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ABSTRACT Neurotropic Alphaherpesvirinae subfamily members such as bovine her-
pesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain life-
long latent infections in neurons. Following infection of ocular, oral, or nasal cavities,
sensory neurons within trigeminal ganglia (TG) are an important site for latency. Cer-
tain external stressors can trigger reactivation from latency, in part because activa-
tion of the glucocorticoid receptor (GR) stimulates productive infection and promot-
ers that drive expression of key viral transcriptional regulators. The Akt serine/
threonine protein kinase family is linked to maintaining latency. For example, Akt3 is
detected in more TG neurons during BoHV-1 latency than in reactivation and unin-
fected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency
in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial
for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in
neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors
impair stress-induced transcription and reduce the incidence of reactivation trig-
gered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not
Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate
early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0)
promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR).
Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neu-
roblastoma cells, which correlates with repairing damaged neurons. These studies
suggest that unique biological properties of the three Akt family members promote
the maintenance of latency in differentiated neurons.

IMPORTANCE External stressful stimuli are known to increase the incidence of reac-
tivation of Alphaherpesvirinae subfamily members. Activation of the glucocorti-
coid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates
bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Fur-
thermore, GR and dexamethasone stimulate productive infection and promoters that
drive expression of viral transcriptional regulators. These observations lead us to pre-
dict that stress-induced transcription is impaired by factors abundantly expressed
during latency. Interestingly, activation of the Akt family of serine/threonine protein
kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2,
but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the
BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly,
Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma
cells, a requirement for neurogenesis. These studies provide insight into how Akt
family members may promote the maintenance of lifelong latency.

KEYWORDS AKT signaling, HSV-1, bovine herpesvirus 1, latency, neurogenesis,
stress-induced transcription

Citation Zhao J, Zhu L, Wijesekera N, Jones C.
2020. Specific Akt family members impair
stress-mediated transactivation of viral
promoters and enhance neuronal
differentiation: important functions for
maintaining latency. J Virol 94:e00901-20.
https://doi.org/10.1128/JVI.00901-20.

Editor Richard M. Longnecker, Northwestern
University

Copyright © 2020 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Clinton Jones,
clint.jones10@okstate.edu.

* Present address: Jing Zhao, Shenzhen
International Institute for Biomedical Research,
Longhua District, Shenzhen, Guangdong,
China.

Received 8 May 2020
Accepted 30 July 2020

Accepted manuscript posted online 12
August 2020
Published

VIRUS-CELL INTERACTIONS

crossm

November 2020 Volume 94 Issue 21 e00901-20 jvi.asm.org 1Journal of Virology

14 October 2020

https://orcid.org/0000-0002-6656-4971
https://doi.org/10.1128/JVI.00901-20
https://doi.org/10.1128/ASMCopyrightv2
mailto:clint.jones10@okstate.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/JVI.00901-20&domain=pdf&date_stamp=2020-8-12
https://jvi.asm.org


Herpes simplex virus 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1) infections cause
important diseases in their respective hosts (1, 2). Their ability to latently infect

neurons and periodically reactivate from latency is crucial for virus transmission and, in
the case of HSV-1, for recurrent disease. Sensory neurons in trigeminal ganglia (TG) are
a primary site for latency when acute infection is initiated in the ocular, oral, or nasal
cavity (1–3). Establishment and maintenance of latency requires that infected neurons
survive, neuronal damage is repaired, lytic cycle viral gene expression is silenced, and
little or no virus is produced (4–6). The BoHV-1-encoded latency-related (LR) RNA and
the HSV-1 latency-associated transcript (LAT) are readily detected in latently infected
neurons. LAT (7) and the LR gene (8) encode multiple products that can promote
survival of infected neurons by inhibiting apoptosis (9–11) and expression of crucial
viral regulatory proteins (12, 13). A cellular microRNA reduces expression of an HSV-1
regulatory protein (ICP0), demonstrating that cellular factors play a role in promoting
latency (14). Thus, viral and cellular functions actively promote establishment and
maintenance of lifelong latency.

“Stress” increases the incidence of BoHV-1 (1, 2, 15, 16), HSV-1 (17–19), and canine
herpesvirus 1 reactivation from latency (20, 21). Strikingly, the genomes of BoHV-1 (22)
and HSV-1 (C Jones and F. Meyer, unpublished results) contain many putative gluco-
corticoid receptor (GR) response elements (GREs). The immediate early transcription
unit 1 (IEtu1) promoter of BoHV-1 contains two functional GREs that are essential for
transactivation by GR and the synthetic corticosteroid dexamethasone (DEX) (22, 23).
This viral promoter drives expression of two important viral transcriptional regulators
(bICP0 and bICP4). Recent studies demonstrated that GR and Krüppel-like transcription
factor 15 (KLF15) cooperatively transactivate the HSV-1 ICP0 promoter (24). While the
ICP0 promoter does not contain a whole GRE, it contains five half-GREs that are
important but not required for stress-induced promoter activation.

Recent studies suggested that the three Akt family members play a significant role
in the latency-reactivation cycle of BoHV-1 and HSV-1. For instance, Akt3 RNA is
significantly higher in TG neurons of calves latently infected with BoHV-1; conversely,
30 min after DEX is administered to initiate reactivation, Akt3 expression is reduced
more than 50-fold and the number of Akt3-positive TG neurons is significantly reduced
(25). Furthermore, the number of TG neurons that express Akt3 is significantly higher
during latency relative to the number of TG neurons from uninfected calves or from
those undergoing DEX-induced reactivation from latency. With respect to the HSV-1
latency-reactivation cycle, several studies indicate that Akt signaling is important. For
example, inhibiting the phosphatidylinositol 3-kinase (PI3K)/Akt signaling axis induces
reactivation from latency in two neuronal models of HSV-1 latency, primary rat sym-
pathetic neurons (26, 27) and Lund human mesencephalic (LUHMES) neuronal cells
(28). Furthermore, interfering with Akt kinase functions impairs the ability of the HSV-1
latency-associated transcript (LAT) to interfere with apoptosis and neurite formation
(29, 30). The Wnt/�-catenin pathway is induced during BoHV-1 latency but repressed
during DEX-induced reactivation (25, 31, 32). Mice latently infected with wild-type
HSV-1 contain significantly more TG neurons that express �-catenin than those in an
LAT-null mutant (33). Akt family members and the Wnt signaling pathway form a
positive regulatory loop (34–39), suggesting that these signaling pathways promote the
maintenance of latency.

While the three Akt family members are similar and are generally associated with
cell survival, regulating metabolism, and promotion of tumor development, they also
have nonredundant functions, reviewed in Manning and Toker (40). For example,
Akt1�/� mice exhibit growth defects and increased perinatal lethality (41). In contrast,
Akt2�/� mice develop diabetes-like symptoms (42). Furthermore, Akt1 interferes with
metastatic spread of breast cancer, whereas Akt2 promotes metastatic spread (43–45).
Akt3�/� mice have decreased brain volume and exhibit neurodevelopmental problems
(46, 47). Akt3 prevents stroke-induced neuronal injury (48), inhibits apoptosis in neu-
rons, and stimulates axonal development more efficiently than Akt1 and Akt2 (49).
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Currently, proteins phosphorylated by specific Akt isoforms that mediate the unique
biological properties of these kinases have not been identified.

In this study, we tested whether Akt family members regulate stress-induced
transactivation of two key alphaherpesvirus promoters, BoHV-1 IEtu1 and HSV-1 ICP0.
We also compared these results to the mouse mammary tumor virus long terminal
repeat (MMTV-LTR) because it is widely known to be activated by GR and DEX (50). Akt1
and Akt2, but not Akt3, interfered with GR-mediated transactivation of these three
promoters. Interestingly, a protein kinase dead Akt1 mutant did not inhibit stress-
induced transactivation of the IEtu1 and MMTV-LTR. Conversely, this Akt1 protein
kinase mutant inhibited stress-induced transactivation of the ICP0 promoter. Additional
studies revealed that Akt3, but not Akt1 or Akt2, enhanced neurite formation during
differentiation of Neuro-2A cells. In summary, these studies identified novel Akt func-
tions that are predicted to be important for maintaining a lifelong latent infection.

RESULTS
Akt1 reduced GR- and DEX-mediated activation of BoHV-1 IEtu1 collapsed

promoter in a dose-dependent manner. While the antiapoptotic functions of Akt
family members (40, 51) are likely to play an important role in maintaining latency, we
predicted that additional Akt functions are important for this crucial phase of the
latency-reactivation cycle. For example, mammals face stressful stimuli every day, but
reactivation from latency is not a daily occurrence. Support for this statement comes
from the finding that calves latently infected with BoHV-1 do not frequently shed virus
prior to DEX treatment (C. Jones, personal communication). Interestingly, Akt1 is
frequently activated in acute lymphoblastic leukemia, which correlates with develop-
ment of glucocorticoid resistance (52, 53). Based on these observations, we predicted
that cellular or viral factors actively restrain stress-induced stimulation of viral gene
expression during latency. Consequently, we tested whether Akt1, Akt2, or Akt3
influenced GR-mediated transactivation of viral promoters in Neuro-2A cells. Neuro-2A
cells were used for these studies because they are a mouse neuroblastoma cell line that
can be readily transfected and differentiated into dopamine-like neurons (54)—thus,
they have certain neuron-like properties.

Initially we examined the IEtu1 collapsed promoter because it is a minimal IEtu1
promoter construct efficiently transactivated by GR plus DEX or by GR plus KLF15 plus
DEX (22, 23, 55). The IEtu1 promoter contains two consensus GREs required for
activation by GR and DEX. Akt1 or Akt2, but not Akt3, significantly reduced GR-
mediated transactivation of the BoHV-1 IEtu1 collapsed promoter when cultures were
treated with the synthetic corticosteroid DEX (Fig. 1A). Increasing Akt1 concentrations
reduced GR-mediated activation in a dose-dependent manner (Fig. 1B). Dose-
dependent effects on GR-mediated transactivation of IEtu1 collapsed promoter activity
were also observed with Ak2 but not with Akt3 (data not shown). Conversely, none of
the Akt family members significantly reduced basal promoter activity. Akt1 is a serine/
threonine protein kinase, and the Akt1 kinase dead mutant (1014 pcDNA3 T7, which
contains 3 point mutations, namely K179M, T308A, and S473A; Addgene) (56) was used
to test whether kinase activity was important for inhibiting GR-mediated transcription.
The Akt1 kinase mutant (Akt1m) did not significantly reduce GR-mediated transactiva-
tion of the IEtu1 collapsed promoter (Fig. 1B). These studies demonstrated that Akt1
and Akt2 impaired GR-mediated activation of the IEtu1 collapsed promoter and that
Akt1 kinase activity was required for the inhibitory effect.

Akt1 and Akt 2 reduced GR-mediated activation of the MMTV-LTR promoter.
The effect of Akt family members on stress-induced activation of the mouse mammary
tumor virus (MMTV) long terminal repeat (LTR) was also examined because this
retroviral promoter is strongly stimulated by GR plus DEX, as well as by estrogen, due
to multiple GREs in the LTR (50, 57). Consequently, the MMTV-LTR is an excellent model
promoter to explore the mechanism by which stress-induced transcription occurs.
Hence, we examined the effect Akt family members had on MMTV LTR promoter
activity as a comparison to the BoHV-1 IEtu1 promoter. Akt1 and Akt2, but not Akt3,
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significantly reduced GR-mediated transactivation of the MMTV-LTR promoter in a
DEX-dependent manner (Fig. 2A). However, Akt1, Akt2, and Akt3 each had little effect
on basal promoter activity (no DEX addition). These studies also revealed that Akt1-
dependent inhibition was dose dependent (Fig. 2B). The Akt1 kinase mutant (Akt1m)

FIG 1 Akt family members influence GR- and DEX-mediated transactivation of the IEtu1 collapsed
promoter. (A) Neuro-2A cells were transfected with the IEtu1 collapsed promoter construct containing
the firefly luciferase reporter gene (0.5 �g) and, where indicated, plasmids that expressed GR (1.0 �g),
Akt1, Akt2, or Akt3 (1.0 �g). (B) Neuro-2A cells were transfected with the IEtu1 collapsed promoter
(0.5 �g) and, where indicated, plasmids that expressed GR (1.0 �g), Akt1 (1.0 �g, 2.0 �g, or 3.0 �g). or
Akt1 kinase mutant construct (3.0 �g). All transfections contained a plasmid that expresses Renilla
luciferase (0.05 �g) to normalize firefly luciferase values. To maintain the same amount of DNA in each
sample, empty vector was included in certain samples. Cells were incubated with 2% stripped fetal bovine
serum (FBS) at approximately 24 h after transfection, and then certain cultures were treated with DEX (10 �M).
At 48 h after transfection, cells were harvested and protein lysate subjected to a dual-luciferase assay. The
results are the average of 3 independent experiments, and error bars denote the standard error. Student’s t
test was used for statistical analysis. ns, not significant; **, P � 0.01; ***, P � 0.001.

FIG 2 Akt1 and Akt2 impair GR-mediated activation of the MMTV-LTR promoter. (A) Neuro-2A cells were
transfected with the MMTV-LTR promoter construct (0.5 �g) and, where indicated, plasmids that express
GR (1.0 �g), Akt1, Akt2, or Akt3 (1.0 �g). (B) Neuro-2A cells were transfected with the MMTV-LTR promoter
construct (0.5 �g) and, where indicated, plasmids that expressed GR (1.0 �g), Akt1 (1.0 �g, 2.0 �g, or
3.0 �g), or Akt1 kinase mutant construct (3.0 �g). All transfections contained a plasmid that expresses
Renilla luciferase (0.05 �g) to normalize firefly luciferase values. To maintain the same amount of DNA in
each sample, empty vector was included in certain samples. Cells were incubated with 2% stripped FBS
at approximately 24 h after transfection and then certain cultures were treated with DEX (10 �M). At 48 h
after transfection, cells were harvested and protein lysate subjected to a dual-luciferase assay. The results
are the average of 3 independent experiments and error bars denote the standard error. Student’s t test
was used for statistical analysis. ns, not significant; **, P � 0.01; ***, P � 0.001.
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did not significantly reduce GR-mediated transactivation (Fig. 2B), indicating that Akt1
kinase activity was essential for reducing GR-mediated transactivation of the MMTV-
LTR, which was similar to that of the IEtu1 promoter.

Akt1 reduced GR�KLF15 mediated transactivation of the HSV-1 ICP0 pro-
moter. The HSV-1 ICP0 promoter has numerous transcription factor binding sites and
is stimulated by heat stress-induced factors, (58). Expression of the multifunctional ICP0
protein is believed to be important for successful reactivation from latency (reviewed
in reference 15). Unlike the IEtu1 collapsed promoter and MMTV-LTR, there are no
consensus GREs in the ICP0 promoter (24). Akt1 had little effect on ICP0 promoter
activity when cultures were not treated with DEX, in part because the basal activity of
the promoter was low in Neuro-2A cells (Fig. 3A). Since DEX only stimulated promoter
activity by approximately 3-fold, the effects of Akt family members were nominal.
KLF15, GR, and DEX treatment cooperatively transactivate ICP0 promoter activity (24).
When KLF15 was cotransfected with GR (no DEX treatment), ICP0 promoter activity was
not influenced dramatically by Akt1 (Fig. 3B). However, Akt1 significantly reduced the
activity of GR plus KLF15 plus DEX mediated transactivation of the ICP0 promoter in a
dose-dependent manner (Fig. 3B). In contrast to the IEtu1 promoter and MMTV-LTR, the
Akt1 kinase mutant (Akt1m) also significantly reduced ICP0 promoter activity (Fig. 3B).
As with the MMTV-LTR and IEtu1 promoter, Ak2, but not Akt3, reduced ICP0 promoter
activity stimulated by GR, KLF15, and DEX treatment (data not shown).

To address whether Akt1 influenced GR steady-state proteins, increasing amounts of
Akt1 were cotransfected with the GR expression construct, and Western blot analysis

FIG 3 Akt1 significantly reduces GR- and KLF15-mediated transactivation of the HSV-1 ICP0 promoter. (A) Neuro-2A
cells were transfected with the HSV-1 ICP0 promoter construct (0.5 �g), plasmids that express Akt1 or Akt1m
(1.0 �g), and a plasmid that expresses GR (1.0 �g). (B) Neuro-2A cells were transfected with the ICP0 promoter
construct (0.5 �g) and, where indicated, plasmids that expressed GR (1.0 �g), KLF15 (1.0 �g), Akt1 (1.0 �g, 2.0 �g,
or 3.0 �g), or Akt1 kinase mutant construct (3.0 �g). All transfections contained a plasmid that expresses Renilla
luciferase (0.05 �g) to normalize firefly luciferase values. To maintain the same amount of DNA in each sample,
empty vector was included in certain samples. Cells were incubated with 2% stripped FBS 24 h after transfection
and then certain cultures were treated with DEX (10 �M). At 48 h after transfection, cells were harvested and
protein lysate subjected to a dual-luciferase assay. The results are the average of 3 independent experiments, and
error bars denote the standard error. Student’s t test was used for statistical analysis. ns, not significant; **, P � 0.01;
***, P � 0.001. (C) Neuro-2A cells were transfected with a plasmid that expresses Akt1 (1.0, 2.0 or 3.0 �g of the
expression vector as denoted), and a plasmid that expresses GR (1.0 �g). Cells were incubated with 2% stripped FBS
24 h after transfection and then certain cultures were treated with DEX (10 �M). At 48 h after transfection, cells
were harvested, cell lysate prepared, and Western blot analysis performed to detect GR and the loading control,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Fifty �g of protein was loaded in each lane. The results are
the average of 3 independent experiments. kd, kilodalton.
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were performed. The GR construct we used for these studies expresses a 120-kilodalton
protein, as previously demonstrated (23). In the presence of DEX, we consistently
observed that 3 �g Akt1 reduced GR protein levels by approximately 50% relative to
the loading control, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Fig. 3C).

Akt3 enhances Neuro-2A cell differentiation. When Neuro-2A cells are trans-
fected with a LacZ expression vector and growth factors are removed, �-galactosidase-
positive (�-Gal�) neurites were detected when cells were seeded at a low density and
then serum starved for 3 days (Fig. 4A, “control”), which is consistent with previous
studies (54). Numerous cells detach from the plate because they do not survive growth
factor withdrawal and consequently undergo apoptosis (27). When Akt1 or Akt2 was
transfected with the LacZ expression vector and neurite formation assessed, Akt1 and
Akt2 appeared to slightly increase the length of neurites (Fig. 4B). However, Akt1 and
Akt2 did not significantly increase the frequency of neurite formation (Fig. 5). In stark
contrast to Akt1 or Akt2, Akt3 dramatically increased the efficiency of neurite formation
(Fig. 4C and D and Fig. 5). For example, clusters of neurite-positive cells that contained
�-Gal� cells were readily detected (Fig. 4C). Furthermore, neurites were generally
longer relative to controls or Neuro-2A cells transfected with Akt1 or Akt2. In fact, we
observed �-Gal� Neuro-2A cells that had differentiated and contained neurites more
than 20 times longer than the cell body (Fig. 4D). Since neurite sprouting is synony-
mous with regeneration of damaged axons and dendrites (59), the ability of Akt3 to
enhance neurite formation and length of neurites may be important for repairing and
restoring normal neuronal functions following infection.

DISCUSSION

UV light, heat stress (fever), trauma, and increased corticosteroids as a result of stress
increase the incidence of reactivation from latency in humans (1–3, 17, 19, 60, 61). While
these reactivation stimuli appear to be dissimilar, heat stress and UV light activate the
GR. For example, cyanoketone, a glucocorticoid synthesis inhibitor, reduces corticoste-
rone synthesis and the efficiency of HSV-1 reactivation in latently infected mice (62).
Furthermore, heat stress or DEX increased the incidence of reactivation from latency in
cultured TG cells (63). UV light-induced GR phosphorylation occurs via a ligand-
independent mechanism that correlates with GR-mediated transcriptional activation

FIG 4 Akt3 efficiently promotes neurite formation in Neuro-2A cells. Neuro-2A cells were cotransfected
with an empty vector (pcDNA3.1) (A), a plasmid expressing Akt1 or Akt2 (Panel B), or Akt3 (C and D) (1 �g
plasmid DNA) and a plasmid expressing the lacZ gene (0.1 �g plasmid) to mark transfected cells. (B) A
typical result from cells transfected with Akt1 or Akt2. To induce neurite sprouting, 24 h after transfection,
cells were seeded into new plates at a low density (2,000 cells/cm2) and then incubated with minimal
essential medium (MEM) that contained 0.5% serum for 3 days. Cells were fixed, and �-Gal� cells were
detected by staining.
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(64, 65). UV light also induces expression of certain enzymes regulated by GR activation
(66) and activates a serine/threonine protein kinase, c-Jun N-terminal kinase (JNK) (65).
JNK is crucial for remodeling HSV-1 chromatin during reactivation from latency in an in
vitro neuronal model for latency (67). These studies suggest that several known
reactivation stimuli activate GR; consequently, GR-mediated transactivation of viral and
cellular promoters is predicted to trigger early events during reactivation from latency.

Several independent studies concluded that the phosphatidylinositol-3-kinase
(PI3K)/Akt/mTOR signaling axis promotes HSV-1 latent or quiescent infections in certain
neuronal cell culture models of latency. For example, inhibiting nerve growth factor,
PI3K, or Akt signaling induces reactivation from latency in two in vitro models for
latency, primary rat sympathetic neurons (26, 27, 68) and human LUHMES cells (a
human mesencephalic neuronal cell line) (28). Numerous growth factor signaling
pathways activate PI3K/Akt signaling pathways (38–40, 69). PI3K activation increases
phosphatidylinositol(3,4,5)-trisphosphate (PIP3); consequently, 3-phosphoinositide-
dependent protein kinase-1 (PDK1) and Akt signaling are activated (reviewed in refer-
ences 40 and 70). Akt can directly phosphorylate �-catenin, which leads to increased
�-catenin-dependent transcription (71). N-cadherin is also activated by Wnt/�-catenin
and N-cadherin activates Akt, which promotes neuronal differentiation during cortical
development (38).

We propose that Akt signaling has multiple effects on the ability of neurotropic
Alphaherpesvirinae subfamily members to maintain latency (summarized in Fig. 6). This
model is based on published studies using the following different latency models: (i)
Akt3 is expressed in more TG neurons during BoHV-1 latency (25) and (ii) the PI3K/
Akt/mTOR pathway maintain an HSV-1 latent/quiescent infection in neuronal models of
latency (26–28, 68). Strikingly, Akt3 RNA levels in TG are reduced more than 50-fold, and
the number of Akt3� TG neurons is significantly reduced during DEX-induced reacti-
vation of BoHV-1. In contrast, Akt1 and Akt2 RNA levels are similar in TG of uninfected
calves and in those with latency or DEX-induced reactivation. Studies presented in Fig.
1 and 3 revealed that Akt1 and Akt2 can potentially support maintenance of latency by
impairing stress-induced activation of viral promoters that drive expression of tran-
scriptional regulators. The finding that Akt2 inhibited GR-mediated transactivation is
supported by a published study demonstrating that Akt2 kinase activity interferes with

FIG 5 Akt3, but not Akt1or Akt2, significantly increased neurite formation in Neuro-2A cells. The relative
efficiency of �-Gal� cells containing neurites was calculated by dividing the number of �-Gal� cells with
a neurite length at least twice the diameter of the cell by the total number of �-Gal� cells. The % of
�-Gal� cells with neurites in the control was set at 1. The other samples were compared to the control
to obtain the relative efficiency of neurite formation. The average of three independent experiments is
shown with the respective standard deviation. An asterisk denotes significant differences (P � 0.05) in
�-Gal� Neuro-2A cells containing neurites following transfection with the Akt family member relative to
the number of �-Gal� Neuro-2A cells with neurites following transfection with an empty vector, as
determined by the one-way analysis of variance (ANOVA) and Fisher’s least significant difference (LSD)
multiple means comparison tests.
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glucocorticoid resistance in certain lymphoid malignancies (72). Furthermore, Akt1
directly phosphorylates GR at position serine-134, which interferes with GR nuclear
localization and transactivation (53). Multiple GR isoforms are generated by alternative
splicing and alternative translation initiation at the amino terminus of the GR (73, 74),
suggesting that certain GR isoforms may not be phosphorylated by Akt1 and Akt2.
While our studies indicated that overexpression of Akt1 in Neuro-2A cells slightly
reduced GR steady protein levels (Fig. 3C), we suggest that the ability of Akt1 to directly
phosphorylate GR at serine-134 was more important.

Surprisingly, Akt1 kinase activity was not important for interfering with the HSV-1
ICP0 promoter. In contrast to IEtu1 and MMTV-LTR, the ICP0 promoter lacks “whole”
GREs but contains half-GREs that are important but not required for stress-induced
transcription (24). GR and KLF15 stably interact with each other to form a feed-forward
transcription loop that cooperatively transactivates the ICP0 promoter and the BoHV-1
IEtu1 promoter (23, 24, 75). While GR monomers can bind and transactivate certain
half-GREs (76), we do not fully understand how GR and KLF15 transactivate promoters
that lack “whole” GREs. Of note, Akt1 was reported to stably interact with transcriptional
activators or repressors (77, 78), including an H3 methyltransferase that coordinates
gene silencing (79). Based on these observations, we suggest that interactions between
the Akt1 kinase mutant and transcriptional repressors serve as a molecular scaffold that
impair GR- and KLF15-mediated transactivation of the HSV-1 ICP0 promoter. Studies
designed to determine whether specific Akt family members regulate the BoHV-1 or
HSV-1 latency-reactivation cycle in vivo need to be performed. However, these studies
will be complicated and are not within the scope of this study.

While Akt3 had no obvious effect on interfering with GR-mediated transactivation,
novel functions of Akt3 are predicted to mediate certain aspects of maintaining latency.
For example, Akt3 enhanced neurite formation in Neuro-2A cells significantly better
than Akt1 or Akt2. In general, Akt signaling pathways stimulate neurite outgrowth (80),
impair neurodegeneration (81), promote neuronal survival following stressful stimuli
(82), and coregulate neuronal differentiation (83). However, Akt3, but not the other two
Akt family members, is required for nerve growth factor (NGF)-mediated antiapoptotic
signaling in PC12 neuron-like cells (84) and apoptosis in motor neurons (85). As
discussed above, Akt3 is more important than Akt1 and Akt2 for preventing stroke-
induced neuronal injury (48) and for promoting the growth of axons (49). Interestingly,
a recent study concluded that Akt3 directly binds and phosphorylates interferon
response factor 3 (IRF3), thus stimulating expression of antiviral type I interferons (86),
which may interfere with reactivation via the antiviral activity of IRF3 and type 1
interferons. In summary, novel Akt3 functions are predicted to contribute to the
maintenance of latency (summarized in Fig. 6).

FIG 6 Schematic of Akt functions that can influence maintenance of latency. Summary of how Akt family
members may contribute to maintenance of latency. For specific details, see the text.
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Several independent studies concluded that the PI3k/Akt signaling pathways is
coopted by several different viruses, including HSV-1 (87), to enhance virus entry, cell
survival, transcription, protein synthesis, and virus transmission (88, 89). HSV-1-encoded
protein kinases (US3 and UL13) regulate PI3K/Akt kinase activity to enhance virion
packaging, which increases virus yield (90). During BoHV-1 productive infection, Akt
phosphorylation is also increased dramatically (91) suggesting that these virally en-
coded kinases have similar effects on virus yield. While these findings appear to be
discordant with the findings presented in this study and the model proposed in Fig. 6,
tissue-specific effects of the three Akt family members in terminally differentiated
sensory neurons are predicted to be responsible for their putative roles during lifelong
latent infections.

MATERIALS AND METHODS
Cells, plasmids, and antibodies. Murine neuroblastoma cells (Neuro-2A; CCL-131) were obtained

from ATCC (Manassas, VA) and grown in minimal essential medium (MEM; Life Technology) supple-
mented with 10% fetal bovine serum (FBS), penicillin (10 U/ml), and streptomycin (100 �g/ml).

A plasmid that expresses Akt1 was a gift from Jie Chen (pCDNA3-HA-Akt1, plasmid 73408; Addgene).
A plasmid that expresses Akt3 was a gift from William Sellers (1236 pcDNA3 Myr HA Akt3, plasmid 9017;
Addgene). A plasmid that expresses Akt2 was a gift from William Sellers (1227 pcDNA3 Myr HA Akt2,
plasmid 9016; Addgene). The Akt1 kinase dead mutant (1014 pcDNA3 T7; Addgene) includes 3 points
mutations, K179M, T308A, and S473A. The HSV-1 ICP0 luciferase construct (�800 to �150) was obtained
from Priscilla Schaffer and was described in previous studies (58, 92). The BoHV-1 IEtu1 collapsed
promoter construct was previously described (93). The MMTV LTR luciferase reporter construct (pGL3-
MMLV-LTR-Luc) was obtained from Stephen Goff (catalog no. 67831; Addgene). All plasmids were
transfected into Neuro-2A cells in 60-mm dishes or 12-well plates using Lipofectamine 3000 transfection
reagent (L3000075; Invitrogen) according to the manufacturer’s instructions.

Dual-luciferase assay. To test the effect of Akt1, Akt2 and Akt3 on GR-mediated activation, Neuro-2A
cells were seeded into 60-mm dishes containing MEM with 10% FBS at 24 h prior to transfection. At the
time of transfection, approximately 6 � 105 Neuro-2A cells were present in each 60-mm dish. Two h
before transfection, cells were cultured with antibiotic-free medium containing 2% stripped FBS. Cells
were cotransfected with the designated plasmids and a plasmid carrying Renilla luciferase under the
control of a minimal herpesvirus thymidine kinase (TK) promoter (50 ng). To maintain equal plasmid
amounts in the transfection mixtures, an empty expression vector was added as needed. At approxi-
mately 24 h after transfection, water soluble DEX (Sigma; catalog no. D2915) number was added to the
designated cultures. At 48 h after transfection, cells were harvested, and protein lysate subjected to a
dual-luciferase assay by using a commercially available kit (catalog number E1910; Promega) according
to the manufacturer’s instructions. Luminescence was measured with a GloMax 20/20 luminometer
(catalog number E5331; Promega).

Neurite formation assay. Neuro-2A cells grown in 24-well plates were cotransfected with plasmids
that express Akt1, Akt2, or Akt3 (1 �g) and a pCMV–�-Gal plasmid (1 �g). At the time of transfection,
approximately 6 � 105 Neuro-2A cells were present in each 60-mm dish. To induce neurite sprouting,
24 h after transfection cells were seeded onto 60-mm dishes at a low density (2,000 cells/cm2) and cells
were starved in medium with 0.5% serum for 3 days. Cells were then fixed, stained, and a �-Gal assay was
performed as previously described (94). The percentage of cells with �-Gal� neurites was calculated by
dividing the number of �-Gal� cells with neurite length at least twice the diameter of the cell by the total
number of �-Gal� cells. The results are averages of three independent experiments.
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