2.258 3.999 8.743 2.508

 UCI 4.148 6.095 3.969 5.554 2.426 6.059 3.066 2.818 4.387 9.232 2.789

Yersinia

 LCI 12.34 8.203 5.989 3.295 12.47 12.62 5.906 6.790 1.615 1.835 12.75

 PT 1.089 12.51 7.755 7.481 12.84 2.612 7.204 8.648 4.233 3.380 1.461

 UCI 1.841 5.814 9.521 11.67 1.222 5.608 8.502 10.51 6.850 4.924 2.173

 LCI 1.144 0.862 1.080 0.905 2.185 0.953 1.109 1.000 0.960 1.033 1.460

 AMP 1.265 1.069 1.337 1.085 2.433 1.144 1.246 1.558 1.135 1.196 1.654

 UCI 1.386 1.277 1.595 1.265 2.681 1.336 1.383 2.117 1.310 1.359 1.847

Protozoa, < 5.0 cpm

Cryptosporidium

 LCI 7.959 6.110 7.801 7.882 8.004 8.012 7.726 7.625 7.997 7.166 8.001

 PT 8.194 8.635 8.256 8.251 8.404 8.531 7.974 8.063 8.318 8.094 8.478

Continued
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Discussion
Our results demonstrated how rich and powerful tools of time series analyses could be applied to explore the 
seasonality and synchronization of foodborne infections between one another and across locations. We urge 
food safety and public health professionals to make efforts to improve and standardize the analysis of reported 
infections to allow for a meaningful comparison and actionable inferences derived from this analysis29. Measures 
of L-skewness and L-kurtosis, indicating the degree of departure from a well-defined bell-shaped distribution 
of cases per selected time unit, could be implemented in routine surveillance system data analysis to quantify 
the overall degree of outbreak intensity and to distinguish between consistent and thus predictable seasonal 
behaviors and potentially sporadic outbreaks of foodborne infection. Standardized approaches to quantify sea-
sonal peak timing and intensity (amplitude) along with their uncertainty measures agnostic to infection type or 
geographic location allow for uniform comparison of seasonal patterns common for all or almost all mandatory 
or voluntary reported infections.

Detection of foodborne infection outbreaks relies on standardized methods for calculating and comparing 
infection rates and seasonality features that should be implemented with the highest possible precision. The out-
dated techniques based on arithmetical means produce meaningless negative values for sporadically occurring 
infections (as shown in Supplementary Table S2) and must be replaced with GLM-calculated estimates based 
on the highly skewed nature of time series rates. The commonly used aggregation of daily or weekly counts 
into monthly values is a substandard solution, because it leads to information loss, coarse resolution, and poor 
understanding of uncertainties needed for proper trend analysis30.

By extending the δ-method for systematically estimating the seasonality characteristics, such as peak timing 
and amplitude, we avoided the traps of using poorly defined seasons, which may vary geographically, climati-
cally, and contextually. When peak timing is calculated as the month with maximal rates using multi-month 
periods31–36, this approach, though computationally straightforward, reduces the precision of estimating seasonal 
characteristics and neglects temporal and geographic variability37–43. Our results show that Campylobacter, Vibrio, 
Salmonella, and STEC peak from mid- to late-July, suggesting co-occurrence based on month of maximal rate 
calculations. By applying the δ-method and formal statistical testing we demonstrated that, while all infections 
peak during July, Campylobacter significantly precedes Vibrio, Salmonella, and STEC. Thus, we are able to identify 
an important feature, missed by the commonly used methods, yet valuable for disease forecasting.

The standardization of analytical tools could substantially improve our understanding of the co-occurrence 
of infections with respect to each other and across locations. High values of L-skewness and L-kurtosis spotted 
an outbreak of Salmonellosis in NY in 1996 with 5-times the amplitude than any other year following44,45. High 
L-moment estimates in GA for Yersinia indicated erratic outbreaks during December and January months and 
likely reflect reported outbreaks in pork chitterlings for Christmas and New Year celebrations46,47. High skew-
ness and kurtosis values for Cryptosporidium and Cyclospora aligned with well documented outbreaks in NY 
and CA46–51. Unfortunately, cases reported by the FoodNet Fast platform are designated to a single state, heavily 
aggregated, and no information was available for multistate outbreaks. FoodNet Fast does not provide granular 
population catchment information within each county and the counties included in FoodNet represent only a 
fraction of the total state. Drawing spatial relationships for a single infection risks over-stating the association 
between states, especially when counties in two states share no geographic border. Improved data collection and 
reporting will enable modeling and forecasting of foodborne infections using complex network analyses to trace 
supply chain distribution patterns52–54.

This study provides evidence for potential outbreak synchronization based on several metrics that utilized 
the complex systems thinking. Serial synchronization examines whether two infections share similar trend and 
seasonality. Phase-phase and phase-amplitude synchronization evaluate shared seasonal processes between two 
infections peak timing or a single infection’s peak timing and amplitude, respectively. Additionally, these metrics 

Table 2.   Average peak timing in months and amplitude and their 95% confidence intervals for monthly rates 
per 1,000,000 persons for nine infections reported by FoodNet in the United States and ten surveyed states 
from 1996 to 2017. Note LCI and UCI are lower and upper boundaries for the 95% confidence interval (CI), 
respectively, for peak timing (PT) and amplitude (AMP) estimates.

US CA CO CT GA MD MN NM NY OR TN

 UCI 8.430 11.16 8.711 8.619 8.804 9.051 8.223 8.501 8.638 9.023 8.956

 LCI 1.724 0.959 1.757 1.935 1.336 1.526 2.013 1.715 2.728 1.206 1.684

 AMP 1.833 1.144 1.991 2.107 1.429 1.698 2.121 1.915 3.166 1.352 1.890

 UCI 1.942 1.330 2.226 2.278 1.521 1.871 2.229 2.115 3.604 1.498 2.097

Protozoa, < 0.5 cpm

Cyclospora

 LCI 5.857 5.402 6.142 6.096 6.239 6.422 6.279 5.381 6.247 3.657 5.889

 PT 6.432 5.957 6.611 6.386 7.432 7.095 6.792 6.057 6.739 7.145 6.537

 UCI 7.007 6.511 7.081 6.676 8.625 7.769 7.306 6.732 7.230 10.63 7.184

 LCI 5.114 4.979 37.78 9.872 1.705 4.057 9.172 6.426 9.850 0.578 8.577

 AMP 5.563 6.151 40.65 10.45 2.187 4.838 10.35 7.870 11.61 1.651 9.516

 UCI 6.012 7.323 43.51 11.12 2.668 5.618 11.54 9.313 13.38 2.723 10.46
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can help provide important information for adapting near-term forecasts to more accurately predict, plan for, 
and prevent seasonal foodborne outbreaks. Surveillance records with more granular temporal resolution and 
expanded geographic catchment areas can help improve the accuracy and precision of synchronization estimates 
for creating foodborne infection calendars, inspection schedules, and tracking multistate outbreaks. The pub-
lic portal automatically compresses data during download, requiring individual year-by-year data extraction. 
Food recall reports show that a single outbreak is attributable to outbreaks in numerous states for these nine 

Figure 3.   Multi-panel calendar plots of monthly rates combined with yearly rates and peak timing (in month) 
and amplitude average estimates for nine infections: Salmonella (Salm), Campylobacter (Camp), Shigella (Shig), 
Shiga Toxin-producing E. coli (Ecol), Listeria (List), Vibrio (Vibr), Yersinia (Yers), Cryptosporidium (Cryp), and 
Cyclospora (Cycl) as reported by FoodNet in the United States from 1996 to 2017. Average peak timing and 
amplitude estimates are shown in the top panel, annual trends in rates are shown in the right-rotated bar-charts, 
and heat maps indicate monthly rates for each infection in the main panel.
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Figure 4.   The autocorrelation coefficients across lags of 1–3 months for nine infections: Salmonella (Salm), 
Campylobacter (Camp), Shigella (Shig), Shiga Toxin-producing E. coli (Ecol), Listeria (List), Vibrio (Vibr), 
Yersinia (Yers), Cryptosporidium (Cryp), and Cyclospora (Cycl) as reported by FoodNet in the United States and 
ten surveyed states. Significant values are shown in red.
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infections44. Failure to consider multistate outbreaks minimizes the utility of assessing cross-state synchroniza-
tion of infection seasonality.

Given annual fiscal losses and food waste reported annually, our proposed synchronization metrics should 
be considered in order to mitigate seasonal co-infections, track multi-state outbreaks, and coordinate food 
inspection scheduling. Further investigation is needed to evaluate how synchronization metrics can identify com-
mon manmade drivers of infection during the packaging, processing, and transporting of food products. With 
thousands hospitalized or dying, millions of pounds of foodstuffs recalled, and billions of dollars lost annually, 
methods of describing and analyzing the seasonality and synchronization of foodborne infections can lead to 
important health benefits and cost savings for food producers, food retailers, and public health agencies alike.

Data and methods
Data sources.  FoodNet reports confirmed cases from 650 randomly sampled clinical laboratories in select 
counties that reach roughly 15% of the US population (Supplementary Table S1) using both culture-dependent 
and culture-independent methods8,55. FoodNet Fast provides a publicly available subset of reports for confirmed 
annual infections, hospitalizations, and deaths as well as the monthly prevalence of confirmed infections. These 
data are available for seven bacterial infections (Campylobacter, Listeria, Salmonella, Shigella, Shiga toxin-pro-
ducing E.coli (STEC), Vibrio, and Yersinia) and two protozoa (Cryptosporidium and Cyclospora) in ten select 
states: California (CA), Colorado (CO), Connecticut (CT), Georgia (GA), Maryland (MD), Minnesota (MN), 
New Mexico (NM), New York (NY), Oregon (OR), and Tennessee (TN) (Supplementary Fig. S1).

For each state, we downloaded all available annual infection profiles from 1996 to 2017. For each year, we 
created a monthly time series by multiplying the annual total of confirmed infections by the percentage of 
confirmed infections for each month of that year. National (US) estimates were generated by summing all ten 
states’ data. To draw comparisons between states, we calculated statewide population estimates by summing all 
mid-year (July 1st) populations of surveyed counties according to the year of their introduction into FoodNet 
(Supplementary Table S1). Annual county-level population estimates are made publicly available in the 1990, 
2000, and 2010 US Census Bureau reports56–58. We calculated monthly rates per 1,000,000 persons by dividing 
monthly counts by population estimates and multiplying the product by 1,000,000. Results are presented as cases 
per 1,000,000 persons and abbreviated as ‘cpm.’

Summary statistics for reported rates, trend, and seasonality analyses.  To perform the synchro-
nization analysis, we generated 99 individual monthly time series of reported rates (9 infections × 11 locations 
(each state and all states combined)). For each monthly time series of reported rates, we estimated summary 
statistics, including average rates and coefficients of L-skewness and L-kurtosis, which are superior on detect-
ing spatiotemporal heterogeneity59. Estimates of L-skewness and L-kurtosis reflect the degree of departure of 
an empirical distribution from a symmetrical bell-shaped curve and the extent of extremes, respectively. Large 
values of L-skewness and L-kurtosis for a distribution of monthly rates are indicative of sporadic spikes, espe-
cially for infections with low overall rates. We used these estimates to identify infections with systematic periodic 
structures and infections with erratic temporal patterns. Infections with systematic periodic structures undergo 
trend, seasonality, and synchronization analyses based on annualized estimates of peak timing and amplitude. 
Infections with erratic temporal patterns were examined for trend and seasonality but only serial synchroniza-
tion estimates were calculated.

To estimate average monthly rates from the compiled time series and adjust for left-skewed distributions, we 
applied a generalized linear model (GLM) with a negative binomial distribution and log-link function (Model 1). 
By exponentiating the model’s intercept, we calculated average monthly rates, exp{β0}, and their 95% confidence 

Figure 5.   Correlation coefficients across seven lags (− 3 to + 3) between pairs of nine infections Salmonella 
(Salm), Campylobacter (Camp), Shigella (Shig), Shiga Toxin-producing E. coli (Ecol), Listeria (List), Vibrio 
(Vibr), Yersinia (Yers), Cryptosporidium (Cryp), and Cyclospora (Cycl) as reported by FoodNet for the US from 
1996 to 2017. Infection pairings are found at the intersection of diagonal rows. Shading intensity indicates the 
strength of correlations ranging from positive (red) to negative (blue) for each lag as a sequence of coloured 
stripes as shown in the inset.
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interval estimates, exp{β0 ± 1.96se}. This unadjusted model avoids biologically implausible, negative rates pro-
duced by the traditional arithmetic calculations (Supplementary Table S2).

Next, we developed four Negative Binomial Harmonic Regression (NBHR) models and applied these models 
for each infection in each state and all 10 states combined (Models 2–5). We explored the effects of linear, quad-
ratic, and cubic trend terms, which were added in a stepwise manner to Model 2 containing solely harmonic 
seasonal oscillators.

(1)Model 1: ln[E(Ytds)] = β0

(2)Model 2: ln[E(Ytds)] = β0 + βs(sin(2πωt))+ βc(cos(2πωt))

Figure 6.   The relationship between annual peak timing and amplitude estimates for Shiga Toxin-producing E. 
coli (STEC) in the US in 1996 to 2017. The multi-panel plot consists of two panels depicting forest plots for peak 
timing (upper panel) and amplitude (left panel) estimates along with their 95% confidence intervals by year, and 
the main panel demonstrating the associations between these two seasonality characteristics. Dashed red lines 
indicate the average peak timing and average amplitude across all years. The colour shade indicates the year of 
reporting and helps to note the decline in amplitude and the overall tendency to early peak timing that explain 
the nature of the observed positive correlation and potential synchronization over time.
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where Ytds—time series of monthly rates of d-infection for t-month in s-state or all states combined; sin(2πωt ) 
and cos(2πωt ) periodic terms define seasonal oscillations with a frequency of ω = 1/M, where M = 12 to represent 
the length of the annual cycle in months; linear, quadratic, and cubic trend terms are defined by the consecutive 
month of the study from 1 to L and corresponding regression coefficients. The length of individual time series, 
L, varied by state according to its introduction into FoodNet: NM was the shortest with 168 months (beginning 
in 2004) and CA, CT, GA, MN, and OR were the longest being 264 months (beginning in 1996) (Supplementary 
Table S1).

We estimated peak timing, amplitude, and confidence intervals using the δ-methods (Supplementary 
Table S3) derived by MacNeill and Naumova27 with further modifications by Alarcon-Falconi, et al.21 for each 
infection in each state and all 10 states combined for the full duration of the study. Confidence intervals for peak 
timing and amplitude estimates are derived under the assumption of seasonal periodicity. As not all infections 
had consistent seasonal patterns, peak timing and confidence intervals can reach implausible values. Implausible 
peak timing estimates (values < 1 or > 13) occur when estimate variance exceeds 6 months for any infection or 
when peak timing estimates align with the beginning or end of the year (e.g. Yersinia). Implausible amplitude 
estimates (> 20) occur for erratic outbreaks or when estimate variance exceeds the average amplitude estimate 
(e.g. Cyclospora). Peak timing estimates are expressed in continuous month values from 1.0 (beginning of Janu-
ary) to 12.9(9) (end of December) according to the Gregorian calendar. Amplitude estimates are the midpoint 
of relative intensity reflecting the ratio between the disease rate at the peak (maximum rate) and the disease rate 
at the midpoint (median rate). Independent sample t-tests were used to determine statistically significant differ-
ences of peak timing estimates between states for the same infection and across infections within the same state.

Model goodness-of-fit was evaluated using the Akaike’s Information Criterion (AIC), Bayesian Information 
Criterion (BIC), and Root Mean Squared Error (RMSE). In addition, we assessed the contribution of each trend 
component by examining regression coefficients for linear, quadratic, and cubic trend terms. Depending on the 
sign, the linear term indicates overall increases (β1 > 0) or decreases (β1 < 0) while the quadratic and cubic terms 
indicate acceleration (β2 > 0) or deceleration (β3 > 0). We calculated the contribution of each term by multiplying 
each coefficient by the trend-associated time unit to recover the corresponding predicted rates. The contribution 
of each trend component (TC) to the overall fit was estimated as follows:

where TCk is the contribution of k-component (k = 1, linear; k = 2, quadratic; and k = 3, cubic).
We explored the variability of seasonality estimates with respect to trend specification. We evaluated percent-

age differences of peak timing and amplitude estimates of Models 3–5 compared to Model 2 as follows:

where ΔP is percent difference of peak timing, Pm, and amplitude, Am, estimates of m-model (m = 3,4,5) as 
compared to Model 2 (m = 2).

Synchronization analyses.  First, we calculated autocorrelations applied to monthly time series for the 
full duration of the study using Spearman correlations at 0-, 1-, 2-, and 3-month lags for each infection to con-
firm the strength of trend and seasonality components. For diseases with marked seasonality and overall trend, 
the strong serial synchronization reflected the similarities in temporal patterns. In some instances, prolonged 
periods of low incidence and occasional spikes could drive strong serial synchronization and thus be biased. For 
infections exhibiting well-marked irregularities, such as Cyclospora and Yersinia, serial synchronization metrics 
were likely to be biased, as evidenced by high values of L-skewness and L-kurtosis coefficients.

We then estimated three metrics of synchronization and compared them across infections within the same 
state and for each infection across states. Serial synchronization captures whether two infections or two loca-
tions share a similar temporal pattern. Phase-phase synchronization derives associations between peak timing 
estimates and identifies co-occurrences of outbreak timing and seasonal processes between infections or loca-
tions. Phase-amplitude synchronization examines seasonal behaviors of disease-state pairs and examines how 
the intensity of a seasonal peak of a foodborne illness varies in relation to its annual peak timing.

In order to conduct phase-phase and phase-amplitude synchronization analyses, we used annualized NBHR 
model (Model 1) estimates of seasonality characteristics: peak timing, amplitude, and their confidence inter-
vals, using equations shown in Supplementary Table S3. Phase-phase and phase-amplitude synchronization 
metrics were calculated using Spearman correlations for 7 infections (excluding Yersinia and Cyclospora) in 
11 locations (10 states and US national estimate) across a maximum of 22 years (varying by state). In total, we 
calculated 77 peak-amplitude pairs spanning a total of 1536 reporting years. Positive correlations for phase-
phase synchronization indicate concordance of peak timing estimates between infections or states, e.g. if one 
infection or state peaks earlier in the calendar year, the other does also. Negative phase-phase synchronization 
correlations indicate that if one infection or state peaks earlier in the year, the other tends to peak later. Positive 
phase-amplitude synchronization indicates the magnitude of incidence increases when an infection peaks later 

(3)Model 3: ln[E(Ytds)] = β0 + βs(sin(2πωt))+ βc(cos(2πωt))+ β1t

(4)Model 4: ln[E(Ytds)] = β0 + βs(sin(2πωt))+ βc(cos(2πωt))+ β1t + β2t
2

(5)Model 5: ln[E(Ytds)] = β0 + βs(sin(2πωt))+ βc(cos(2πωt))+ β1t + β2t
2 + β3t

3

(6)TCk = βkt
k/(|β1t| + |β2t

2| + |β3t
3|) ∗ 100%,

(7)�Pm = (Pm− P1)/(P1) ∗ 100% and �Am = (Am− A1)/(A1) ∗ 100%,
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in the year. Negative phase-amplitude synchronization indicates the magnitude of incidence decreases when an 
infection peaks later in the year. Determination of the association significance is based on the standard test for 
Spearman correlation at α < 0.05.

All statistical analyses were conducted using STATA (SE 15.1) software. All visualizations were designed and 
created using R Version 3.6.2 and Tableau Desktop 2019.1 software.
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