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• Existing greenness visibility exposure
assessment approaches are inadequate.

• We applied viewshed analysis at 5m in-
tervals for >86 million observer loca-
tions.

• The output map provides greenness vis-
ibility estimations at any locations in the
AOIs.

• Top-down and eye-level greenness visi-
bility are distinct greenness exposure
metrics.

• Street-only measures are an incomplete
representation of neighbourhood
visibility.
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The visibility of natural greenness is associated with several health benefits along multiple pathways, including
stress recovery and attention restoration mechanisms. However, existing methodologies are inadequate for cap-
turing eye-level greenness visibility exposure at high spatial resolutions for observers located on the ground. As a
response, we developed an innovativemethodological approach tomodel andmap eye-level greenness visibility
exposure for 5 m interval locations within a large study area. We used multi-source spatial data and applied
viewshed analysis in conjunctionwith a distance decaymodel to compute a novel Viewshed Greenness Visibility
Index (VGVI) at more than 86 million observer locations. We compared our eye-level visibility exposure map
with traditional top-down greenness exposure metrics such as Normalised Differential Vegetation Index
(NDVI) and a Street view based Green View Index (SGVI). Furthermore, we compared greenness visibility at
street-only locations with total neighbourhood greenness visibility. We found strong to moderate correlations
(r = 0.65–0.42, p < 0.05) between greenness visibility and mean NDVI, with a decreasing trend in correlation
strength at increasing buffer distances from observer locations. Our findings suggest that top-down and eye-
level measurements of greenness are two distinct metrics for assessing greenness exposure. Additionally, VGVI
showed a strong correlation (r = 0.481, p < 0.01) with SGVI. Although the new VGVI has good agreement
with existing street view based measures, we found that street-only greenness visibility values are not wholly
representative of total neighbourhood visibility due to the under-representation of visible greenness in locations
such as backyards and community parks. Our new methodology overcomes such underestimations, is easily
transferable, and offers a computationally efficient approach to assessing eye-level greenness exposure.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

The visibility of the natural environment, more specifically exposure
to visible greenness, is associated with psychological mechanisms of
positive health outcomes, as elucidated by attention restoration theory
(Kaplan and Kaplan, 1989; Kaplan, 1995; Kaplan, 2001) and stress re-
covery theory (Ulrich, 1984; Ulrich et al., 1991; Brown et al., 2013). Nev-
ertheless, analyses of the health benefits of the natural environment
tend to rely on measures of blue and greenspace availability and/or ac-
cessibility. This reliance has emerged partly due to the relative ease of
developing associated exposure metrics based on satellite images
(e.g., NormalisedDifferential Vegetation Index -NDVI) or other spatially
explicit data (e.g., land cover) (Zhan et al., 2020; Huang et al., 2020;
Browning and Lee, 2017). However, these availability and accessibility
metrics usually do not fully capture all of the pathways through which
humans experience nature (Labib et al., 2020a; Lindley et al., 2019;
Díaz et al., 2018), in part due to such metrics being derived from a
top-down ‘bird's eye’ view in 2D space (x, y) (Labib et al., 2020a;
Wang et al., 2020). By contrast, greenness visibility is calculated consid-
ering the vertical dimension (Larkin and Hystad, 2019; Jiang et al.,
2017), permitting a more representative measure of the human-
centric observation of greenness while standing at ground level (‘eye-
level’).

Sight and colour shape our perception of the landscape (Bell, 2012;
Russell et al., 2013). While the top-down, bird's eye view, approach to
measuring greenspace availability provides an indication of the amount
of greenness in a given area (James et al., 2015; Markevych et al., 2017),
individual experiences of greenness and awareness of nature also rely
on the extent to which green elements of the landscape are visible
(Bratman et al., 2019; Silva et al., 2018; Frumkin et al., 2017). Thus, ac-
curately measuring greenness visibility exposure is crucial in under-
standing how the experience of nature supports the health benefits
arising from the natural environment in human surroundings (Li and
Ghosh, 2018; Nutsford et al., 2016; Brown et al., 2013). Despite the im-
portance of visibility, it is the least studied exposure metric in current
studies exploring the associations between the natural environment
and health (Labib et al., 2020a; Dadvand and Nieuwenhuijsen, 2019).
It may be speculated that this is due to limitations in existingmethodol-
ogies for measuring and mapping greenness visibility over large study
areas. Omission of explicit greenness visibility metrics may be particu-
larly important in urban environments where there is limited green in-
frastructure supporting nature's contributions to people (Tzoulas et al.,
2007; Díaz et al., 2018; Helbich et al., 2019).

Environmental psychologists use photographs or questionnaires
to understand how the visibility of natural features influence atten-
tion restoration or stress recovery (Kaplan and Kaplan, 1989;
Brown et al., 2013). However, photographs are vulnerable to distor-
tion and provide limited understanding of the visibility of nature in
spatial contexts (Anguelov et al., 2010; Furnari et al., 2016). Ques-
tionnaires are also vulnerable to subjective responses (Van Herzele
and de Vries, 2012; Lottrup et al., 2013; Hazer et al., 2018). These is-
sues, as well as time and resource constraints, frequently prohibit the
use of photographs and questionnaires in large cohort-based ecolog-
ical studies.

More recently, several studies have used street view (SV) images
(e.g., Google Street View, Baidu Street View) to objectively measure
the visibility of nature, particularly in urban areas (Liu et al., 2020;
Helbich et al., 2019). Coupled with artificial intelligence methods
(e.g., deep learning), SV-based visibility measurements are becoming
increasingly common in the literature (Helbich et al., 2019; Wang
et al., 2019, 2020; Ye et al., 2019). However, such approaches have sev-
eral limitations, chiefly that such SV images are typically only available
for streetscapes where there is vehicular access. Thus, relying on SV im-
ages results in many locations not being accounted for; including back
gardens (Rzotkiewicz et al., 2018; Lu, 2019), the interiors of community
parks and public rights of way.
2

Existing studies using SV images for greenness visibility analysis typ-
ically use sample SV images taken along roads within a given
neighbourhood and average the sample results in order to determine
a visibility value (Lu et al., 2018; Helbich et al., 2019; Lu et al., 2019).
Such studies often define neighbourhoods using buffers at various dis-
tances (e.g., 400, 800 m) from a fixed location. Alternatively, studies
have used administrative boundaries as proxies for neighbourhood def-
inition (Kumakoshi et al., 2020; Larkin and Hystad, 2019). Such arbi-
trary boundaries subject SV image based exposure assessment to the
modifiable areal unit problem (MAUP; Openshaw, 1981) (Lu, 2019).
TheMAUP can result in under- or over-estimation of exposuremeasure-
ment variance (Labib et al., 2020b).

Recent studies have applied machine/deep learning models based
on convolutional neural networks (CNN) to estimate greenness in SV
images (Helbich et al., 2019; Stubbings et al., 2019). A few studies
have also used Photoshop-based colour differencing and object-based
segmentation methods to extract greenness data (Ye et al., 2020; Li
et al., 2015). The accuracy of CNN is often dependent on the quality of
the annotated image sets used for training, the learning algorithm and
the quality of object segmentation (Zhou et al., 2019; Lecun et al.,
2015). Studies using CNN have reported 80–85% accuracy in greenness
data extraction (Wang et al., 2020; Stubbings et al., 2019; Helbich et al.,
2019). However, there is uncertainty in the estimation of greenness
using SV images, which are often collected using wide-angle and fish-
eye lenses (see Anguelov et al., 2010), and stitched together using cylin-
drical or spherical projections. Optical distortion of the output images
results in the pixel-size of a given feature being potentially over- or
under-represented depending on its position relative to the lens
(Hughes et al., 2008; Furnari et al., 2016). Although such optical distor-
tions can be corrected using image projection transformation, their
presence in optical data is likely to cause poor SV image detection of ob-
jects. Finally, many global cities have incomplete SV image databases
and images are often also subject to temporal mismatch issues (Fry
et al., 2020; Rzotkiewicz et al., 2018).

Street view-based systemsused to capture greenness visibility expo-
sure have become common. However, GIS-based viewshed analysis can
also provide objective estimations of greenness visibility. Viewshed
analysis is not limited to street-views, having the advantage of eye-
level visibility measurement capability at any location in a landscape
(Martínez-Graña et al., 2017; Domingo-Santos et al., 2011). Viewshed-
based approaches have long been established as the most popular
method in the field of Geographic Information Science (GIS) for
analysing landscape visibility (Sahraoui et al., 2016; Fisher, 1996). How-
ever, a lack of availability of high-resolution spatial data and the compu-
tationally intensive nature of viewshed calculations at scale has limited
their application (Carver andWashtell, 2012; Qiang et al., 2019). None-
theless, two recent studies have applied such methods to estimating
greenness visibility. Nutsford et al. (2015, 2016) used a viewshed-
based index to measure visibility at neighbourhood centroids for view-
ing distances between 300 and 6000 m and Tabrizian et al. (2020) esti-
mated the viewshed for vegetation at a viewing distance of 1500 m.

Recent studies have adopted viewshed-based visibility analysis to cal-
culate viewsheds ranging fromone to several thousandobserver locations
within given regions (Nutsford et al., 2016; Tabrizian et al., 2020;
Chamberlain and Meitner, 2013). However, there are a number of chal-
lenges that these studies have revealed in terms of existing viewshed-
based methods for modelling greenspace exposure. For instance: the
use of low spatial resolution elevation data provides insufficient granular-
ity for modelling greenness visibility (Qiang et al., 2019; Marsh and
Schreiber, 2015); and visibility is assumed to be uniform over fixed view-
ing distances (Tabrizian et al., 2020; Kuo et al., 2018), without consider-
ation of the distance-decay effect. Such discreet distance measurements
undermine the visual significance, magnitude, and distance decay effects
on visibility (Bishop, 2002), which account for the greater visual signifi-
cance of closer objects than those atmore distant locations in the viewing
field (Palmer, 2019; Kumsap et al., 2005).
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To address themethodological limitations noted above, we have ex-
tended the classic viewshed approach, such that it may be applied to
modelling greenness visibility at high spatial resolutions for large spatial
extents (e.g., city-region) while accounting for the distance decay effect
of visibility. We used multi-source high-resolution land use and land
cover (LULC) data, as well as a digital surface model (DSM) and digital
terrain model (DTM) processed from Light Detection and Ranging
(LiDAR) imagery to create a very fine spatial resolution Viewshed
Greenness Visibility Index (VGVI). We mapped VGVI at a 5 m grid cell
resolution covering all locations in the case study area (approximately
86million observer locations), including thosewhere SV images are un-
available (e.g., back gardens, public rights of way, and pocket parks). To
our knowledge, such detailed greenness visibility modelling and map-
ping methods have not been applied in previous greenness exposure
studies.

We evaluated the results from our methodology in two ways. We
first assess how well our results correspond with a specific urban
neighbourhood setting (i.e. howwell they represent visibility). We sec-
ondly consider what additional information is generated from the re-
sults of our method for estimating visibility exposure compared to
commonly-used alternative methods (i.e., what the significance of the
resultsmight be forwider applications, such as in studies of the links be-
tween environment and health). Representativeness is assessed
through ground-truthing a case study neighbourhood using a virtual
environment. Significance is assessed by comparing results to: a planar
surface representation of greenness (via NDVI); and visibility estimates
generated from street view images.

2. Methods and materials

2.1. Case study area

We applied the proposed methodological process to the case of the
Greater Manchester metropolitan county, situated in the North West
of England. This is a post-industrial city-region comprising an area of
about 1276 km2 and a population of 2.8 million people (Dennis et al.,
2018, 2020). The city-region has a diverse landscape pattern, including
flat plain areas that give way to hills that rise to 500 m in the north and
east (Dennis et al., 2018). We selected this case study area both for its
diverse landscape pattern and the presence of diverse greenspace ele-
ments such as urban parks, farmland, and river corridors. Moreover,
the local authority indicates that there is an ongoing need to enhance
green infrastructure and biodiversity in support of healthy living
(Labib, 2019; GMCA, 2019).

2.2. Data

Our approach was a fusion of both vertical (e.g., elevation surface)
and planar datasets to provide a robust estimation of greenness visibil-
ity from a human-centric perspective.

2.2.1. Terrain and surface representation
We used 2 m LiDAR-based DSM and DTM data (Defra Data Services

Platform, 2020; Environment Agency, 2019a, 2019b), which we
resampled to 5m in order to increase processing speedwhile still main-
taining a high spatial resolution (Supplementary Fig. S1c, d). We se-
lected a LiDAR-based DSM for its proven ability to represent above-
ground elements and estimate visibility with high accuracy (Qiang
et al., 2019; Van Berkel et al., 2018; Chen et al., 2015). While the DSM
provided an accurate representation of ground surface objects, we
used the DTM to take account of the ground terrain of the study area
since the ground topography influences the viewing angle and aspect
of the observer (Brughmans et al., 2018; Nutsford et al., 2015). For the
purposes of the present study, we assumed that the observer was al-
ways at ground level when visibility is estimated, with an assumed
eye-level observer height of 1.7 m.
3

2.2.2. Land use and land cover
The greenness data used in this study was obtained from Dennis

et al.'s (2018) LULC dataset (Supplementary Fig. S1b), which was pro-
duced by synthesising multiple greenspace data sets (e.g., Sentinel-2
satellite images, Ordnance Survey green space layer data, tree canopy
data). The dataset provides five categories of land cover and within
these classifications 35 detailed land use and land cover sub-
classifications for the Greater Manchester area. The LULC data demon-
strated a satisfactory 85% accuracy level. The LULC data was captured
in summer, reflecting summer-time levels of greenness. The present
study focused on overall greenness rather than on individual
greenspace typologies. Therefore, LULC categories were reclassified
into a binary surface of ‘green’ and ‘not green’ and resampled to 5m res-
olution to keep consistency with the DSM data.

2.2.3. Other data
In order to compare and evaluate our visibility modelling outputs,

we considered four additional datasets. The first two were a building
dataset and a tree canopy dataset with elevation data, obtained from
OS MasterMap Building Height Attribute (OS MasterMap, 2019) and a
tree database (City of Trees, 2011) respectively. These two layers were
used to visually compare our visibility outputs in a virtual environment.
The third dataset was anNDVI layer processed from Sentinel-2A images
(10 m) collected on 4th July 2018, with cloud cover <2%. Atmospheric
correction of the images was undertaken prior to analysis. We used
Sentinel-2 images because they yield higher overall accuracy for detect-
ing vegetation in urban settings compared to relatively low-resolution
imagery such as Landsat-8 (Labib and Harris, 2018). Fourth and finally,
we also collected Google street view images at sample locations (sam-
pling details in Section 2.5) to compare the output of our visibility
model with the street view-based green view index (SGVI).
2.3. Greenness visibility modelling

In this study, we implemented a distance-weighted viewshed algo-
rithm to estimate the visibility of greenness at 5 m intervals (i.e., the
cell size of the DTM raster) for the entire study area. Fig. 1 illustrates
the overall process. The inputs are DSM, DTM and greenness layers.
The modelling process implements multiple line-of-sight (LOS) analy-
ses with a distance decay weighting to identify the visible and
obstructed (non-visible) greenness for a given viewing distance in all
directions. It then produces a greenness visibilitymap layer with visibil-
ity values ranging between 0 and 1. LOS is the line segment between the
point of observation and target points allowing determination of the
visibility of target points (Feng et al., 2015; Qiang et al., 2019).

2.3.1. Distance decay model
Generally, the visual prominence of an object in space reduces with

increasing distance from the observer (Kumsap et al., 2005; Chen et al.,
2015; Taylor and Openshaw, 1975). To take account of this phenome-
non and realisticallymeasure the reduction in visual significance of veg-
etation with increasing distance, we applied a distance decay model to
the viewshed analysis. Kumsap et al. (2005) and Bishop (2002) argued
that visibility decay could be expressed mathematically as an exponen-
tial or power function. Based on several previous studies (Anderson and
Rex, 2019; Palmer, 2019; Bishop, 2002), we developed a function to ex-
press thedistance decayweights. In the decaymodelling,we considered
several viewing distance bands suggested by Palmer (2019), including;
immediate (≤20m), foreground (400m), nearmiddleground (2400m),
far middleground (4830 m), near background (8050 m) and far back-
ground (16,090 m). For each distance band, we selected a weight
value based on values derived from the studies of Anderson and Rex
(2019) and Bishop (2002). Both studies empirically estimated the
decay weight based on both experimentation and expert opinions.
Using these distance bands and corresponding weights, we plotted the



Fig. 1. Conceptual design of greenness visibility modelling. The input layers show the data used in modelling, and the modelling step indicates the process, the output indicates the
outcome of the modelling. LOS: line-of-sight, d- distance decay weight. DSM outline in red, DTM outline in purple. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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weights with distance bands and fitted an exponential model
(R2 > 0.99) in order to define the relationship (Fig. 2).

The decay function is an expression of how humans actually observe
different objects in space and attempts to provide realistic weighting
values, using empirical studies to define the reduction in visual promi-
nence of featureswith increasing distance from the observer. This is im-
portant because objects closer to the observer provide more observed
detail and clarity (Kumsap et al., 2005; Bishop, 2002) and so have a
greater influence on the perception of greenness and positive health
outcomes than distant greenspaces (Ulrich, 1984; Ulrich et al., 1991;
Nutsford et al., 2016). Nevertheless, the effect is very rarely considered
in visibility analyses in an explicit way.

The distance decay model also helps mitigate bias towards further
away features that is caused by small increases in viewingdistance lead-
ing to disproportionate increases in the number of cells falling within
the buffer (increase defined by Eq. (1)).

n cells ¼ π � radius2

resolution2 ð1Þ
Fig. 2. Distance decay weight function diagram for eye-level visibility.
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This effect means that areas distant from the observer are more
heavily represented than closer ones because there are a greater num-
ber of cells further away than there are close by. In an unweightedmea-
surement (e.g., used in mean NDVI estimation using varying buffer
distances), both proximal and distant cells all equally weighted. There-
fore, relativelymodest increases in buffer distance lead to substantial re-
ductions in the relative importance of the cells in areas immediately
surrounding the observer in comparison with those further away. This
situation is clearly at odds with human perception, in which closer ob-
jects would be expected to be more important. Accounting for visibility
(using the viewshed) and observer proximity (using an empirical
distance-decay function) permits these problems to be mitigated, and
a better representation of reality achieved.

2.3.2. Viewshed algorithm and viewshed greenness visibility index (VGVI)
Traditional viewshed algorithms are often computationally inten-

sive, making them difficult to apply to very large numbers of observer
points (Carver andWashtell, 2012). In the present study, modelling vis-
ibility was for a high spatial resolution and very large spatial extent,
meaning that viewshed calculations for >86 million observer locations
were required. In order to achieve this,we developed a lightweight, par-
allel viewshed algorithm in Python to calculate the greenness visibility
index (code details: https://github.com/jonnyhuck/green-visibility-
index). Our implementation used the Midpoint Circle Algorithm (deri-
vation details in Cao et al., 2020; Van Aken, 1984) in order to calculate
the cells on the perimeter of the viewshed area (Fig. 3a); and
Bresenham's line algorithm (Bresenham, 1965, 1977) to determine a
LOS from the origin to each perimeter cell, with a fixed observer height
of 1.7 m (approximate eye level for an observer located on the ground).
Bresenham's algorithm is considered one of the fastest and most effi-
cient methods of formulating line-of-sight calculations (Chung and
Huang, 2007; Kappel, 1985).

In the present study, the binary visibility of each cell on the ray was
calculatedwith simple geometry, and accounted for the effects of atmo-
spheric refraction and the curvature of the Earth using standard formu-
lae. The DSM was used to account for obstacles to visibility such as
buildings (Fig. 1), whereas relative observer groundelevationswere cal-
culated using the DTM. Following Palmer (2019), we applied a maxi-
mum viewing distance of 800 m, which corresponded to the

https://github.com/jonnyhuck/green-visibility-index
https://github.com/jonnyhuck/green-visibility-index
Image of Fig. 1
Image of Fig. 2


Fig. 3. Example of (a) Line-of-sight algorithm for viewshed analysis for a given viewing distance, (b) viewshed outcome for observer cell; (c) the decayweights associatedwith the visible
cells. For this particular observer cell, VGVI = 0.72; estimated using decay weights in (c) and Eq. (2).
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foreground through to the nearmiddle-ground viewing range. This is in
line with several recent studies that suggest distances below 800 m as
the acceptable range for greenness visibility analysis in urban environ-
ments (Helbich et al., 2019; Yang et al., 2019; Lu et al., 2019).

For a given observer location, the algorithmcalculated amatrix of bi-
nary values representing visible cells, and one for green cells. These
were multiplied together to give a matrix of cells that are both visible
and green (Fig. 3b), and then with a pre-calculated matrix of weights
(Fig. 3c) based upon the decay function calibrated in Section 2.3.1. The
algorithm then computed the weighted sum of visible green cells and
all visible cells to determine the VGVI for each observer cell using
Eq. (2).

VGVIj ¼
∑
n

1
Gi � di

∑
n

1
Gi � di

� �
þ ∑

n

1
Vi � di

� � ð2Þ

where, VGVIj is the index value for the observer cell j; Gi is the visible
green cell,Vi is the visible non-green cell, and di is distancedecayweight
corresponding to visible cell i. The estimated VGVI values range be-
tween 0 and 1, where 0 = no green cells are visible, and 1 = all of the
visible cells are green. Thus, theVGVI value, calculated at 5m spatial res-
olution for every cell, expresses the proportion of the total viewshed
that comprises greenness for an observer standing on the ground at
any given point within the study area.

2.4. Implementation

VGVI estimation was performed at 5 m resolution for the entire
study area, resulting in 86,807,875 observer locations. Each observer
point required 0.8 s to run the analysis described in Section 2.3.2.
Given the computational workload, the analysis was performed using
a high-performance computing (HPC) facility at the University of Man-
chester, running the CentOS operating system and Anaconda Python.
Prior to analysis, the study area was divided into 65 equal area subsets
using the ‘Polygon Divider’ plugin for QGIS (https://github.com/
jonnyhuck/RFCL-PolygonDivider). Each of the 65 subsets was run as a
separate job in a batch array, each of which had access to 16 ×
2.60GHz processing cores and 512GB of RAM. Within each batch job,
the subset was further subdivided into 16 sub-regions for parallel pro-
cessing (giving 65 × 16 = 1040 processes in total). The resulting sur-
faces for each set of 16 sub-regions were stitched and written to
5

temporary files, which were finally stitched together into a single out-
put surface once all 65 subsets had been completed. The whole analysis
took approximately 11.5 days, with a total ‘clock time’ of 1068:54:46 h.

2.5. Evaluations of viewshed greenness visibility index

We evaluated our greenness visibility metric by conducting an ex-
ploratory analysis and by comparing the metric with other greenness
exposure measurements. The VGVI measure was explored visually by
creating a virtual representation of a study neighbourhood using OS
MasterMap Building Height Attribute (OS MasterMap, 2019) and a
tree database (City of Trees, 2011). This process, with building and
tree data overlaid on the VGVI surface allowed investigation of how
the presence of obstacles (e.g., buildings) influences greenness visibility.
This examination of the data in a virtual environment provided a simple
form of visual validation for our modelled greenness visibility.

2.5.1. Comparisons with other greenness exposure metrics
To compare the resulting VGVI surface against other greennessmea-

sures that are common in the literature, we have calculated a greenness
exposure metric at one hundred random sample locations for compari-
son. This measure was based on the mean NDVI value (Section 2.2.3)
within a 100, 300 and 500 m radius of the observer location. Distance
decay was not applied to these data in order to reflect the dominant ap-
proach in the literature (Browning and Lee, 2017; Labib et al., 2020a), so
as to provide a methodological comparison between that presented
here, and common approaches in the literature. These mean NDVI
values were compared with the corresponding VGVI values for the
100 sample points using Pearson's correlation coefficient to examine
the extent of agreement between the two measures.

VGVI values were also compared with eye-level street view-based
SGVI values at 100 random sample points. In this analysis, the SGVI
value for each sample locationwas estimated as the ratio of the number
of green pixels per image to the total number of pixels per image
summed over the four cardinal directions (details in Chen et al., 2019;
and Li et al., 2015). It should be noted that the distance decay has not
been explicitly accounted for in SGVI calculations because it is already
implicitly accounted for (in that the relative number of pixels
representing an object is a function of its distance from the camera).
We used the magic wand tool in Adobe Photoshop (version CS6) to ex-
tract the green pixel counts from trees, shrubs, and any other vegetation
andmanually deselected any non-vegetation features (e.g., green paint)
following the method applied by Yang et al. (2009). Photoshop-based

https://github.com/jonnyhuck/RFCL-PolygonDivider
https://github.com/jonnyhuck/RFCL-PolygonDivider
Image of Fig. 3
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manual selection of greenness usually yields greater accuracy for green-
ness values than automated greenness extraction methods such as ma-
chine learningmodels or object-based analysis. For this reason, previous
studies have often used the Photoshop-based manual selection method
to validate the automatic greenness extraction methods upon which
their studies were based (Yang et al., 2019; Lu et al., 2019). Pearson's
correlation coefficient was used to assess the degree of agreement be-
tween the VGVI and SGVI values. Cross-correlation tests were also con-
ducted between SGVI andmean NDVI values to explore the consistency
of correlation amongeye-level and top-downgreennessmeasurements.

2.5.2. Entire neighbourhood and street-only greenness visibility exposure
comparisons

We compared VGVI values observed from the street with VGVI
values from the surrounding neighbourhoods to understand how far
street-level greenness visibility adequately reflects neighbourhood-
scale visibility. We selected 15 neighbourhoods in the study area for
the comparisons. We followed a quota sampling method (Acharya
et al., 2013) to select these neighbourhoods at locations exhibiting a va-
riety of urban morphologies (e.g., dense urban, peri-urban etc.) and
with different built environment characteristics (e.g., grid-iron or geo-
metric street layouts). Fifteen Lower Super Output Areas (LSOA) were
selected as neighbourhood boundaries (as is common practice in En-
gland; Mitchell and Popham, 2008; Office for National Statistics,
2011). For each neighbourhood, a zonal statistics tool (ESRI ArcGIS Pro
2.5) was used to extract mean VGVI values for all cells within the
boundary, as well as mean VGVI values for cells on the street network
only. A third dataset for comparison comprisedmean SGVI values calcu-
lated using themethod described in Section 2.5.1, using street view im-
ages extracted at 50–100 m intervals (depending on LSOA size). Similar
methods for deriving values of neighbourhood level greenness visibility
for street view images have been applied in several previous studies (Li
and Ghosh, 2018, Chen et al., 2019; Lu, 2019; Chen et al., 2020). Across
the fifteen selected neighbourhoods, we obtained an average of 22 SGVI
values, themean of whichwas assigned as the greenness visibility value
for the corresponding neighbourhood. Pearson's correlation tests were
run in order to examine the relationship betweenmean neighbourhood
VGVI, mean street network VGVI, and mean SGVI.
3. Results

3.1. Distribution of viewshed greenness visibility index

Fig. 4a shows the greenness visibility surface mapped applying the
VGVI analysis method developed in the present study. The mean value
of the VGVI raster is 0.59,with a standard deviation of 0.27 (Supplemen-
tary Fig. S2). These values indicate moderate to high ground-level
greenness visibility (~59%) is present in Greater Manchester. However,
the spatial distribution of greenness has distinct patterns (Fig. 4a). The
highest greenness visibility values are often found at the eastern and
north-eastern edge of the study area, along the Pennine Hills (Fig. 4b).
Not surprisingly, these areas have high greenness visibility, as these
containwide open natural green areas surrounded by elevated topogra-
phy and without major constructions (e.g., high-rise buildings)
obstructing views (Fig. 4c). In addition, there were several green corri-
dors (usually river corridors), where we observed very high VGVI
values. In contrast to the high greenness visibility values, we found
very low to moderate greenness visibility within the urban core areas
of Greater Manchester (Fig. 4a, b). This was caused by the presence of
high-rise buildings, low amounts of urban greenspaces, fragmented
areas of vegetation, and flat topography. As might be expected, when
comparing Fig. 4a and c, VGVI shows a similar distribution to the binary
greenness map. However, closer examination (Fig. 4d, e) reveals that in
many locations VGVI values are lower than expected, due to the pres-
ence of features such as buildings.
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3.2. Evaluations of viewshed greenness visibility index

A virtual exploration of the mapped VGVI values for a case study
area is presented in Fig. 5. The case study neighbourhood was se-
lected due to its diversity of VGVI values and spatial distribution of
greenspaces and buildings. For this case study area, the VGVI values
highlight the influence of the built environment on greenness visibil-
ity. For example, Fig. 5(a) depicts considerable open green areas to
the left side of the observer with non-obstructed views, resulting in
a high VGVI value for location (a). In contrast, at location (b), the vis-
ibility of greenness is blocked by the presence of buildings in the sur-
rounding areas, despite the close proximity of greenspace (<100 m).
In both cases, when compared with ground-truth images, the
modelled VGVI values were a good fit to what an observer could
see from these viewpoints. This exploration demonstrates the im-
portance of the built environment layout and organisation of build-
ings in analysis of greenness exposure, as well as the value of the
VGVI for capturing greenness visibility at eye-level.
3.2.1. Comparison of VGVI with remotely-sensed NDVI and SGVI
The correlation between the eye-level greenness visibility for

ground observers (i.e., VGVI and SGVI) metrics and the remotely-
sensed greenness metric (i.e., NDVI) at different buffer distances is pre-
sented in Table 1. We observed significant strong to moderate positive
correlations between NDVI and eye-level greenness, with the correla-
tion coefficients decreasing with increasing buffer distance (Table 1).
This is a critical observation that demonstrates the importance of both
visibility and the distance-decay function, as noted in Section 2.3.1. In
the VGVI calculation, the most distant cells have the lowest weights
and are most likely to be obscured by intervening features, meaning
that they are not visible. Neither of these effects is reflected in the
NDVI calculation, which explains the greater mismatches at larger
buffer distances between the two measurements.

It was notable that SGVI correlations with NDVI were weaker than
VGVI correlations at all three buffer distances (Table 1). This result is
likely because LULC datawas used in the VGVI estimation, and this met-
ric would likely have stronger correlations with NDVI as both LULC and
NDVI were obtained from satellite images. Another reason might be re-
lated to the fish-eye effect in SV imagery, whereby greater optical dis-
tortions occur for objects further away in the street view images
(Hughes et al., 2008; Furnari et al., 2016). It might also be attributed
to a lack of imaging clarity in objects beyond a certain threshold dis-
tance in street view images (Chen et al., 2020). This sensitivitywas char-
acteristic of the methodological difference between VGVI and SGVI
measurements. Finally, the results suggest that measures using SGVI
may lack completeness due to the restricted locations at which SV im-
ages are taken.

When the VGVI and SGVI values were compared, we found a signif-
icant positive correlation (r = 0.481, p = 4.01 × 10−7) between these
twomeasurements of eye-level greenness visibility (Fig. 6). The correla-
tion coefficient implies that inmost cases, bothmethods possessed sim-
ilar traits in measuring greenness at eye-level. We observed that VGVI
values were higher than the corresponding SVGI values in 87% of loca-
tions, likely due to generalisation in the input data for VGVI and the un-
derrepresentation of more distant vegetation in SVGI (Chen et al., 2020;
Anguelov et al., 2010; Furnari et al., 2016). Chen et al. (2020), for exam-
ple, noted that Baidu street view images could identify objects clearly to
a distance of 220 m, beyond which green objects might not be clearly
detected. It should also be noted that most SGVI calculations (including
those implemented here) do not mask the sky from the image, which
may result in systematic underrepresentation of eye-level greenness.
Nevertheless, while there are methodological differences between
viewshed and street view-based estimations of greenness visibility,
bothmethods generate similar patterns in eye-level greenness visibility
measurement and modelling.



Fig. 4. (a) Viewshed greenness visibility index map, (b) DSMmap patched with DTM values for Pennine Hills indicating height (m) distribution, and (c) binary green, no-greenmapwith
urban area boundaries, (d) extended case study area of greenness visibility, (e) extended cases study area of binary green, not-greenmap. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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3.2.2. Comparisons of neighbourhood scale mean greenness visibility
measurements

The correlation analysis between different greenness visibility mea-
surements at the neighbourhood scale are presented in Supplementary
Table S1. We observed a very strong significant positive correlation
(r=0.93, p<0.01) between neighbourhoodmeanVGVI values (includ-
ing all VGVI cells within a given neighbourhood boundary) and mean
street-only VGVI values (including VGVI cells on streets) for all 15 sam-
pled neighbourhoods. This result implies that greener neighbourhoods
usually have higher greenness visibility on streets. However, when the
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mean greenness visibility values of the neighbourhood and street-only
values were compared, we found significant differences between the
two (t = 2.265, p = 0.04, details in Supplementary Table S2), with an
absolute maximum difference value of 0.17 (~17%), and a mean of
0.05 (~5%). This result indicates that the mean greenness values on
street-only locations can be significantly different from the total
neighbourhood mean visibility, although they show similar greenness
visibility patterns. In addition, the correlation between total
neighbourhood mean VGVI values and mean street view (SGVI) values
for the corresponding neighbourhoods was positive but insignificant

Image of Fig. 4


Fig. 5.Virtual representation of buildings and trees on theVGVImap and comparingwith ground-truth images for location (a) and (b). Ground-truth photos takenby the lead author. Short
virtual tour available at: https://youtu.be/71xdj7hv2HE.
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(r = 0.434, p = 0.106, Supplementary Table S1). This result indicates
that total neighbourhood greenness visibility might not always reflect
the greenness observed from street-only locations. Interestingly, we ob-
served a strong positive correlation (r= 0.572, p= 0.026, Supplemen-
tary Table S1) between street-only mean greenness values for
neighbourhoods for both VGVI and SGVImethods. This result confirmed
that when street-only means are considered, both VGVI and SGVI can
indicate similar patterns of greenness visibility for neighbourhoods.
Table 1
Pearson's correlation coefficients between eye-level greenness visibility and top-down
greenness metric at different buffer distances.

Top-down values (mean) VGVI SGVI

NDVI (100 m) 0.653 0.56
NDVI (300 m) 0.623 0.514
NDVI (500 m) 0.50 0.426
N 100 100

All correlations are significant at the 0.01 level (2-tailed).
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4. Discussion

4.1. Greenness visibility exposure modelling and mapping

In this study, we introduced a quantitative approach to assess the
visibility of greenness at eye-level (1.7 m) by combining high-
resolution spatial data from multiple sources. We applied this new
method to the case study area of Greater Manchester in order to
model and map greenness visibility for >86 million observation loca-
tions (covering an area of approx. 1276 km2). Ourmethod combined ef-
ficient algorithmdesign and parallel computing to permit the analysis of
many more observation points than has been achieved in other recent
studies, which typically utilise from a few hundred to several thousand
observation points (e.g., Nutsford et al., 2016; Chen et al., 2020;
Tabrizian et al., 2020; Lu, 2019). Our exposure modelling and mapping
approach provides a viable methodological solution for large-scale
socio-ecological studies investigating the associations between green-
ness exposure and health outcomes.Methodological efficiency is crucial

Image of Fig. 5
https://youtu.be/71xdj7hv2HE


Fig. 6. Correlation (r = 0.481, p < 0.01) between VGVI and SGVI for 100 locations.
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to support the use of more accurate metrics in future epidemiological
studies. The majority of existing studies have relied upon top-down
‘bird's eye’ view remotely-sensed greenness metrics on planar surfaces
(mostly NDVI) as opposed to eye-level greenness visibility calculated
considering the vertical dimension (Larkin and Hystad, 2019; Jiang
et al., 2017). This is due to lack of data resource intensity
(e.g., conducting large scale questionnaire-based surveys) and the com-
plexity of modelling approaches to assess greenness visibility at scale
(Labib et al., 2020a; Larkin andHystad, 2019). Ourmethod utilises read-
ily available spatial data that ensure the transferability of thismethod to
other study areas. Thus, a key contribution of this study is to develop
and demonstrate a fast, straightforward, and reliable eye-level green-
ness visibility exposure modelling and mapping methodology allowing
utilisation of high-resolution data for an entire city-region.

In addition, our greenness visibility city-region map (Fig. 4a) illus-
trates the spatial patterns of greenness visibility in the case study area.
Themap presents an intuitive representation of eye-level greenness vis-
ibility, with the lowest VGVI values within high-density urban core
areas and the highest values around large natural greenspaces
(e.g., near to hills, along riparian corridors). Our findings are consistent
with previous studies that indicated built, and natural environment
contexts are key to assess eye-level greenness visibility (Yang et al.,
2009; Stubbings et al., 2019; Yu et al., 2019).

4.2. Top-down and eye-level greenness exposure

Several previous studies pointed out that top-down and eye-level
visibility exposure might not be the same (Chen et al., 2020; Yu et al.,
2019; Ye et al., 2019; Li et al., 2015). However, these studies only consid-
ered street view image-based visibility measurements for comparison.
We have investigated the associations between top-down greenness
and eye-level greenness exposure for both viewshed and street view
approaches (i.e., VGVI and SGVI). For both metrics, we observed signif-
icant differences between top-down and eye-level greenness exposure
estimates. In particular, we observed a decrease in the strength of the
correlation coefficients with an increase in buffer distance (Table 1).
Yu et al. (2019), Ye et al. (2019) and Li et al. (2015) also document a
similar trend. The significant strong, positive correlation between top-
down and eye-level exposure at smaller buffer distances is reasonable,
as greenness (e.g., trees) or objects within proximity are more likely
to be clearly visible to an observer.

Nearby objects are less vulnerable to the decay effect than farther
objects (Kumsap et al., 2005; Bishop, 2002) and have greater likelihood
of being observed. Additionally, in street view images, objects located
further away often possess disproportionately low pixel counts due to
lens distortion, compared to objects closer to the camera (Anguelov
et al., 2010; Furnari et al., 2016). Both the decay effect and lower pixel
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counts are likely to influence eye-level visibilitymeasurements, but nei-
ther is typically accounted for in NDVI-based exposure measurements.
Therefore, at larger buffer distances, we observed greater mismatches
between top-down and eye-level greenness exposure values. It should
be noted that, unlike eye-level visibility, there is no existing empirical
research that has investigated the distance decay effect on NDVI values
at varying buffer sizes. Thus we could not eliminate the potential that
the mismatch between eye-level greenness visibility and top-down
greenness measurement with increasing buffer distances may also
have stemmed from distance decay effects on NDVI.

Our analytical approach provides a quantification of the differences
between eye-level and top-down exposure assessment, and also sug-
gests some possible reasons for the differences that we have found.
Based upon these differences, we argue that eye-level greenness visibil-
ity is distinct from other greenness metrics that have been developed
for greenness exposure assessment and is complementary (but differ-
ent) to top-down measurement (also Kumakoshi et al., 2020). This is
due to the fact that it can capture the vertical dimensions of greenness
that relate to human perception and infer the experience of observing
the surrounding environment.

4.3. Neighbourhood greenness visibility exposure

Existing studies of the influence of greenness visibility exposure on
health usually measure greenness visibility for sampled locations only
on streets and use the mean of these values to infer neighbourhood
greenness visibility (Li and Ghosh, 2018; Wang et al., 2019, 2020; Lu,
2019). This is because the images that are easily available for use in
such analyses are mostly collected on streets. We argue the need for
methods that are able to account formeasuring greenness at every loca-
tion within a neighbourhood. This is particularly important in land-
scapes with complex land cover compositions and where there are
lower road densities (including rural areas, which generally the exhibit
the highest visibility values in our analysis). This argument is supported
by Mavoa et al. (2019), who noted that the health benefit of the visibil-
ity of nearby greenery does not operate only along road networks.

Despite having a positive relationship, we found that measurements
of street-level greenness visibility provided significantly different values
to those provided by our methodology (see Section 3.2.2 and Supple-
mentary Table S2). Additionally, the correlation between the
neighbourhood average street view green view index (SGVI) and VGVI
was insignificant (r = 0.434, p = 0.106, Supplementary Table S1).
This evidence suggests that the traditional approach of inferring street
only visibility as functionally equivalent to neighbourhood greenness
visibility needs careful consideration. Our analysis suggests that mean
street-based greenness visibility can significantly differ from entire
neighbourhood scale greenness visibility, even where they illustrate
similar trends in visibility.

We have identified two key reasons for such differences. Firstly,
street-only visibility clearly cannot take account of greenness visibility
in locations where streets are not available (e.g., backyards or commu-
nity gardens). This causes an underrepresentation of visible greenness.
Secondly, neighbourhood morphology (e.g., street layout) can deter-
mine how much greenness is visible from the street. In particular,
grid-iron street layouts with densely arranged terraced houses often
demonstrate low greenness visibility from the street (Supplementary
Fig. S4a, b). Characteristically, these streets contain fewer street trees
and exhibit ‘street canyon’morphologies (streets bounded by buildings
on both sides with few gaps, Fig. 5, location-b) which can obstruct visi-
bility significantly. However, the presence of backyard gardens and
pocket parks sometimes account for higher greenness visibility values
than street-only visibility values would suggest (Supplementary
Fig. S4a). In contrast, neighbourhoods with more curvilinear or looped
street layouts and greater inter-building gaps usually showmore similar
greenness visibility both for the street-only and overall neighbourhood
averages (Supplementary Fig. S4 c, d). Additionally, although street-

Image of Fig. 6
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only visibility is lower than the total neighbourhood visibility for the
majority of the neighbourhoods, in a few cases we found the street-
only greenness visibility can be higher than the neighbourhood green-
ness visibility. In these cases, the neighbourhoods possess streets that
are located beside large open greenspaces, have a mixed street layout
(e.g., curvilinear, cul-de-sac, and grid), and may also co-exist with
dense street tree cover (Supplementary Fig. S4e, f). We also found that
densely built neighbourhoods had a significant negative correlation
with both street-only and overall neighbourhood greenness visibility
(see Supplementary Table S3). These issues further show why green-
ness visibility measurements require a more critical approach. Street-
onlymeasurements generally underestimate or, in special cases, overes-
timate the greenness visibility depending on the neighbourhood
morphology.

Measuring greenness visibility exposure as a continuous surface per-
mits a deeper understanding of visibility exposure at non-street loca-
tions, such as in a garden or local park. This greenness visibility may
have a considerable effect on health outcomes (de Bell et al., 2020;
Clayton, 2007). Several studies have found that spending time in a back-
yard or in community gardens is associated with positive health bene-
fits (e.g., restoration of attention, stress reduction) and just viewing
greenness while relaxing in a garden positively influences wellbeing
and happiness (Church, 2018; Freeman et al., 2012; Clayton, 2007;
Kaplan, 2001). Such greenness visibility can be expected to have had
positive health benefits during the ‘lockdown’ periods associated with
the COVID-19 pandemic, for example (Daniela et al., 2020). In order to
better assess these benefits, it is important to go beyond an assessment
of the availability of garden space (Brindley et al., 2018) and account for
the visibility of green cover, impacts from nearby spaces, and the con-
text of wider landscapes. We therefore argue that greenness visibility
exposure assessment should reach beyond the streetscape and consider
all locations in an entire neighbourhood. Themethod thatwe developed
for this study can provide such detailedmeasurements of greenness vis-
ibility exposure.
Fig. 7. (a) Road greenness visibility overlaid on a high resolution satellite image and elevation la
office, along roads).
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4.4. Implications of eye-level greenness visibility exposure mapping

Our metric and associated transferable methodology have several
practical and policy implications. For socio-ecological and epidemiolog-
ical studies investigating associations between nature and human
health, our greenness visibility exposure modelling and mapping can
be used as a new metric to evaluate the visual impact of greenness on
health. It improves upon existing greenness exposure assessment
methods by taking account of vertical dimensions, providing measure-
ments at a high spatial resolution and over large spatial extents. Our ap-
proach minimises several limitations of other methodologies, including
measuring greenness visibility in locations where street view images
are unavailable, modelling visibility at a limited number of sample loca-
tions, relying on sophisticated resource-intensivemodelling techniques
(e.g., deep learning) and privacy issues associated with using street
view images. Additionally, the greenness visibilitymap can estimate dy-
namic (e.g., spatiotemporal variation) greenness visibility exposure to
understand the variance of visibility at different locations beyond the
neighbourhood (Helbich, 2018). Such an application is illustrated in
Fig. 7, in which an observer has a VGVI value of 0.43 at home (moderate
visibility), 0.07 at the office (very low visibility), and varying greenness
visibility along the roads to which they are exposed in daily travel. With
additional data such as GPS tracks, spatial diary data, our greenness vis-
ibility exposure map can provide a comprehensive measurement of
daily exposure to greenness at eye-level.

Our new greenness visibility modelling and mapping approach has
applications in urban planning and design. In practice, planners and de-
signers could use themap to allocate resources in areaswhere greening
interventions are most needed in terms of improving eye-level green-
ness. This would allow better optimisation of the limited available re-
sources to maximise greenness visibility. Notably, our approach would
allow planners and designers to identify strategic locations and future
street layouts, as well as their sizes and types of greenspaces to ensure
the greatest possible greenness visibility for such locations in order to
yer, (b) difference in greenness visibility (VGVI) exposure at varying locations (e.g., home,

Image of Fig. 7
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maximise broader public health benefits. This approach can also be used
to evaluate the before and after changes of new planting initiatives in
the city; this would inform local councils on the real-world impact of
tree planting schemes as well as the removal of vegetation.

In addition to research and practice usage, our greenness visibility
exposuremaps could also be useful to the general public.We developed
an online webmap portal to disseminate our results to a broader popu-
lation (https://arcg.is/1vumGC0). The road VGVI map can be useful for
home-owners associations seeking to improve their neighbourhoods
as well as people who wish to evaluate and select greener routes for
their daily travel. Also, with a simple postcode search people can quickly
identify the level of greenness visibility surrounding their home.

4.5. Limitations and future developments

Despite its potential, themethod presented in this paper has a num-
ber of limitations and there is scope for enhancing it based on potential
future developments. The reliability of the modelling depends on the
spatial resolution of input data (e.g., DSM, LULC). We modelled and
mapped greenness visibility at 5m spatial resolution; however, it is pos-
sible that our LULC map has misclassified small greenspaces sized less
than 25m2, and that the DSM has underestimated the height of smaller
objects. Similarly, smaller objects, such as power lines and street lights,
will have been excluded from the analysis through generalisation,
meaning that their impact will not be included in the analysis. These is-
sues could to some extent be resolved to an extent by using even higher
spatial resolution data (e.g., DSM<1m resolution), though therewould
be a proportionate increase in calculation runtime. Our input data also
does not take account of vertical vegetation cover such as green walls.
However, this limitation is acceptable as such sources of greenness rep-
resent a very small portion of overall greenness observed in urban areas
(Dennis et al., 2020).

In the present study, due to the computational budget required to
process >86 million observer locations, we selected for a viewing dis-
tance of 800m. This might have underestimated the visibility for green-
ness located beyond this viewing range. Based on our experimental
observation in the case study area, we argue that for urban areas with
similar characteristics to our study area 800m appears a reasonable dis-
tance for visibility analysis (Helbich et al., 2019; Lu et al., 2019), how-
ever sensitivity analysis at longer viewing distances is needed to
identify if there are other more appropriate viewing distance for green-
ness. For future studies, the effect of larger viewing distances should
also be tested. However, care should be taken with longer viewing dis-
tances, as such distances are often affected by prevailingmeteorological
and air quality conditions (e.g., lack of clarity due to haze) in real-world
settings, which might need to be considered in the model.

In our visibility model, we assumed our observer always stood on
the ground, which will result in some under estimation of greenness
visibility for residents of multi-story buildings. Although varying ob-
server heights can be integrated into our algorithm, such integration
would need to be done with care, as in multi-story buildings the ob-
server locationwill differ depending not only onwhat floor the observer
is on but also on the height, position of windows or openings in the
building (Yu et al., 2016).

One key aspect of this study is that wemodelled andmapped green-
ness by combining different vegetation types (e.g., trees, grass) for over-
all greenness visibility. Such a combined approach has some benefits
such as providing a holistic estimation of all visible green elements.
However, this combined approach might also have generalised the po-
tentially differing influences of different vegetation types as argued by
Wang et al. (2020) and Kaplan and Kaplan (1989). Because different
vegetation types usually have varying qualities (e.g., the visual quality
of large tree patch is different to a grass patch) the differing qualities
of greenness might also influence the impact on overall health. How-
ever, it should be noted that our methodology is fully capable of mea-
suring greenness visibility for different greenness types. For example,
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we canmap only the visibility of trees by using a binary layer indicating
the presence/absence of trees. Such detailed visibilitymapping of differ-
ent vegetation types should be explored in further studies. Additionally,
vegetationwith different colours and covers in different seasons need to
be explored.

In this study, the decay model we applied in visibility analyses was
constructed based upon previous empirical studies in different contex-
tual setups than our case study area. However, further work is required
in order to understand how sensitive this method is to variations in the
parameters of the decay function. Though a sensitivity analysis such as
this is beyond the scope of this paper, a detailed sensitivity analysis of
the decay function in relation to different geographic and landscape lo-
cations would be beneficial in future research.

We evaluated our computationally-modelled greenness visibility
outputs in a virtual environment, which allowed us to compare re-
sults with images captured in the study area. Visual validation of
the results indicates that the modelled greenness visibility matches
with expectations from both virtual and ground observations
(Fig. 5; Supplementary Fig. S3). However, detailed empirical valida-
tion comprising large-scale ground truthing and matching with
human perceptions would be a valuable addition. Future research
in this area might include validation using human perception
(Brown et al., 2013) and immersive virtual environment surveys
(Tabrizian et al., 2020; Browning et al., 2019).

Finally, we only considered greenness visibility in this particular
study but several studies have suggested that the visibility of blue
spaces can also have a considerable health impact (McDougall et al.,
2020; Nutsford et al., 2016). Once again, our method can easily be
adapted to account for blue space visibility. In future studies, a com-
bined green and blue space visibility exposure assessment approach
should be developed to understand the overall visual impact of nature
on health and wellbeing.

5. Conclusion

In this study, we present an innovative methodological solution
to the assessment of greenness visibility exposure at high spatial res-
olutions using multi-source spatial data, viewshed modelling and
distance decay weighting. We demonstrate how top-down and
eye-level greenness measurements differ for a large city-region in
northern England. Our greenness visibility results show strong to
moderate correlations (r = 0.65–0.42, p < 0.05) with mean NDVI
as a commonly-used measure of greenness exposure. However, the
decreasing trend in correlation strength at increasing buffer dis-
tances from observer locations indicates how NDVI alone is a limited
proxy for assessing greenness exposure. Similarly, despite our re-
sults showing good overall agreement with street view-based mea-
sures (r = 0.481, p < 0.01), the latter can lead to serious
underestimation of neighbourhood-scale visibility.

Our methodological approach overcomes many problems with
existing greenness visibility exposure assessment methods identified
in the literature, and has the benefit of being easily transferable to any
areas where existing land cover and digital elevation model data are
available. Furthermore, this methodology also has relevance and signif-
icance beyond the study of greenness exposure assessment. For exam-
ple it can be used in other environmental ‘landscapes’ associated with
visibility modelling, such as in the assessment of aesthetic potential in
landscape management.
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