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Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for hematological malignancies and some non-
hematologic diseases. Hematopoietic stem and progenitor cells (HSPCs) collected from peripheral blood after mobilization are
the primary source to provide HSC transplantation. In most of the cases, mobilization by the cytokine granulocyte colony-
stimulating factor with chemotherapy, and in some settings, with the CXC chemokine receptor type 4 antagonist plerixafor, can
achieve high yield of hematopoietic progenitor cells (HPCs). However, adequate mobilization is not always successful in a
significant portion of donors. Research is going on to find new agents or strategies to increase HSC mobilization. Here, we briefly
review the history of HSC transplantation, current mobilization regimens, some of the novel agents that are under investigation
for clinical practice, and our recent findings from animal studies regarding Notch and ligand interaction as potential targets for
HSPC mobilization.
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Introduction

E. Donnall Thomas was a pioneer in applying experience

from animal bone marrow (BM) transplantation on leukemic

patients. In 1959, he and his colleagues reported 3-month

remission in a patient with total body irradiation followed

by infusion of identical twin’s marrow1. Though Thomas’

finding was exciting, it was limited to isologous marrow infu-

sion. In 1960, however, allogeneic transplantation was

accomplished after human leukocyte antigen (HLA), the

major histocompatibility complex, was discovered. An

immunodeficient patient received marrow transplantation

from an HLA-matched sibling without rejecting the allo-

graft2. A decade later, after Thomas’ success, he and his col-

leagues cured some patients with end-stage acute leukemia by

using a combination of chemotherapy, that is, cyclophospha-

mide (CY), with total body irradiation, followed by BM infu-

sion from HLA-identical siblings3. Furthermore, the ability of

donor lymphocyte to eliminate the tumor cells that have sur-

vived after ablative therapy was found to contribute to the

reduction in the incidence of leukemic relapse after allograft

transplantation. However, these lymphocytes may also con-

tribute to a phenomenon called graft-versus-host disease4.

At the same time, other animal experiments discovered

that nonleukemic blood cells egress from BM to peripheral

blood system giving rise to mature blood cells and compen-

sating damaged BM to maintain hematopoietic homeosta-

sis5,6. These hematopoietic cells act as substitute sources to

BM progenitor cells. However, Lewis and colleagues in 1968

suggested that due to the low frequency of the repopulating

peripheral blood leukocytes (estimated to be 1/100th that of

marrow), grafting would not be accomplished using these

cells for transplantation7. Fortuitously, around the same time,

a continuous flow centrifuge (apheresis) machine was devel-

oped to improve harvesting enough peripheral repopulating

units for transplantation in patients with chronic myelocytic

leukemia8,9. Nevertheless, several subsequent attempts to

transfuse peripheral white blood cells among identical twins

did not give a plausible engraftment result8,10. Putatively, the
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reason for the failure was due to the insufficient number of

hematopoietic stem and progenitor cells (HSPCs) present in

the peripheral blood compared to those in the BM.

Cryopreservation technique was developed in the 1970s and

was found effective in preserving the hematopoietic stem cells

(HSCs) from the peripheral blood11. Years later, using cryo-

preserved cells obtained from multiple rounds of apheresis

before the transplantation resulted in successful hematopoietic

engraftment12–16. Despite many successes of cryopreserved

HSPC infusion, harvesting a sufficient number of peripheral

blood stem cells (PBSCs) for multiple rounds over a long time

of collection was not feasible. However, the subsequent intro-

duction of the course of CY and adriamycin chemotherapy

resulted in *20-fold increase of PBSC yield, suggesting that

chemotherapy could enhance PBSCs mobilization17,18.

In this review, we will first address the current HSPC-

mobilizing agents, including chemotherapy, granulocyte

colony-stimulating factor (G-CSF), and plerixafor, and other

reagents that are still being investigated at various stages but not

yet applied clinically. We will then discuss our recent animal

research findings demonstrating the enhanced potential of HSPC

egress and mobilization by blocking Notch or Notch ligands.

G-CSF and Chemotherapy

The clinically approved growth factor G-CSF has been widely

used to mobilize both HSC and hematopoietic progenitor cell

(HPC) for transplantation. G-CSF is a cytokine that promotes

granulocyte proliferation and differentiation and enhances

mobilization through direct or indirect protease activation.

After G-CSF administration, neutrophil releases neutrophil

elastase, cathepsin, and matrix metalloproteinase-9 (MMP-

9), and the cell surface protease dipeptidyl peptidase 4 (DPP-

4, cluster of differentiation (CD) 26) cleaves the adhesion

molecules on HSPCs. These molecules, including stromal

cell-derived factor 1 (SDF-1)/CXC chemokine receptor type

4 (CXCR4), stem cell factor (SCF; also called c-kit), and vas-

cular cell adhesion molecule-1 (VCAM-1)/ very late antigen-4

(VLA-4), are responsible for HSCs retention in the BM19–23. In

addition, G-CSF indirectly inhibits osteoblast (OB) activity

and reduces SDF-1 (also called CXCL12) expression that

enhances HSPC mobilization24. Administration of G-CSF ben-

efits both autologous and allogeneic mobilization, increases

engraftment rate, and reduces hospitalization length and

cost25–28. The minimum target dose (�2 � 106 CD34þ cells

per kg weight) could be successfully achieved by 5–10mg/kg of

G-CSF per day for 5–7 days with one or more days of apheresis.

However, a study led by Mayo Clinic demonstrated less than

optimum mobilization in two groups of patients: non-Hodgkin

lymphoma (71%) and multiple myeloma (30%)29. In autolo-

gous stem cell transplantation, chemotherapy is commonly

used along with G-CSF to reduce the tumor burden, to enhance

mobilization as well as to decrease the apheresis sessions and

transfusion volumes. In myeloma patients, an intermediate

dose of CY effectively mobilized HSPC30. On the other hand,

in lymphoma patients, combination chemotherapies include

G-CSF with CY, etoposide, dexamethasone, high-dose cytara-

bine, cisplatin (DHAP), and other chemotherapy regimens31–35

are often required for effective mobilization. Therefore, new

agents with improved ability to increase stem cell yield and

to reduce the number of apheresis sessions are required,

particularly for those heavily pretreated patients.

Plerixafor

Plerixafor, or Mozobil (AMD3100), is the antagonist of

CXCR4. AMD3100 prevents CXCR4 on HSCs from inter-

acting with SDF-1 on BM stroma36–38. BM OB, mesenchy-

mal stem cells, and CXCL12-abundant reticular cells secrete

SDF-1 to maintain HSC retention39, and disrupting this inter-

action between CXCR4 and SDF-1 leads to the mobilization

of HSPCs to the periphery. AMD3100 administration not

only blocks CXCR4, but also induces activation of MMP-9

and serine protease urokinase-type plasminogen activa-

tor40,41. Currently, plerixafor is clinically approved to use

alone or in combination with G-CSF to mobilize HSPC in

heavily pretreated lymphoma and myeloma patients42–47.

Although plerixafor is successful in increasing optimal

CD34þ yield, decreasing mobilization failure, and reducing

the number of apheresis sessions, its universal use is limited

by its expensive cost48–53.

Other Mobilizing Agents

Studies in mice have shown that two main axes are targeted

directly or indirectly by most mobilizing agents, CXCR4 and

the integrin VLA-4 signaling, or both54. Integrins are a family

of proteins implicated in HSPC mobilization. Integrin adhe-

sion receptors such as VLA-4 found on HSCs tether with

VCAM-1 within the BM stroma55–57. Indeed administration

of anti-VLA-4 led to the mobilization of HSPC to the periph-

eral blood58,59.

While some agents, like G-CSF, target both pathways

directly or indirectly, some only affect one adhesion mole-

cule. An example of an approach that affects both CXCR4 and

VLA-4 signaling is parathyroid hormone, which increases

the secretion of G-CSF. In turn, this results in an increase

in peripheral circulating HSC by 1.5- to 9.8-folds in mice60,

and in a phase I clinical trial study, it induced adequate mobi-

lization in 40%–47% of patients who have failed prior

mobilization for autologous stem cell transplantation61.

Sphingosine-1-phosphate (S1P), an agent mainly targeting

the CXCR4 signaling, is a bioactive lipid mediator mainly

found in red blood cells and acts as a ligand to G-protein-

coupled S1P receptors. A high concentration of plasma S1P

creates a gradient and egresses HSPC62–65. Furthermore, dur-

ing mobilization, HSPC egress is further mediated by the S1P

gradient increase in peripheral blood as a result of erythrocyte

lysis by the complement cascade and the membrane attack

complex activation66,67. An alternative adhesion molecule

target exists for proteasome inhibitors, such as bortezomib,

which affects angiopoietin levels. Bortezomib successfully
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stimulated HSC mobilization in 85% of multiple myeloma

patients receiving a bortezomib-based induction regimen68.

Other agents or approaches that are currently undergoing

investigation include cytokines, chemokines, chemokine

receptor antagonists, bacterial toxins, proteases, inhibitors

of adhesive cell interactions, ephrinA3 receptor antagonists,

polymeric sugar molecules, prostaglandin inhibitors, block-

ade of heparan sulfate, Nlrp3 inflammasome activation, and

stabilization of hypoxia-inducible factor-1a, among others54.

Table 1 summarizes various agents that have been used in

mice and their target adhesion molecules.

Systemic Factors

Several factors affect HPSC mobilization on the systemic

level. These include cortisol level, the time of day, stress,

exercise, trauma, infection and inflammation, elements in

coagulation and complement cascades, and signals from the

sympathetic and central nervous systems54. These factors

may contribute to the overall stem cell collection during

apheresis procedures.

Notch2 and Notch Ligand Blockade

Notch signaling plays a critical role in multiple pathways that

control cell fate determination, such as embryogenesis, neu-

rogenesis117–120, angiogenesis121, cardiogenesis122, and

hematopoiesis123. In hematopoiesis, this signaling not only

regulates lymphopoiesis but also regulates myelopoi-

esis124,125. Notch pathway alterations play critical roles in

several cancer types and particularly in hematologic malig-

nancies. Therefore, it is a desirable target in these neoplasms.

However, inhibiting a downstream enzyme, the gamma-

secretase, in this pathway, has not been successful due to side

effects from global inhibition of wild-type Notch proteins. On

the other hand, targeting specific Notch proteins, for example,

Notch1 or Notch2, may still be promising126. An essential

feature of Notch is its adhesive nature, which was first

described by cell aggregation assays in Drosophila127,128.

However, the precise role and the biological significance of

Notch receptors and ligands as adhesion and signaling mole-

cules in HSC biology, particularly in the context of HSC cell

therapy, have not been well defined. Here we will report our

recent findings suggesting that Notch2 and its interaction with

Notch ligand may serve as potential effective HSPC-

mobilizing targets.

In mammals, the canonical Notch signaling pathway is

initiated by binding interactions between the extracellular

domain of a Notch family member (Notch1–4) on a receiv-

ing cell and a Notch ligand of the Jagged (Jagged 1 and 2) or

Delta-like (DLL1, 3, and 4) families on a sending cell129.

It is generally accepted that ligand binding initiates ligand

endocytosis and successive proteolytic cleavages, which cul-

minate in the release of the intracellular domain of Notch

and the formation of a large transcriptional activation com-

plex leading to the activation of downstream targets of Notch

signaling130,131. Despite in vitro evidence that activation of

Notch stimulates HSC self-renewal132–135, the in vivo func-

tion of Notch in HSC is still debatable. Conditional deletion

of Notch receptors, ligands, or Notch canonical targets does

not appear to affect HSC steady-state homeostasis136,137. In

contrast, Notch2 was found responsible for the rate of gen-

eration of repopulating stem cells during stress hematopoi-

esis and the early phase of hematopoietic recovery138. Also,

Jagged1 expressed by BM endothelial cells regulates home-

ostasis and regenerative hematopoiesis, while DLL4

expressed by osteocalcin-expressing bone cells is responsi-

ble for generating early thymus progenitors139,140.

We and others found that Notch2 is the primary Notch

receptor expressed on HSCs and nonlymphoid committed

progenitors. In comparison, Notch1 expression level is low

on HSC cells but high on lymphoid progenitors141,142. Notch

transactivation is the result of the engagement of Notch

receptors with Notch ligands. This process is dependent on

posttranslational modification of Notch receptors with

O-glucose and O-fucose, added to serine in the consensus

C1-X-S-X-(P/A)-C2 or to serine or threonine residue in the

consensus sequence C2-X-X-X-X-(S/T)-C3 143–145, by pro-

tein O-glucosyltransferase 1 (Poglut) or protein O-fucosyl-

transferase 1 (Pofut1), respectively, on the epidermal growth

factor (EGF) modules of Notch extracellular domain146–149.

O-Fucose, but not O-glucose, enhances Notch affinity for

Jagged or Delta-like ligands and regulates Notch signaling

transactivation147,150–152. This notion is supported by crystal

structural determinations showing that O-fucose attached

to the Thr residue of Notch1 EGF-like repeat acts as a sur-

rogate amino acid to make functional contact with a specific

domain on DLL4 (contact Notch1 EGF12) and Jagged1

(contact Notch1 EGF8 and 12), and thus directly affects

Notch ligand binding153,154. Elongation of O-fucose to a

disaccharide (GlcNAc-fucose) on EGF12 by any of three

Fringe enzymes (N-acetyl-glucosaminyltransferase)-Lunic

fringe (Lfng), Manic fringe (Mfng), or Radical fringe (Rfng)

further increases Notch1 binding affinity to Jagged1 and

DLL1 and affects Notch activity in slightly different

ways145,155–158.

To understand the role of Notch O-fucose glycan mod-

ification in its adhesive interaction with Notch ligand in the

marrow HSC compartment, we studied mice with Pofut1

deletion, and thus O-fucose deficiency125,141,159. These mice

developed increased HSC cycling and increased HSPC

egress from the marrow manifested as neutrophilia along

with an increase in circulating myeloid progenitors. The

altered homeostasis of O-fucose-deficient HSC is accompa-

nied by the more distal locations of Lin–c-kitþSca-1þ (LSK)

cells relative to the endosteum and the OBs when compared

to control HSCs159. The increased cell-autonomous HSC

cycling and egress are primarily accounted for by a loss of

binding of O-fucose-deficient HSC to Notch ligands141,160.

The loss of binding results in a decreased adhesion of

Pofut1-deficient HSCs to marrow stromal cells. In the in

vitro cell adhesion assay, wild type (WT) long-term HSCs

Albakri et al 3



(LT-HSC; CD48–CD150þLSK), but not O-fucose-deficient

LT-HSCs from Pofut1-null mice, showed 15%–25%
increased adhesion to a stromal cell line from mouse bone

marrow (OP9) cells expressing Notch ligand (Jagged1,

DLL1, or DLL4) relative to parental OP9 cells160. The

recombinant ligand entirely blocked the Notch ligand-

mediated adhesion. Further, co-culture with OP9-DLL1,

OP9-DLL4, or primary calvarium OBs increased the quies-

cent cell fraction of WT LSKs in G0 phase (from basal level

17% to 37%, 48%, and 67%, respectively), whereas Pofut1-

null LSKs remained less quiescent on OP9-DLL1/DLL4 or

primary calvarium OBs.

To examine the specific contribution of different Notch

ligands and Notch receptors that support HSC quiescence and

niche retention, we applied neutralizing antibodies targeting

Notch ligand Jagged1 or DLL4. These antibodies block spe-

cific interaction of each ligand to Notch receptors161,162. Both

Jagged1 and DLL4 are expressed in BM endothelial cells and

OBs/osteolineage cells133,140,163–165. In vivo, we found that

circulating LSK and LK cells in the periphery of mice receiving

anti-Jagged1 or anti-DLL4 increased 2.5- to 3.3-fold, respec-

tively, compared to those receiving isotype control antibodies.

White blood cells increased modestly, while platelet numbers

did not change significantly in mice receiving anti-Jagged1 or

anti-DLL4. There was an increase in circulating granulocytes

and a decrease in T lymphocytes in mice receiving anti-DLL4

but not in mice receiving anti-Jagged1160. HSPC frequencies

did not change, except that common lymphoid progenitors

Table 1. Mobilizing Agents (Not Including G-CSF and Plerixafor) and Their Target Adhesion Molecules.

General class Agent
Target adhesion molecule
(direct or indirect)

Cytokines and chemokine Stem cell factor69–71 CXCR4 and VLA-4
FLT3 ligand72,73 CXCR4 and VLA-4
Thrombopoietin74 Mpl
Angiopoietin75,76 Angiopoietin
Vascular endothelial growth factor76,77 VEGFR2
IL-178, IL-379, IL-680, IL-781, IL-1282, IL-1783, and IL-3384 Various
CXCL12 and analogs85 CXCR4
Gro-a86 CXCR2
Gro-b86,87 CXCR2
Gro-g86 CXCR2
IL-888,89 Unknown

Chemokine receptor antagonists Inhibitors of the small Rho GTPase Rac1 inhibitors90,91 CXCR4
Bioactive lipids Sphingosine-1 phosphate92 CXCR4

Ceramide-1 phosphate92 Unknown
Bacterial toxins93 Lipopolysaccharide94 CXCR4

Pertussis toxin95 CXCR4
Proteases Trypsin96 CXCR4

Matrix metalloprotease 997 CXCR4
CD2698 CXCL12
Cathepsin G99 CXCR4
Neutrophil elastase99 CXCR4

Inhibitors of adhesive cell interactions59 VLA-4100,101 VLA-4
VLA-4/VLA-9 inhibitors102 VLA-4
VCAM-1103 VLA-4
CD44 blockers104 CD44v10

Polymeric sugar molecules Dextran105 Likely CXCR4
Fucoidan106 CXCL12 (SDF-1)
Betafectin PGG-glucan107 Unknown
Glycosaminoglycan mimetics108 CXCL12 (SDF-1)

Others Defibrotide109 Endothelial adhesion molecules
Prostaglandin inhibitors110 Osteopontin
Proteasome inhibitors (Bortezomib)111 CXCL12, angiopoietin, etc.
Parathyroid hormone60 CXCR4 and VLA-4
Blockade of heparan sulfate112 VLA-4
Stabilization of hypoxia-inducible factor-1a113 CXCR4
Ephrin A3 receptor antagonists114 VLA-4
Activation of Nlrp3 inflammasome115 Nlrp3
Notch2 blockade116 Notch2 and CXCR4

CD: cluster of differentiation; CXCR: CXC chemokine receptor type; CXCL12: C-X-C motif chemokine 12; FLT3: fms like tyrosine kinase 3; G-CSF:
granulocyte colony-stimulating factor; IL: interleukin; PGG-glucan: Poly-[1-6]–D-glucopyranosyl-[1-3]–D-glucopyranose glucan; SDF-1: stromal cell-derived
factor; VCAM-1: vascular cell adhesion molecule; VEGFR2: vascular endothelial growth factor receptor 2; VLA: very late antigen.
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(CLPs) decreased in anti-DLL4-treated mice, consistent with

the role of DLL4 in promoting CLP development in other

reports140. We found that there was an increase in marrow

HSPC proliferation following DLL4 but not after Jagged1

blockade. Further, mice receiving Jagged1- or DLL4-

antibody followed by G-CSF (4 doses) and plerixafor treatment

showed a further*50% increase in LSK mobilization relative

to control-treated mice160.

More recently, we examined the effects of Notch receptor

blockade. Unlike ligand neutralizing antibodies, Notch

receptor-specific blocking antibodies do not interfere with

receptor–ligand interaction, but instead block cleavage of

Notch receptors and thus downstream signaling activation161.

We found that in mice receiving Notch2-blocking antibodies,

but not Notch1-blocking antibodies, spleen-residing LSKs

and LKs increased three- to four-fold. When mice were given

G-CSF and plerixafor following four doses of anti-Notch2

treatment, a 2.5-fold increase of white blood cells, a 3- and

3.3-fold increase of LSKs and LKs were seen in the periphery,

and a 3.6- and 2-fold increase of spleen-residing LSKs and

LKs were found in mice receiving anti-Notch2 compared to

control-treated mice116. However, Notch2 blockade, com-

bined with G-CSF or plerixafor, did not affect marrow HSPC

homeostasis. We confirmed that increased HSPC egress fol-

lowing Notch2 blockade is a result of Notch2 signaling loss in

the hematopoietic system, since Notch2 deletion in hemato-

poietic tissues caused increased cell-autonomous egress of

HSPC to the PB and the spleen by reconstituted Notch2-

deficient BM cells from Vav-Cre/Notch2F/F mice in wild-

type recipients. However, the HSPC homeostasis was not

much affected in the marrow of Notch2-deficient mice.

Similar to the effect of anti-DLL4, the quiescent G0 HSCs

were decreased in mice receiving Notch2 antibodies or in the

marrow of Notch2-deficient mice116. We show that transient

Notch2 blockade or Notch2 loss in mice leads to decreased

HSPC CXCR4 expression but increased cell cycling with

CXCR4 transcription being directly regulated by the Notch

transcriptional protein RBPJ. Surprisingly, we found that

Notch2 blockade enhances HSPC homing and hematopoietic

recovery. We observed that a 1.9-fold more of Notch2-

blocked progenitors homed to the BM compared to their

corresponding controls. We studied the hematopoietic recon-

stitution at various time points after the transplantation of

cells from mice that received either control antibody, Notch1

or Notch2 blocking antibodies. Peripheral blood analysis

revealed a better recovery of platelets at 4 and 8 weeks and

a higher hemoglobin level until 10 weeks in recipient mice

receiving Notch2-blocked cells than in mice receiving

control-treated cells or Notch1-blocked cells. Analysis of

BM 3 months after transplantation showed that the mega-

karyoerythroid progenitors and the common myeloid pro-

genitors, derived from Notch2- but not Notch1-blocked

donors, increased by *92% and 75%. At the same time,

alteration to the HSC homeostasis did not occur.

In summary, either blocking Notch ligand adhesion

through neutralizing Jagged1 or DLL4 or blocking Notch2

signaling induces HSPC egress and mobilization without sig-

nificantly affecting HSC homeostasis (Fig. 1). In addition,

Figure 1. Blocking of Notch2-ligand adhesion through neutralizing and blocking antibodies induces HSPC egress and mobilization. DLL4:
Delta-like 4; HSPC: hematopoietic stem and progenitor cell.
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transient Notch2 blockade results in higher engraftment and

better myeloid reconstitution. The underlying mechanism is

being investigated.

Conclusion

Hematopoietic cell transplant (HCT) is a potentially curative

therapy for blood and nonhematologic disorders. A success-

ful outcome is dependent on the infusion of an adequate

number of functionally active mobilized HSPCs. Until

recently, G-CSF, either alone or in combination with che-

motherapy, failed to mobilize an optimal CD34þ cell dose

(5 � 106/kg) in up to 40% of patients166. Plerixafor, in com-

bination with G-CSF, increased total CD34þ cells mobilized

and often is used for HPC mobilization in myeloma and non-

Hodgkin lymphoma patients167. Unfortunately, this

approach does not always lead to adequate HSPC collection

in patients with prior extensive cytotoxic therapy. In some

instances, multiple HCT procedures may require higher

numbers of HSPCs168–170. Newer mobilizing regimens,

either alone or in combination with G-CSF and plerixafor,

have shown improved collection efficacy in preclinical mod-

els and could facilitate the collection of sufficient cells for

multiple transplants and significantly decrease procedure-

related risks, such as thrombocytopenia and infection asso-

ciated with large volume or multiple collections171–173.
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96. Fehér I, Gidáli J. Mobilizable stem cells: characteristics and

replacement of the pool after exhaustion. Exp Hematol. 1982;

10(8):661–667.

97. Hoggatt J, Singh P, Tate TA, Chou B-K, Datari SR, Fukuda S,

Liu L, Kharchenko PV, Schajnovitz A, Baryawno N. Rapid

mobilization reveals a highly engraftable hematopoietic stem

cell. Cell. 2018;172(1-2):191–204. e10.

98. Christopherson KW, 2nd, Cooper S, Broxmeyer HE. Cell

surface peptidase CD26/DPPIV mediates G-CSF mobiliza-

tion of mouse progenitor cells. Blood. 2003;101(12):

4680–4686.
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