Skip to main content
. 2020 Sep 2;10(9):1268. doi: 10.3390/biom10091268

Table 2.

Anticancer effect of quercetin (QT) nanoparticles in in vivo studies.

Nanomaterial Type Cancer Type/Effect Study Type Reference
PEG
poly(ethylene glycol)
MELANOMA
inhibition of tumour growth (B16F10 melanoma cells)
Animal model (mice) Dora C. L. et al., 2016 [48]
PEG-
phosphatidylethanolamine
LUNG CANCER
anticancer activity in the A549 lung cancer cells
Animal model (mice) Tan B. J. et al., 2012 [9]
PEG-liposomal
polyethylene glycol-liposomal
OVARIAN CANCER induction of apoptosis and inhibition of angiogenesis Animal model (mice) Long Q. et al., 2013 [49]
TPP-PEG
Triphenylphosphine
quercetin nanoparticles poly(ethylene glycol)
MITOCHONDRIA-TARGETED TUMOUR THERAPY
(MCF-7, A459 and HepG2 cells)
Animal model (mice) Xing L. et al., 2017 [36]
DSPE-MPEG
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol)
PROSTATE CANCER apoptosis induction of human androgen-independent PC-3 cells increased drug accumulation at the tumour site and superior anticancer activity Animal model (mice) Zhao J. et al., 2016 [50]
PLGA (poly(lactic co-glycolic acid) nanoparticles HEPATOCELLULAR CARCINOMA
protection of the mitochondrial membrane of the liver from carcinoma mediated prevention of the cytochrome C expression in the liver
Animal model (rats) Ghosh A. et al., 2012 [42]
PLGA-TMX
(poly(lactic co-glycolic acid) tamoxifen
BREAST CANCER
oral administration efficiently controlled the tumour angiogenesis, normalized levels of the markers (MMP-2 and MMP-9) in MCF-7 cells
Animal model (rats) Jain A. K. et al., 2013 [10]
RT-PLGA (poly(lactic co-glycolic acid) nanoparticles of rutin HEPATOCELLULAR CARCINOMA
reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling
Animal model (rats) Pandey P. et al., 2018 [45]
QT-loaded PLGA-TPGS (QPTN)
poly-(dl-lactic-co-glycolic acid)-D-α-tocopherol polyethylene glycol succinate
LIVER CANCER suppression of the tumour growth HepG2 and HCa-F cells Animal model (mice) Guan X. et al., 2016 [46]
MPEG-PCL
monomethoxy poly(ethylene glycol)-poly(ε-caprolactone)
OVARIAN CANCER inhibition of the growth of A2780S ovarian cancer cells through the mitochondrial apoptotic pathway Animal model (mice) Gao X. et al., 2012 [51]
COLORECTAL CANCER improved apoptosis induction and inhibition of cell growth in CT26 cells Animal model (mice) Xu G. et al., 2015 [11]
GPSLN
GeluPearl comprising of Precirol ATO 5 nanoparticles
MELANOMA
reduced lung colonization and enhanced anti-metastatic activity against B16F10 melanoma cells
Animal model (mice) Jain A. S. et al., 2013 [53]
PLA
poly (dl-lactide-co-glycolide)
HEPATOCELLULAR CARCINOMA
restricted development of hepatocarcinogenesis
Animal model (rats) Mandal A. K. et al., 2014 [43]
MPEG-PLA
methoxy poly(ethylene glycol)-poly(lactide)
BREAST CANCER
inhibition of tumour growth (mammary cancer T1 cells)
Animal model (mice) Sharma G. et al., 2015 [52]
Gold-PLA
gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles
CERVICAL CANCER induced apoptosis, autophagy and anti-proliferation via Janus kinase 2 suppression Animal model (mice) Luo C. L. et al., 2016 [55]
NEUROGLIOMA
induced autophagy and apoptosis in human neuroglioma U87 cells through activation LC3/ERK/Caspase-3 and suppression of AKT/mTOR signaling pathway
Animal model (mice) Lou M. et al., 2016 [39]
HEPATOCELLULAR CARCINOMA
inactivation of caspase/Cyto-c pathway, suppression of AP-2β/telomerase reverse transcriptase hTERT, inhibition of NF-κB/cyclooxygenase 2 COX-2 and Akt/ERK1/2 signaling pathways
Animal model (mice) Ren K. W. et al., 2017 [44]
Freeze-dried polymeric micelles GLIOMA
cytotoxic effect on C6 glioma cells
Animal model (mice) Wang G. et al., 2016 [40]
SPC-CHOL
soybean phosphatidylcholine-cholesterol
CERVICAL CANCER
in vitro anti-tumour efficacy to Hela cells in vivo inhibition effect on U14 cells
Animal model (mice) Li J. et al., 2017 [41]
PVP
poly (vinyl pyrrolidone)
BREAST CANCER antioxidative activity and efficient photothermal killing effect to cancer 4T1 cells Animal model (mice) Tang S. H. et al., 2019 [38]