
genes
G C A T

T A C G

G C A T

Article

Genome-Wide Association Study and Pathway
Analysis for Heterophil/Lymphocyte (H/L) Ratio
in Chicken

Jie Wang, Bo Zhu, Jie Wen, Qinghe Li and Guiping Zhao *

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, China; iwangjie0226@163.com (J.W.); bofenghouxizhuhou@163.com (B.Z.);
wenjie@caas.cn (J.W.); liqinghe@caas.cn (Q.L.)
* Correspondence: zhaoguiping@caas.cn; Tel.: +86-10-62816019; Fax: +86-10-62816018

Received: 12 July 2020; Accepted: 19 August 2020; Published: 27 August 2020
����������
�������

Abstract: Disease control and prevention have been critical factors in the dramatic growth of the
poultry industry. Disease resistance in chickens can be improved through genetic selection for
immunocompetence. The heterophil/lymphocyte ratio (H/L) in the blood reflects the immune
system status of chickens. Our objective was to conduct a genome-wide association study (GWAS)
and pathway analysis to identify possible biological mechanisms involved in H/L traits. In this
study, GWAS for H/L was performed in 1317 Cobb broilers to identify significant single-nucleotide
polymorphisms (SNPs) associated with H/L. Eight SNPs (p < 1/8068) reached a significant level of
association. The significant SNP on GGA 19 (chicken chromosome 19) was in the gene for complement
C1q binding protein (C1QBP). The wild-type and mutant individuals showed significant differences
in H/L at five identified SNPs (p < 0.05). According to the results of pathway analysis, nine associated
pathways (p < 0.05) were identified. By combining GWAS with pathway analysis, we found that
all SNPs after QC explained 12.4% of the phenotypic variation in H/L, and 52 SNPs associated
with H/L explained as much as 9.7% of the phenotypic variation in H/L. Our findings contribute to
understanding of the genetic regulation of H/L and provide theoretical support.
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1. Introduction

With the continuous increase in intensive agriculture, the poultry industry has developed rapidly.
Disease control and prevention have been critical factors in the dramatic growth of the poultry industry.
The widespread distribution of poultry and high-intensity rearing has allowed infectious diseases to be
spread and transmitted rapidly, resulting in considerable economic losses [1]. Vaccination is a common
method of disease prevention and treatment, but it has raised concerns regarding expense and meat
safety. Poultry has led the way among agricultural animal species in infectious disease control and,
in particular, selection for genetic resistance. Disease resistance in chickens can be improved through
genetic selection for immunocompetence. Heterophils are unique immune cells of birds and have the
immune defense function of phagocytosis of pathogens in the innate immune system [2]. Heterophils
play a crucial role in killing foreign pathogenic microorganisms when the specific immune system of the
body is not mature. The ratio of heterophils to lymphocytes (H/L) is indicative of an interplay between
immunity, physiology, and ecology. Studies have shown that the H/L is a characteristic indicator of the
environmental adaptation and different degrees of genetic evolution of birds. The pathogen exposure
hypothesis suggests that H/L decreases as the bird’s reproductive latitude decreases and is related to
the degree of exposure to pathogens or parasites in different geographic environments [3]. The H/L in
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the peripheral blood of chickens has been widely accepted as a reliable and accurate physiological
indicator of the chicken stress response [4]. With high or low temperatures, bacterial infection, and
other stress reactions, the number of heterophils increases [5,6], and thus H/L can be used as a blood
index reflecting the disease resistance of the body [4,7,8]. Two groups of chicken were selected as
resistant (low H/L) and sensitive (high H/L) on the basis of H/L. Many aspects of immune response
were compared after ST infection, namely H/L, antibody titer, cellular immunity, phagocytic activity,
cortisol concentration, bursa, and body weight. The low H/L group exceeded the high H/L group in all
the studied variables of the immune response [9].

Genome-wide association study (GWAS) can provide preliminary results in genetic research on
complex traits in animals. Many single-nucleotide polymorphism (SNP) loci and qualitative trait loci
(QTLs) with strong statistical significance have been discovered [10–13]. GWAS has become a powerful
tool for studying important economic traits of livestock and poultry and has promoted research on
marker-assisted breeding. However, GWAS cannot be used to identify the causative variation directly
associated with the traits. The correlation indicates that a linked region is related to a specific trait.
However, pinpointing the causative variation is more difficult. To reveal the mechanism through
which a mutation site affects a phenotype and to perform subsequent functional research, GWAS joint
analysis on multiple genomic levels can be used and biological pathway analysis can be applied to
detect the superposition of multiple minor genes by examining genes involved in the same biological
pathway, thus enabling deeper mining of GWAS data [14–17]. With the development of genome
sequencing technology and the continuous improvement of statistical methods, GWAS is expected to
become more efficiently applied to gene identification for important traits in livestock and poultry and
play an increasingly important role in animal breeding.

Our goal was to identify the candidate genes associated with H/L disease resistance traits, with
the goal of mitigating damage, and to conduct a pathway analysis to complement previously obtained
GWAS results for phenotypes associated with H/L.

2. Materials and Methods

2.1. Ethics Statement

The work was approved by the Animal Management Committee of the Institute of Animal
Sciences, Chinese Academy of Agricultural Sciences (IAS-CAAS, Beijing, China). Ethical approval
regarding animal survival was granted by the animal ethics committee of IAS-CAAS (approval number:
IASCAAS-AE20140615).

2.2. Phenotypes and Breeding Value Estimation

In 42-day-old chickens, 10 µL of blood was freshly obtained from the wing. Slides were air-dried
and dyed with May–Grunwald–Giemsa stain, and the H/Ls were calculated. The basic data have
been used in recent GWAS analysis, and details regarding the genotyping and phenotyping have been
reported [18]. In this study, a conventional pedigree-based best linear unbiased prediction model
(BLUP) was used to predict breeding values for H/L of the genotyped samples.

The pedigree-based BLUP model [19] is given as follows:

y = Xb + Za + e

where y is the vector of the phenotypic records of the trait (H/L), b is the vector of the fixed effect
(Batch and Sex), X is the incidence matrix linking b to y, a is a vector of additive breeding values to be
estimated, Z is the incidence matrices linking a to y, and e is the vector of residuals. We assumed that
var(a) = Aσ2

a , where A is the pedigree-based genetic relationship matrix. The prediction of breeding
values (ebv) was performed with the Asreml package [20]. The ebv calculated in this part was used for
the next GWAS analysis.
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2.3. Genotyping and Quality Control

Briefly, 1317 birds were genotyped with 55K Affymetrix Axiom Chicken Genotyping Array [21]
with the Affymetrix GeneTitan system according to the procedure described in the Axiom 2.0 Target
Prep 384 Samples Protocol (Affymetrix; Santa Clara, CA, USA) (https://www.thermofisher.com/).
Stringent quality control (QC) procedures were performed for the genotype data by using PLINK [22]
version 1.09 (http://zzz.bwh.harvard.edu/plink/). After QC (call rate >95%, minor allele frequency
>0.05, and extreme deviation from Hardy–Weinberg proportions (P > 1E-6)), 1212 animals and 36,750
SNPs, located on 28 autosomes and in the Z chromosome, were retained. Slight differences in the
number of individuals and SNPs across the recent GWAS analyses are attributed to phenotypic editing.

2.4. Single SNP-Based Association Analysis

The population structure was assessed by principal component analysis (PCA) using GAPIT
packages [19]. The basic MLM model was used for association analysis in GAPIT [23]. The p-value
was corrected with a strict Bonferroni adjustment based on LD pruning [24]. The sums of the
independent LD blocks plus singleton markers were used to define the number of independent
statistical comparisons [25]. Finally, 8068 independent SNPs were used to determine the p-value
thresholds, including 5% genome-wide significance (6.80 × 10−6, 0.05/8068), and suggestive association
(1.24 × 10−4, 1/8068). The quantile–quantile (Q–Q) plot and Manhattan plots of GWAS for H/L were
produced with the “qqman” packages [26] in R. The most significant SNP genotypes were added
to univariate models to analyze the phenotypic differences among individuals with different SNP
genotypes. Genes in a specific genomic region were detected by using Variant Effect Predictor (VEP)
based on the GRCg6a assembly supported by Ensembl (http://asia.ensembl.org/Gallus_gallus/Info/

Index).

2.5. Pathway Analysis

The pathway-based analysis workflow is represented in Figure 1. In brief, for each trait,
nominal p-values < 0.05 from the GWAS analyses were used to identify significant SNPs. With VEP
software (http://asia.ensembl.org/Tools/VEP), SNPs were assigned to genes if they were within the
genomic sequence of a gene or within a flanking region of 5 kb up- or downstream of a gene, to
include SNPs located in regulatory regions. The Ensembl GRCg6a database was used as a reference
(http://asia.ensembl.org/Gallus_gallus/Info/Index). The background SNPs represent all SNPs tested
in the GWAS analyses, whereas the background genes were the genes associated with those SNPs.
For assignment of the genes to functional categories, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [27] databases were used. Pathway enrichment analysis was performed with the
OmicShare tools, a free online platform for data analysis (www.omicshare.com/tools). Significantly
enriched pathways in significant genes compared with the background genes were defined with a
hypergeometric test.

https://www.thermofisher.com/
http://zzz.bwh.harvard.edu/plink/
http://asia.ensembl.org/Gallus_gallus/Info/Index
http://asia.ensembl.org/Gallus_gallus/Info/Index
http://asia.ensembl.org/Tools/VEP
http://asia.ensembl.org/Gallus_gallus/Info/Index
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(LD) blocks were obtained. 

Figure 1. Flowchart for pathway-based analysis. GWAS = genome-wide association study; KEGG =

Kyoto Encyclopedia of Genes and Genomes; VEP: Variant Effect Predictor; SNP: Single-Nucleotide
Polymorphism.

2.6. Proportion of Phenotypic Variance Explained (PVE) by SNPs

PVE estimation is equivalent to calculating the heritability of SNPs as h2
snp = σ2

g/σ2
p. The GBLUP

model was used to estimate the phenotypic variance explained by SNPs for all genotyped
individuals [28]:

y = Xb + Zg + e

where the definitions of y, X, Z, and e are the same as those in the BLUP model; g is the vector of
genomic breeding values to be estimated, following a normal distribution of N (0, Gσg

2), in which σg
2

is the variance of additive genetic effect; and G is the marker-based genomic relationship matrix. Z is
the incidence matrix linking g to y, and e is the vector of residuals; i.e., e is the vector of random errors,
following a normal distribution of N (0, Iσe

2), in which σe
2 is the residual variance. The estimation of

variance components was performed with the Asreml package [20].

3. Results

3.1. Single SNP-Based Association Study

In this study, 1317 birds were genotyped with Affymetrix Chicken 55K genotyping arrays.
According to the QC criteria, 1212 animals and 36,750 SNPs were used in subsequent analyses. A total
of 36,750 SNP markers were obtained with PCA by using the first three principal components (Figure 2).
p-value correction was first performed with PLINKv1.9 software [19] for block analysis. Bonferroni
correction was used to correct the p-values, and 8068 independent linkage disequilibrium (LD) blocks
were obtained.
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Figure 2. Population structure evaluated on the basis of the first three principal components.

GAPIT was used for traditional SNP-based association analysis. In total, one associated SNP
(5% genome-wide significance (6.80 × 10−6, 0.05/8068)) on GGA1 (chicken chromosome 1) and seven
SNPs with a suggestive association (1.24 × 10−4, 1/8068) on GGAs 1, 7, 13, and 19 were detected.
The detailed information on the SNPs reaching 5% genome-wide significance and the seven SNPs with a
suggestive association is shown in Table 1. One of the genes found in the 100 kb region on chromosome
1 (ENSGALG00000041225) is a novel gene. HNRNPA3 (heterogeneous nuclear ribonucleoprotein A3)
is a protein-coding gene that plays a role in the cytoplasmic trafficking of RNA. PLEKHM3 (pleckstrin
homology domain containing M3) may act as a scaffold protein for AKT1 during muscle differentiation.
C1QBP (complement C1q binding protein) is believed to be a multifunctional and multicompartmental
protein involved in inflammation and infection processes, and its signaling has been implicated
in inhibition of the innate immune response via the PI3K-AKT/PKB pathway. TENM2 (teneurin
transmembrane protein 2) is a protein-coding gene that mediates axon guidance and heterophilic
cell–cell adhesion. ZNF385B (zinc finger protein 385B) may play a role in p53/TP53-mediated apoptosis.
The Q–Q plot is presented in Figure 3. The global view of p-values (in terms of -log10 (p-value)) for
all SNPs is represented by a Manhattan plot in Figure 4. The raw results of all SNPs are described in
Table S1.

Table 1. Single-nucleotide polymorphisms (SNPs) with genome-wide significance for the
heterophil/lymphocyte ratio (H/L).

Traits SNP CHR POS p-Value Nearest Gene

H/L ebv AX_172586886 1 189449719 4.23 × 10−6 ENSGALG00000041225 (U52kb)
H/L ebv AX_76986680 7 15894092 2.20 × 10−5 HNRNPA3 (within)
H/L ebv AX_172565168 7 12098710 2.53 × 10−5 PLEKHM3 (within)
H/L ebv AX_75926692 19 3405344 3.18 × 10−5 C1QBP (within)
H/L ebv AX_75383308 1 189419246 4.83 × 10−5 ENSGALG00000041225 (U21kb)
H/L ebv AX_172582339 13 5407991 5.28 × 10−5 TENM2 (D102Kb)
H/L ebv AX_75383086 1 189344794 8.56 × 10−5 ENSGALG00000041225 (within)
H/L ebv AX_76984294 7 14956470 9.37 × 10−5 ZNF385B (U24Kb)
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with a p-value threshold of 6.80 × 10−6. 
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mutant SNPs led to a significant decrease in H/L and H/L ebv. The results for all SNPs are described 
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brief, nominal p-values < 0.05 from the GWAS analyses were used to identify significant SNPs. In 
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Figure 4. Manhattan plots showing association of all SNPs with the H/L trait, by using GAPIT 3.0.
SNPs are plotted on the x-axis according to their positions on each chromosome, and their association
with H/L is shown on the y-axis (as -log10 (p-value)). The blue dashed line indicates suggestive
genome-wide significance (p-value = 1.24 × 10−4), and the red line shows genome-wide 5% significance
with a p-value threshold of 6.80 × 10−6.

To effectively identify SNPs, we performed additional analyses, and the SNPs significantly
associated with H/L and H/L ebv were fitted into the model to examine these associations. We suggest
that the five identified loci provide the most reliable signal. The substitution of variant wild-type for
mutant SNPs led to a significant decrease in H/L and H/L ebv. The results for all SNPs are described in
Figure S1.

3.2. Pathway Analysis

The same genotyping dataset was used in this analysis. On the basis of the QC and SNP selection
criteria (Section 2), 335 pathways were selected from the KEGG dataset, covering 13,068 genes. In brief,
nominal p-values < 0.05 from the GWAS analyses were used to identify significant SNPs. In total, 1839
SNPs (out of the 36,750 tested) were located in annotated genes or in the 10 kb window (upstream
or downstream of a gene). The H/L trait was analyzed, and we identified nine associated pathways
(p < 0.05): small cell lung cancer, proteoglycans in cancer, calcium signaling pathway, microRNAs in
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cancer, sulfur relay system, pathways in cancer, gastric acid secretion, purine metabolism, and salivary
secretion. The Q–Q plot is shown in Figure 5. The detailed information for each pathway is provided
in Additional file: Tables S2 and S3. Furthermore, we prepared plots of the number of genes for each
pathway class to investigate the gene function. The results of gene classification confirmed the accuracy
of the GWAS analysis (Figure S2).
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3.3. Estimation of Phenotypic Variance Explained by SNPs from Various Datasets

To determine the contribution of SNPs to the phenotypic variation in H/L, we estimated the
phenotypic variance explained by SNPs from various datasets (Table S4, Figure 6). We analyzed
all SNPs after QC (QC_SNP, 36,750 SNPs) and found that the phenotypic variation that they were
able to explain was 12.4%. The phenotypic variation explained by GWAS-based loci (5 SNPs) and
pathway-based loci (48 SNPs) was 4.2% and 9.1%, respectively. The phenotypic variation in H/L
that could be explained by SNPs (53 SNPs, GWAS- and pathway-based) identified jointly by the two
analyses was as high as 9.7%.
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4. Discussion

4.1. Key Genes Associated with the H/L

Heterophils are a special type of white blood cells in poultry, which are responsible for immune
defense and immune regulation in the body’s innate immune system. Similarly to mammalian
neutrophils, heterophils mainly kill pathogens through trapping, phagocytosis, oxidative bursts,
cytokine production, and other processes, thus protecting poultry from invasion [2]. The process
through which phagocytic leukocytes produce reactive oxygen species (ROS) under external stimuli
(such as microorganisms and microorganism-related molecules) is called oxidation or the respiratory
burst. When the body is infected by pathogenic microorganisms and produces an acute inflammatory
reaction, heterophils migrate to the inflammatory site. C1QBP mediates many biological responses in
the immune system, including inflammation, infection, and immune regulation [29]. Mechanistically,
C1QBP is a direct target gene of ZNF32; it inactivates the p38 mitogen-activated protein kinase (MAPK)
pathway, thereby exerting the protective effects of ZNF32 against oxidative-stress-induced apoptosis.
C1QBP is essential for sustaining mitochondrial membrane potential, and it enhances cellular resistance
to oxidative stress [30]. C1QBP promotes the release of cytokines such as TNF-α, IL-1β, IL-6, IL-8,
and MCP-1 from mononuclear cells [31,32]. The C1QBP-enhanced phagocytic process occurs through
the activity of phosphoinositide 3-kinase (PI3K) [33,34]. C1QBP also plays an essential role in CSF-1
induced migration of macrophages [35].

ENSGALG00000041225 is a novel gene, encoding SH3 domain-containing protein. The SRC
homology 3 domain (or SH3 domain) is a small protein domain of approximately 60 amino acid residues.
This domain has been identified in several protein families such as PI3K, Ras GTPase-activating protein,
CDC24, and CDC25. SH3 domains are found in proteins involved in signaling pathways regulating the
cytoskeleton, such as the Ras protein, the Src kinase, and many others. Because PI3K and Src kinase are
key enzymes in heterophils, this gene may be associated with heterophil function [36]. This novel gene
identified may be related to the function of PI3K. C1QBP exerts immune regulation function through
PI3K. These two genes may be located in the same regulatory network and play a role together.

4.2. Signaling Pathways Associated with the H/L

The regulation of the H/L may be a result of complex interactions among multiple pathways.
According to the pathway analysis, several well-known pathways associated with immune response
were found to be enriched (e.g., small cell lung cancer, proteoglycans in cancer, microRNAs in cancer,
and pathways in cancer). In addition, other signaling pathways (calcium signaling pathway, sulfur
relay system, purine metabolism, and salivary secretion) were enriched significantly (p < 0.05).

The sulfur relay system pathway, regulated by MPST and URM1, was significantly associated
with H/L. According to previous research, MPST catalyzes the transfer of a sulfur ion from
3-mercaptopyruvate to cyanide or other thiol compounds. MPST is required for thiosulfate biosynthesis,
and it contributes to the catabolism of cysteine. It is also an important producer of hydrogen sulfide
(H2S) [37,38]. Treatment with H2S increases the proliferation and viability of LPS-treated L6 cells.
H2S decreases ROS-induced apoptosis through the MAPK signaling pathway in LPS-treated L6 cells.
H2S ameliorates LPS-induced inflammation through the ROS/MAPK and TLR4/NF-κB signaling
pathways [39]. Both endogenous and exogenous H2S inhibit cell proliferation and cytokine release,
in addition to inhibiting ERK-1/2 and MAPKs, thus resulting in a clear anti-inflammatory response [40].
H2S influences multiple biological functions of cells through inhibiting the PI3K/Akt/mTOR signaling
pathway and consequently inhibiting cell migration, proliferation, and cell division [41].

4.3. Contribution of SNPs to the Variation in H/L

The dissection of the H/L effect was based on the theory of quantitative polygenic micro-effects.
H/L is a complex trait affected by multiple genetic loci, but SNPs significantly associated with H/L,
according to GWAS analysis results, can usually explain only part of phenotypic variation. This partial
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explanation is primarily because of interactions among genes or between genes and the environment,
and the phenotypic variation that can be explained by SNPs is usually much lower than that of
heritability in a narrow sense (i.e., the ratio of additive genetic variance to phenotypic variance).
In contrast, non-additive effects do not contribute to narrow-sense heritability, mainly because some
causative variation sites affecting phenotypes do not reach the threshold of significance, or the causative
variation is not in LD with SNPs that have been genotyped [42]. Another reason is that GWAS considers
SNPs above a significance threshold, but a lack of SNPs that reach the threshold does not mean that
there is no additive effect. We found that all SNPs after QC explained 12.4% of the phenotypic variation
in H/L, and the phenotypic variation explained by phenotypic SNPs was between 4.2% and 9.7%.
In the H/L GWAS, combined with the pathway correlation analysis, 53 SNPs associated with H/L
explained as much as 9.7% of the phenotypic variation in H/L, a value close to the phenotypic variation
in H/L that all SNPs were able to explain. These results also precisely indicate that SNPs significantly
associated with H/L play a major role in the variation in H/L in all SNPs. Simultaneously, correlation
analysis based on pathways can meaningfully supplement the results of GWAS analysis.

5. Conclusions

This study comprised a GWAS and pathway analysis to identify genes associated with chicken
H/L traits, thus revealing genes associated with H/L. The gene C1QBP, identified as associated with H/L
estimated breeding value, may be an important candidate gene involved in the regulation of H/L. We
also provide five SNPs that could be used as genetic markers in breeding programs. To our knowledge,
this is the first GWAS and pathway analysis related to H/L ebv. In GWAS and animal breeding, studies
have mainly focused on simple associations of SNPs with traits. The pathway analysis provided
new findings relative to previous analysis, and confirmed that complex traits are affected by the
cumulative effects of several genes clustered in specific biological pathways. The pathways found to
be associated with traits may be useful in further studies involving gene mapping and development of
breeding programs using SNP markers. Our findings provide new insights into the genetic mechanism
underlying H/L.
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