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Abstract 

Background:  Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found 
significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs 
and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to 
develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more 
robust machine learning methods.

Methods:  Neutrophil RNA extracted from the blood of 134 patients (55 with IA, 79 IA-free controls) was subjected to 
next-generation RNA sequencing. In a randomly-selected training cohort (n = 94), the Least Absolute Shrinkage and 
Selection Operator (LASSO) selected transcripts, from which we constructed prediction models via 4 well-established 
supervised machine-learning algorithms (K-Nearest Neighbors, Random Forest, and Support Vector Machines with 
Gaussian and cubic kernels). We tested the models in the remaining samples (n = 40) and assessed model perfor-
mance by receiver-operating-characteristic (ROC) curves. Real-time quantitative polymerase chain reaction (RT-qPCR) 
of 9 IA-associated genes was used to verify gene expression in a subset of 49 neutrophil RNA samples. We also exam-
ined the potential influence of demographics and comorbidities on model prediction.

Results:  Feature selection using LASSO in the training cohort identified 37 IA-associated transcripts. Models trained 
using these transcripts had a maximum accuracy of 90% in the testing cohort. The testing performance across all 
methods had an average area under ROC curve (AUC) = 0.97, an improvement over our previous models. The Ran-
dom Forest model performed best across both training and testing cohorts. RT-qPCR confirmed expression differ-
ences in 7 of 9 genes tested. Gene ontology and IPA network analyses performed on the 37 model genes reflected 
dysregulated inflammation, cell signaling, and apoptosis processes. In our data, demographics and comorbidities did 
not affect model performance.

Conclusions:  We improved upon our previous IA prediction models based on circulating neutrophil transcriptomes 
by increasing sample size and by implementing LASSO and more robust machine learning methods. Future studies 
are needed to validate these models in larger cohorts and further investigate effect of covariates.
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Background
Intracranial aneurysms (IAs) are present in up to 6% of 
the general population, but only about 10% show any 
symptoms prior to rupture [1]. The rupture of an IA is 
the leading cause of nontraumatic subarachnoid hem-
orrhage, which has a mortality rate up to 50% [2–4]. 
Clinical studies have shown that the incidence of future 
rupture can be decreased with elective endovascular or 
surgical treatment [5, 6]. However, because most IAs are 
asymptomatic, unruptured aneurysms are usually only 
detected incidentally on cerebral imaging performed for 
other medical reasons. Imaging by magnetic resonance 
imaging/angiography (MRI/MRA), computed tomog-
raphy angiography (CTA), and digital subtraction angi-
ography (DSA) are not routinely used for IA screening 
because they are expensive and carry the risk for serious 
complications due to their invasive nature (e.g., DSA) or 
exposure to radiation (e.g., DSA, CTA). Thus, a blood 
test to identify individuals with unruptured IAs could 
facilitate a paradigm shift to proactive IA management by 
enabling routine screening and preventive treatment.

We hypothesized that changes in circulating neutrophil 
gene expression are correlated with the presence of IA in 
the cerebral vasculature. Neutrophils, the most abundant 
leukocyte in human blood, are important sentinels for 
tissue damage and defense against microorganisms, and 
play a central role in the coordination of innate immunity 
and inflammation [7]. Recent evidence has suggested that 
neutrophils have a large degree of heterogeneity in both 
phenotype and function, playing a wide range of roles in 
homeostasis and disease-specific responses [8]. Indeed, 
in previous publications, our group has demonstrated 
different circulating neutrophil signatures between indi-
viduals with cystic fibrosis and idiopathic arthritis [7], 
suggesting that neutrophils have the ability to adapt their 
transcriptomes to specific biologic contexts.

Recent studies have begun to show that neutrophils 
may display disease-specific responses during IA patho-
physiology. Investigations of resected aneurysms have 
found elevated levels of key proteins released from neu-
trophils, namely myeloperoxidase (MPO) and neutrophil 
gelatinase-associated lipocalin (NGAL) in the IA wall [9, 
10]. These proteins have also been found to be elevated 
in plasma levels of blood from patients with IA [10, 11]. 
These proteins may play a key role in extracellular matrix 
(ECM) degradation and neutrophil activation [12, 13] 
during aneurysm natural history via their production of 
reactive oxygen species (ROS) and protection of MMP-9 
degradation, respectively [9, 10]. Neutrophils can 

produce a wide range of cytokines, namely inflammatory 
and immunoregulatory cytokines, chemokines (neces-
sary for monocyte infiltration), angiogenic and fibrogenic 
factors, and tumor necrosis factor (TNF) superfamily 
members [14]. Studies have shown that TNF is upregu-
lated in human IA tissues [15], and from animal models 
of the disease, is essential for IA formation [16, 17]. Addi-
tionally, based on their reported role in progression and 
rupture of abdominal aortic aneurysms, neutrophils may 
also release neutrophil extracellular traps (NETs) in IA 
[18–21].

In a small, proof-of-concept study, we previously per-
formed differential expression analysis in case-controlled 
cohorts (n = 11 IA, n = 11 control) and found an 82-gene 
signature that distinguishes IAs from controls [22]. Bio-
informatics analyses broadly reflected peripheral neutro-
phil activation in patients with IA, as genes with elevated 
expression in the IA group were associated with leuko-
cyte activation, cell activation, and defense response [22]. 
In a follow-up study, we next utilized machine learn-
ing to determine whether an algorithm could predict 
the presence of unruptured IA using differential gene 
expression [23]. In an unmatched cohort (n = 30), 26 
highly-informative neutrophil transcripts (FDR < 0.05, 
abs[fold-change] ≥ 1.5) were used to construct a diagonal 
Linear Discriminant Analysis model, which predicted the 
presence of IA with an accuracy of 90% in a small inde-
pendent cohort (n = 10) [23].

While these results were exciting, due to the small 
sample size, it was difficult to generalize our findings to 
a broader population. Therefore, in this study, we aimed 
at confirming these results in a larger cohort of patients. 
Importantly, this increased sample size would enable us 
to: (A) implement more advanced feature selection meth-
ods (in place of basic thresholding) and machine learning 
techniques (i.e. Random Forest) to improve prediction 
accuracy, and (B) examine potential effect of demograph-
ics and comorbidities on model prediction.

Methods
Study enrollment
This study was approved by University at Buffalo Institu-
tional Review Board (study no. 030-474433). All methods 
followed the approved protocol. Written informed con-
sent was obtained from all subjects prior to sample col-
lection. Patients receiving cerebral DSA at Gates Vascular 
Institute, Buffalo, NY with and without IA diagnosis were 
enrolled in this study. Most indications for DSA included 
confirmation of noninvasive imaging results of presence 

Keywords:  Intracranial aneurysm, Neutrophil, Transcriptomics, Machine learning, Inflammation, Prediction model



Page 3 of 19Poppenberg et al. J Transl Med          (2020) 18:392 	

of IAs or other cerebral vascular conditions, follow-up of 
non-invasive imaging for headache or visual disturbance, 
or follow-up of previously identified IAs. All patients 
who consented to participate in this study were over 
18 years, English speaking, and had not previously been 
treated for IA. Patients with potentially altered immune 
systems were excluded, including, for example, patients 
who had recent invasive surgery, were receiving chemo-
therapy, had a fever (> 100°F), had received solid organ 
transplants, had autoimmune diseases, or were taking 
prednisone or other immunomodulating drugs.

Between December 2013 and September 2018, we col-
lected 232 blood samples from cerebral DSA patients at 
Gates Vascular Institute (103 from patients with IA, and 
129 from IA-free controls). Forty-three of these samples 
had been sequenced as a part of our previous studies 
[22, 23]. In all cases, IA diagnosis was confirmed by DSA 
images. Patient medical record data was also collected to 
study demographics and comorbidities.

Neutrophil isolation
During DSA, 16 mL of blood was drawn from the access 
catheter in the femoral artery and transferred into two 
8 mL, citrated, cell preparation tubes (BD, Franklin Lakes, 
NJ). Neutrophils were isolated within 1 h of blood collec-
tion, as described elsewhere [7]. Briefly, cell preparation 
tubes were centrifuged at 1700×g for 25 min to separate 
erythrocytes and neutrophils from mononuclear cells 
and plasma in the peripheral blood samples via a Ficoll 
density gradient. Erythrocytes and neutrophils were col-
lected into a 3 mL syringe. Following hypotonic lysis of 
red blood cells, neutrophils were isolated by centrifuga-
tion at 400×g for 10 min, disrupted and stored in TRIzol 
reagent (Life Technologies, Carlsbad, CA) at − 80 °C until 
further processing. Neutrophils isolated in this fashion 
are more than 98% CD66b+ by flow cytometry and con-
tain no contaminating CD14+ monocytes [24].

RNA preparation
Neutrophil RNA was extracted as described previ-
ously [22] using TRIzol, according to the manufactur-
er’s instructions. Trace DNA was removed by DNase I 
(Life Technologies, Carlsbad, CA) treatment. RNA was 
purified using the RNeasy MinElute Cleanup Kit (Qia-
gen, Venlo, Limburg, Netherlands) and suspended in 
RNase-free water. The purity and concentration of RNA 
in each sample were measured by absorbance at 260 nm 
and 280  nm on a NanoDrop 2000 spectrophotometer 
(Thermo Scientific, Waltham, MA), and 200 ng to 400 ng 
of RNA was reserved for sequencing. Precise RNA con-
centration was measured via the Quant-iT RiboGreen 
Assay (Invitrogen, Carlsbad, CA) with a TBS-380 Fluo-
rometer (Promega, Madison, WI), and the quality of the 

RNA samples was measured with an Agilent 2100 Bio-
Analyzer RNA 6000 Pico Chip (Agilent, Las Vegas, NV). 
RNA samples to be sequenced had acceptable purity 
(260/280 ratio of ~ 1.8 or greater, range: 1.76–2.12) and 
integrity (RIN of ~ 5 or greater, range: 4.5–9.1) prior to 
RNA sequencing.

RNA sequencing
For newly processed samples, the Illumina TruSeq 
Stranded Total RNA Gold Library Preparation Kit (Illu-
mina, San Diego, CA) was used for library preparation. 
Samples were subjected to 50-cycle, single-read sequenc-
ing in a HiSeq2500 system (Illumina) and demultiplexed 
using Bcl2Fastq. To increase sample size, we combined 
reads from these new samples with reads from our pre-
vious samples [22, 23] that were sequenced in the same 
manner, but for which libraries were constructed using 
the Illumina TruSeq RNA library Prep Kit V2 (Illumina, 
San Diego, CA). For all data, per-cycle base-call (BCL) 
files generated by the Illumina HiSeq2500 were con-
verted to per-read FASTQ files using bcl2fastq version 
2.20.0.422 using default parameters. The quality of the 
sequencing was reviewed using FastQC version 0.11.5. 
Detection of potential contamination was done using 
FastQ Screen version 0.11.1. FastQC and FastQ Screen 
quality reports were summarized using MultiQC version 
1.5. No adapter sequences were detected, so no trimming 
was performed. Genomic alignments were performed 
using HISAT2 version 2.1.0 using default parameters. 
NCBI reference GRCh38 was used for the reference 
genome and gene annotation set. Sequence alignments 
were compressed and sorted into binary alignment map 
(BAM) files using samtools version 1.3. Counting of 
mapped reads for genomic features was performed using 
Subread featureCounts version 1.6.2 using the param-
eters -s 2 –g gene_id –t exon –Q 60, the annotation file 
specified with—a was the NCBI GRCh38 reference from 
Illumina iGenomes. Aggregate quality control data (i.e. 
alignment statistics and feature assignment statistics) 
were again summarized using MultiQC.

Differential expression analysis and data exploration
Before implementing our machine learning pipeline, we 
performed differential expression analysis on the whole 
dataset to identify transcripts that were significantly 
differentially expressed in IA using Bioconductor pack-
age edgeR version 3.24.0. After estimating dispersion, 
edgeR identified differentially expressed genes by using 
a negative binomial distribution with generalized linear 
models and a quasi-likelihood F-test to identify differ-
entially expressed genes [25, 26]. We incorporated the 
two sequencing batches into the design matrix to cor-
rect for any potential batch effects due to different library 
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preparation kits. Genes with a counts sum > 0 across all 
samples were used as input. Multiple hypothesis testing 
correction was performed using Benjamini–Hochberg 
false discovery rate (FDR) correction [27]. Transcripts 
with an FDR-corrected p-value (q-value) < 0.05 were con-
sidered significantly differentially expressed. To explore 
how transcriptomes separated patients with and without 
IA on a broad scale, we performed hierarchical cluster-
ing, using the hclust package in R under default settings 
(complete linkage).

Next-generation sequencing is typically performed on 
high quality RNA (RIN > 7), when possible [28]. How-
ever, clinical samples, particularly human neutrophils 
that contain high levels of endonucleases as part of the 
host defense response to bacteria, rarely produce RNA 
without any degree of degradation [29]. Between IA and 
control groups in our study, there was no statistically sig-
nificant difference in RIN (p = 0.18, Student’s t-test). Yet, 
given that some samples had low RIN and others had 
high RIN, we performed co-variate correlation analy-
sis as shown in Xiong et  al. [30] in order to determine 
if RNA quality could have affected the expression lev-
els of differentially expressed transcripts. A correlation 
between gene expression and RIN was considered if it 
had both a Pearson correlation coefficient r > 0.80 and a 
p-value < 0.01.

Verification of expression differences by qPCR 
in a sub‑cohort
To verify expression differences in differentially 
expressed genes, quantitative polymerase chain reaction 
(qPCR) was performed. Due to limitations in RNA quan-
tity, qPCR was performed on 10 transcripts in a subset 
of 50 of the 134 samples (20 IA and 30 control). We fol-
lowed the protocol described previously [22]. In brief, 
oligonucleotide primers were designed using Primer3 
software (Primer3Web 0.4.0) and Primer BLAST (NCBI, 
Bethesda, MD) to have a 60  °C melting temperature, a 
length of 15–25 nucleotides, and a product of 50–250 
base pairs (with at least one primer that spans an exon-
exon junction), as well as an estimated efficiency > 0.8 
(actual range: 0.82–1.1, average: 0.96, median: 1.0) [31]. 
Primer sequences, annealing temperatures, efficiencies, 
and product lengths are reported in Additional file  1: 
Table  S1. For reverse transcription, first-strand cDNA 
was generated from total RNA using qScript cDNA 
Synthesis kit (Quantabio, Beverly, MA, USA) accord-
ing to the manufacturer’s directions. qPCR was run with 
5 ng of cDNA in 20 µL reactions in triplicate in Bio-Rad 
CFX Connect (Bio-Rad, Hercules, California) using the 
qScript One-Step SYBR Green Master Mix kit (Quanta-
bio, Beverly, MA, USA) and gene-specific primers at a 
concentration of 0.02 μM each. The temperature profile 

consisted of an initial step of 95 °C for 1 min, followed by 
40 cycles of 95 °C for 15 s and 60 °C for 1 min, and then a 
final melting curve analysis from 60 to 95 °C over 20 min.

Gene-specific amplification was demonstrated by a sin-
gle peak using the Bio-Rad dissociation melt curve. Sam-
ples were normalized based on HPRT1, GAPDH, and GPI 
(housekeeping genes [32–34]) expression, which were 
run in parallel reactions to the genes of interest. Addi-
tional file 2: Fig. S1 shows the stability in the expression 
(from RNA sequencing, Additional file  2: Fig.  S1A) and 
Ct values (from qPCR, Additional file 2: Fig. S1B) of the 
housekeeping genes in the control and IA groups. All 
had similar coefficient of variation values, and there was 
no statistical significance in their variation between the 
two groups for sequencing or qPCR (all p-values > 0.01, 
F-test). Their Ct values were used to calculate gene-spe-
cific average fold-change between the two groups using 
the 2−ΔΔCt method [35]. These values were then aver-
aged across all housekeeping genes. For comparison with 
qPCR data, RNA sequencing data from the same samples 
was used to calculate the average fold-change in gene 
expression between the IA and the control groups. This 
fold-change value (presented as an absolute fold-change 
in the positive or negative direction [for fold-change < 1]) 
was then compared to the same metric calculated by the 
2−ΔΔCt method in qPCR data in order to determine if the 
absolute fold-change in expression was in the same direc-
tion and statistically different (Student’s t-test, signifi-
cance at p-value < 0.05).

Feature selection for classification model development
To build predictive models for IA, we began with raw 
counts to eliminate bias and uncertainty associated 
with distribution modeling incorporated in edgeR. Raw 
counts were then normalized to transcript per million 
(TPM) values to facilitate comparison of expression 
between samples by normalizing by both gene length and 
sequencing depth. Then, we applied an abundance filter-
ing by only selecting protein coding genes with average 
TPM > 1 across all samples, reducing the set of potential 
transcripts to 18,833. To account for the two sequenc-
ing batches in our study design (as done in edgeR analy-
ses), we performed batch effect correction using ComBat 
under the default settings in R [36, 37]. Then, 70% of sam-
ples were randomly allocated to a training cohort (n = 39 
IA and n = 55 control) and 30% to a testing cohort (n = 16 
IA and n = 24 control), maintaining the proportion of IA 
and controls.

For feature selection in the training cohort, we per-
formed a supervised feature selection by using the 
Hilbert–Schmidt Independence Criterion Least Abso-
lute Shrinkage and Selection Operator (HSIC LASSO) 
method. HSIC LASSO was implemented in the ComBat 
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corrected dataset to select features for the model. To 
visualize how those selected transcripts separated sam-
ples from patients with and without IAs, we performed 
principal component analysis (PCA) using the prcomp 
package under the default settings [38]. Co-variate cor-
relation analysis following Xiong et  al. [30] was per-
formed again to determine if RNA quality (i.e. RIN) 
could have affected the expression levels of TPM-nor-
malized transcripts selected by LASSO. A correlation 
between gene expression and RIN was considered if it 
had both a Pearson correlation coefficient r > 0.80 and a 
p-value < 0.01.

Model training
We used MATLAB Statistics and Machine Learning 
Toolbox (MathWorks, Natick, MA) to train 4 popular 
algorithms (K-Nearest Neighbor, Random Forest, Sup-
port Vector Machine with Gaussian and cubic kernels) 
on 2 different gene panels—the 37 transcripts identified 
by LASSO in this study and the 26 transcripts identi-
fied by filtering in our previous study. While these algo-
rithms have been used in other disease classification 
applications [39–44], we implemented all 4 algorithms 
to determine which best suited our data. Specific 
parameters for each algorithm are as follows:

•	 For K-Nearest Neighbors, we used a Euclidean 
metric and 10 neighbors (k). The resulting model 
classified test samples by calculating their distance 
to each training sample and the test sample labels 
were predicted by choosing the class that was most 
common among their 10 nearest neighbors.

•	 For Random Forest, which constructs a multitude 
of decision trees in training and outputs the mode 
of the classes as the predicted class [45], we set the 
number of trees as 1000. The Random Forest was 
built by constructing a multitude of decision trees 
based on subsets of the training data generated by 
random sampling with replacement and the result-
ing model classified testing samples by the majority 
vote of the decision trees.

•	 For Support Vector Machines, we used two differ-
ent kernels [46], Gaussian and cubic. To separate a 
binary-labeled sample, the Support Vector Machine 
transforms them into a multidimensional space 
using the kernel, and then a hyper-plane, which 
maximizes the distance to samples of either class, 
is established. The resulting model classified testing 
samples by transforming them into a higher dimen-
sional space with the corresponding kernel and 
making decisions based on their signed distance to 
the hyper-plane.

Model assessment
We estimated the performance of each model for the new 
LASSO-identified features as well as our previously-iden-
tified 26 features by a leave-one-out (LOO) cross-valida-
tion within the training cohort. Model predictions were 
compared to each patient’s clinical diagnosis from imag-
ing, and the true positives, true negatives, false positives, 
and false negatives were tallied. We then calculated each 
model’s sensitivity, specificity, and accuracy, as described 
elsewhere [23]. Based on model predictions, we created 
receiver operating characteristic (ROC) curves and cal-
culated the area under the ROC curve (AUC) to assess 
model performance. Additionally, to gauge predictive 
value of models, we determined positive predictive value 
(PPV) and negative predictive value (NPV). PPV and 
NPV were estimated using formulas based on Bayes’ 
theorem as previously described [23] with 5% aneurysm 
prevalence, which is within the range of IA prevalence 
reported in the literature (3.2–7% [47–50]). The classifi-
cation models were then independently evaluated in the 
testing cohort (n = 40), and classification results were 
compared to clinical diagnoses to calculate the true sen-
sitivity, specificity, and accuracy for each model. ROC 
curves were constructed and AUCs, along with PPV 
and NPV, were used to assess the performance of each 
classifier. This was performed for algorithms trained on 
LASSO-selected features and the previous 26 features.

Testing influence of clinical covariates on gene expression 
differences
While we randomly assigned samples to training or 
testing cohorts, this study was not cohort-controlled 
and used a large, heterogeneous population. Conse-
quently, it is possible that factors other than IA sta-
tus, such as demographics or comorbidities, could 
be affecting differential expression and model per-
formance. To determine if patient characteristics 
influenced model performance, we first performed 
a chi-square test to determine if there were different 
rates in the aneurysm and control populations. We 
examined gender, hypertension, heart disease, stroke, 
high cholesterol, cancer, diabetes, arthritis, asthma, 
smoking status, and age. Additionally, we performed 
covariate matching in the MatchIt program in R to cre-
ate 6 subclasses under default settings with similar dis-
tribution of covariates (age [60 and under vs over 60], 
sex, smoking status [non-smoker vs current smoker], 
hypertension, heart disease, stroke history, high cho-
lesterol, cancer, diabetes, arthritis, asthma, and IA 
family history) for aneurysm and control popula-
tions [51, 52]. To create subclasses, we used a distance 
measure determined by a logistic regression model to 
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estimate the propensity score. We then examined mis-
classification rate in each of the subclasses to deter-
mine if any group with a specific “covariate profile” 
was associated with greater misclassification.

Bioinformatics
Gene ontology enrichment analysis was performed 
using Gene Ontology enRIchment anaLysis and visu-
aLizAtion tool (GORILLA) [53]. A background list 
of neutrophil expression from 3 healthy individu-
als (average fragments per kilobase million > 0.5) was 
used to compute hypergeometric statistics and assign 
significance to GO terms [7]. GO functions and pro-
cesses with a p-value < 0.001 were reported. Ingenuity 
Pathway Analysis (IPA) software (Qiagen Inc., https​://
www.qiage​nbioi​nform​atics​.com/produ​cts/ingen​uity-
pathw​ay-analy​sis) was used to investigate networks 
associated with the differentially expressed genes iden-
tified by edgeR (q < 0.05, fold-change > 2) and those 
selected by LASSO during feature selection. Each gene 
identifier was mapped to its corresponding gene object 
in the Ingenuity Knowledge Base and overlaid onto a 
molecular network derived from information accu-
mulated in the Knowledge Base. Gene networks were 
algorithmically generated based on their “connectiv-
ity” derived from known interactions between the 
products of these genes. Networks were considered 
significant if their p-scores were ≥ 15. Network score is 
calculated as p-score = −log10(p-value), so a score of 
15 corresponds to a p-value of 1E-15 [54].

Results
Study population
We obtained and analyzed an additional 91 samples from 
individuals undergoing cerebral DSA that met data and 
RNA quality criteria. Combined with the 43 samples we 
previously analyzed, our total dataset was 134 neutrophil 
transcriptomes—55 from patients with IA and 79 from 
control patients. The characteristics of study population 
are presented in Table 1; detailed aneurysm characteris-
tics in Additional file 3: Table S2. Overall, the 134 samples 
had an average 260/280 ratio of 2.04 (median: 2.05) and 
an average RIN of 6.7 (median: 6.7), as shown in the qual-
ity data reported in Additional file  4: Table  S3. Patients 
with IA had 73 aneurysms (as 12 individuals had multiple 
IAs), which ranged in size from 1 to 19 mm measured by 
largest diameter on 2D images.

Differential RNA expression in neutrophils from patients 
with IA vs. controls
RNA sequencing data were used to identify differentially 
expressed neutrophil transcripts between IA and con-
trol groups. Overall, our sequencing experiments had an 
average of 55.06 million reads per sample and a 95% read 
mapping rate (or % aligned), as reported in Additional 
file  4: Table  S3. The scatter plot in Fig.  1a shows neu-
trophil expression differences between IA patients and 
controls in terms of average fold-change in expression 
and significance level. Differential expression analysis in 
edgeR identified 65 transcripts that were significantly dif-
ferentially expressed (q < 0.05, fold-change > 2) (red and 
blue points in Fig. 1b). Twenty-three genes showed lower 

Table 1  Clinical characteristics of training and testing cohorts

Clinical characteristics of the randomly-created training and testing cohorts. With the exception of age, these factors were quantified as binary data points. The clinical 
factors were retrieved from the patients’ medical records via the latest “Patient Medical History” form administered prior to imaging

Training Cohort Testing Cohort

Control (n = 55) Aneurysm (n = 39) Control (n = 24) Aneurysm
(n = 16)

Age (Mean ± SE) 62 ± 2.0 61 ± 1.7 59 ± 2.9 57 ± 3.3

Age [Median (Q1/Q3)] 66 (54/72) 60 (54/68) 59 (54/68) 58.5 (49.25/63.25)

Sex (% of patients)

 Female 56.36% 69.23% 50% 75%

Smoker (% of patients)

 Yes 10.91% 26.64% 20.83% 43.75%

Comorbidities (% of patients)

 Hypertension 61.82% 53.85% 54.17% 50%

 Heart disease 30.91% 23.08% 25% 18.75%

 High cholesterol 52.73% 48.72% 62.50% 50%

 Stroke history 12.73% 10.26% 25% 0%

 Diabetes 29.09% 17.95% 8.33% 31.25%

 Arthritis 16.36% 30.77% 16.67% 18.75%

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis


Page 7 of 19Poppenberg et al. J Transl Med          (2020) 18:392 	

expression in the IA group, and 42 showed higher expres-
sion. For all differentially expressed transcripts, correla-
tion analysis demonstrated that RIN was not a significant 
co-variate; the maximum absolute Pearson correlation 
coefficient was 0.21, or a coefficient of determinization 
of R2 = 0.043 (range in R2

: 2.76E-6 to 0.043), and none 

had p-value < 0.01 (Additional file 5: Fig. S2A). Using all 
transcriptome data, we performed supervised hierarchi-
cal clustering to determine if gene expression in general 
could also discriminate patients with IAs from controls. 
On the dendrogram in Fig.  1c, samples from IA and 
control groups are separated. The dendrogram shows 7 

Fig. 1  RNAseq data from whole dataset (n = 134). a The scatter plot demonstrates the dispersion in expression between the IA and control groups. 
b The volcano plot produced following edgeR analysis demonstrates that there are 65 differentially expressed genes. Red points are increased in IA 
group and blue points are decreased in IA group. c Clustering performed on all transcriptome data demonstrates several distinct clusters of IA and 
control samples. Overall, 73% of samples were assigned to the correct group
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clusters of primarily IA or control samples (highlighted 
sections). Overall, hierarchical clustering congregated 
73% of the samples with their respective groups.

Bioinformatics results
To gain biological insight into the observed neutrophil 
RNA expression differences between IA and control 
groups, we performed bioinformatics analyses using gene 
set enrichment analysis and physiological pathway mode-
ling. We used GORILLA to analyze the ontologies associ-
ated with the edgeR genes with increased and decreased 
expression in IA as compared to background of healthy 
individuals. Genes with increased expression in IA were 
associated with cell migration, cell motility, T cell migra-
tion, and lymphocyte migration processes. On the other 
hand, genes with decreased expression in IA had func-
tions related to sodium channel activity, ion channel 
activity, and gated channel activity, as well as signaling 
and regulation of membrane potential processes. A full 
list of ontologies associated with edgeR genes is reported 
in Additional file 6: Table S4. IPA gene network analysis 
identified 3 significant networks with p-scores of 21, 21, 
and 15, respectively (Fig. 2). The first network was asso-
ciated with cell morphology, cell-to-cell signaling and 
interaction, nervous system development and function, 
with hubs around IRS1, GRIK1, GRIN2A, and L-glutamic 
acid. The second network is associated with connective 
tissue development and function, dermatological dis-
eases and conditions, organismal injury and abnormali-
ties, with hubs of ELAVL1, CCND1, and FMOD. Finally, 
the last network was enriched for cell death and survival, 
connective tissue disorders, and inflammatory disease 
functions, reflected by a predominant hub being TNF. 
Associated molecules and diseases/functions for each 
network are listed in Additional file 7: Table S5.

Verification of expression differences by RT‑qPCR
We confirmed expression differences of 9 prominent 
IA-associated transcripts (C1QL1, GPR15, HES4, 
PVRL2, CD163, CYP1B1, CDH2, ZBTB16, PTGDS) 
using RT-qPCR (qPCR was attempted on PDE9A, 
but results were not included due to low efficiency of 
the primer pairs; efficiency < 0.50). These genes were 
selected because they were prominently differen-
tially expressed transcripts, i.e. were in the models we 
trained, were highly abundant in at least one cohort, or 
were significantly differentially expressed. This confir-
mation was performed in a subset of 49 patient sam-
ples, as one IA sample did not provide sufficient data 
for analysis across all genes and so that data is not 
included here. Figure  3 demonstrates that the expres-
sion differences between patients with and without 

IA were of the same direction and of similar magni-
tudes when calculated by both RNA sequencing and 
RT-qPCR, with the exception of CDH2 and ZBTB16. 
There was a statistical difference between qPCR and 
RNA sequencing for C1QL1 and ZBTB16 (both p-val-
ues < 0.034). Only ZBTB16 had both a significant and 
different direction in fold-change than that reported by 
RNA sequencing.

Selected transcripts and model training
Feature selection using LASSO identified 37 IA-asso-
ciated transcripts with significant expression in the 
training cohort, which were used to create models with 
4 machine learning algorithms. Table  2 reports gene-
specific accuracy, sensitivity, and specificity of the 37 
model genes. For all transcripts selected by LASSO, 
correlation analysis also demonstrated that RIN was 
not a significant co-variate; the maximum absolute 
Pearson correlation coefficient was < 0.08 at 0.54 or 
R2 = 0.29 (range in R2

: 4.36E−6 to 0.29), although 11 
genes had a p-value < 0.01 (Additional file 5: Fig. S2B).

Figure  4 demonstrates PCA (a and d), performance 
metrics (b and e), and ROC curves (c and f ) for the 
training of four types of machine learning models that 
utilize either the new 37-transcript panel or our origi-
nal 26-gene panel. The PCA in Fig. 4a illustrates these 
transcripts’ ability to clearly separate aneurysm sam-
ples from control in training cohort. Compared to the 
PCA using the 26 previously identified genes in Fig. 4d, 
it is visually evident that the transcripts identified by 
LASSO were able to better separate IA and control 
groups.

Sensitivity, specificity, accuracy, NPV, and PPV 
estimated by LOO cross-validation in the training 
cohort are reported in Fig.  4b for models using the 
new 37-transcript panel. Each classification method 
achieved high performance, with accuracies that 
ranged from 0.85 to 0.91. Evaluation by ROC curve 
analysis showed a range in AUCs from 0.95 to 0.98 
(Fig. 4c) across all methods. All models had high NPV 
of approximately 1 (0.98–1). Random Forest outper-
formed K-Nearest Neighbor and both Support Vector 
Machine algorithms, with a sensitivity of 0.87, specific-
ity of 0.95, accuracy of 0.92, AUC of 0.98, NPV of 0.99, 
and PPV of 0.46. Figure 4e reports performances of the 
4 classification models trained with the 26 previously-
identified genes. Sensitivity, specificity, accuracy, NPV, 
and PPV were estimated by LOO cross-validation in 
the training cohort. AUCs ranged from 0.71 to 0.92, 
as shown in Fig.  4f. Overall performance in the train-
ing cohort was superior using the transcripts selected 
by LASSO; all metrics (accuracy, sensitivity, specificity, 
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AUC, 5% PPV, 5% NPV) when averaged across the 4 
models were greater using the new 37-gene panel.

Predictive models of IA have high performance and high 
NPV in testing
Figure 5 demonstrates PCA (a and d), performance met-
rics (b and e), and ROC curves (c and f ) for the testing 
of the machine learning models, which utilize either the 

new 37-transcript panel or our original 26-gene panel. 
PCA performed on the testing data (Fig. 5a) shows that 
the 37 transcripts could discriminate patients with IAs 
from controls. The separation between classes was more 
obvious using the 37 newly-identified transcripts than 
the 26 previously-identified transcripts (Fig.  5d). Using 
the 37 features selected by LASSO, the models predicted 
aneurysm status in the testing cohort with accuracies 

Fig. 2  Networks derived from IPA of the 65 differentially expressed transcripts (q < 0.05, fold-change > 2). Transcripts with increased expression in IA 
are red; transcripts with lower expression in IA are green; fold-change is represented by intensity. a This network (p-score = 21) has related functions 
of cell-to-cell signaling and interaction, nervous system development and function, and cell morphology. b This network (p-score = 21) associated 
with dermatological diseases and conditions, organismal injury and abnormalities, and connective tissue development and function. c This network 
(p-score = 15) has ties to cell death and survival, connective tissue disorders, and inflammatory disease
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ranging from 0.83 to 0.90 (Fig. 5b). The ROC analysis in 
Fig. 5c shows that model AUCs ranged from 0.95 to 0.99. 
In the testing cohort, the Random Forest model again 
performed well, with a sensitivity of 1.0, specificity of 
0.75, accuracy of 0.85, and AUC of 0.99. The performance 
of the previously identified 26-gene panel (Fig. 5e, f ) was 
similar to that of the 37-gene panel in the testing cohort 
with accuracies ranging from 0.83 to 0.93 and AUCs of 
0.84–0.97. While average accuracy for the 4 models was 
the same (86%) using the 37-gene panel identified by 
LASSO and the 26-gene panel previously identified, the 
models using the 37 LASSO features had greater average 
AUC (0.97 vs 0.91).

Bioinformatics of LASSO‑selected transcripts
To investigate how the biological underpinnings of IA 
specifically influence the genes selected by LASSO, we 
performed bioinformatics analyses using only the 37 
new panel genes (n = 23 with decreased expression in 
IA group, n = 14 with increased expression in IA group). 
Model genes with decreased expression in the IA group 
were associated with negative regulation of execution 
phase of apoptosis, negative regulation of endothelial 
cell proliferation, and regulation of execution phase of 
apoptosis (Additional file  8: Table  S6). However, model 
genes with increased expression in the IA group did not 

return any significant functions or processes. Two net-
works using all 37 genes produced by IPA had significant 
p-scores (equal to 47 and 25). The first network showed 
hubs around TNF and MMP3 and was associated with 
cancer, cellular movement, and connective tissue dis-
orders. The second had hubs around HBB and MAPK 
and was associated with cell cycle, cellular assembly 
and organization, DNA replication, recombination, and 
repair. We note TNF was incorporated in networks gen-
erated using both edgeR and LASSO gene sets. See Fig. 6 
and Additional file  9: Table  S7 for details on these net-
works, including associated molecules and top diseases 
and functions.

Presence of clinical covariates and effect on model 
performance
Table 3 shows the rates of demographics and comorbidi-
ties in aneurysm and control populations. Only smoking 
was significantly higher in the IA population (p = 0.017), 
which can be expected as it is a well-known risk factor 
for IA and IA rupture [55]. We created 5 subclasses using 
MatchIt as there were too few samples in the 6th sub-
class. Misclassification by the 37-gene prediction model 
for each subclass ranged from 8 to 19%, indicating no one 
subclass could be driving misclassification.

Discussion
More robust machine learning strategy improves 
biomarker performance
In this study, we implemented a new machine learning 
strategy for IA biomarker discovery, which consisted of 
a larger dataset (94 training, 40 testing), LASSO for fea-
ture selection, and more robust algorithms, K-Nearest 
Neighbor, Random Forest, and Support Vector Machine 
with cubic and Gaussian kernels. Our larger dataset and 
LASSO feature selection led to a new panel of 37 genes to 
use in IA predictive models. Two genes of these 37 genes, 
C1QL1 and TGS1, were also in our previously-discovered 
26-gene panel. The new learning algorithms trained using 
the 37 genes all performed very well in the testing cohort 
with accuracies of 0.83–0.90 and AUCs of 0.95–0.99, a 
marked increase over our previous algorithms. Interest-
ingly, all 4 new models had an NPV of 1, indicating that 
in the testing dataset there were no false negatives. This 
may be important for future applications of these bio-
markers as a prescreen, since false negatives would be 
particularly deleterious.

To examine how the increased sample size and 
improved algorithms affected model performance, we 
retrained the previous 26-gene panel using the new 
algorithms in the current, larger dataset. The per-
formance of the retrained models in the testing set 
(n = 40) using the 26-gene panel improved from our 

Fig. 3  Verification of RNA-Sequencing data for 9 transcripts by qPCR. 
A total of 49 of the sequenced samples were analyzed by RT-qPCR, 
as the other samples did not have enough RNA for the additional 
reactions. Seven of the 9 transcripts in samples in a subset of patients 
had the same direction of expression difference on qPCR. There 
was a statistically significant difference in fold-change in expression 
(indicated by *) between RNAseq and qPCR for C1QL1 and ZBTB16. 
Only ZBTB16 had both a significant and different fold-change 
direction (indicated by †) than that calculated with RNA sequencing 
data. (Negative fold-change values calculated by negative inverse of 
fold-change, error bars = standard error.)
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previous study with accuracies ranging from 0.83 to 
0.93 and AUCs of 0.84–0.97. Despite this increase in 
performance using the new algorithms, models using 
the previously identified 26 genes still fell short of those 
using the newly identified 37 genes; the average testing 
AUC using 26 genes was 0.91 compared to 0.97 when 

using 37 genes. This suggests that the 37 features iden-
tified by LASSO are more reliable for IA prediction 
than the 26 selected by filtering in our last study.

Improved IA prediction could be attributed to our 
increased sample size, which afforded several advantages. 
First, it allowed us to use LASSO to identify features 

Table 2  The 37 transcripts selected for classification model training

Acc accuracy, Sen sensitivity, Spe specificity

We show the per-transcript performance in the training and testing dataset. Transcripts with high accuracy (> 0.70) in both training and testing cohorts are denoted 
by †

Gene Gene ID Accession # Training Cohort Testing Cohort

Acc Sen Spe Acc Sen Spe

AC011380.1 – AC011380 0.56 0.64 0.51 0.58 0.69 0.50

C1QL1† 10882 NM_006688.5 0.80 0.56 0.96 0.93 0.88 0.96

CCDC42B 387885 NM_001144872.2 0.59 0.05 0.96 0.65 0.19 0.96

CEP295NL† 100653515 NM_001243541.1 0.71 0.59 0.80 0.80 0.56 0.96

CERS4† 79603 NM_024552.3 0.79 0.72 0.84 0.85 0.88 0.83

CLP1 10978 NM_006831.3 0.57 0.00 0.98 0.58 0.00 0.96

DCUN1D1 54165 NM_020640.3 0.57 0.00 0.98 0.60 0.00 1.00

EIF4EBP3 8637 NM_003732.3 0.47 0.26 0.62 0.68 0.69 0.67

FLT1 2321 NM_002019.4 0.52 0.00 0.89 0.50 0.00 0.83

GBGT1† 26301 NM_021996.6 0.71 0.74 0.69 0.70 0.88 0.58

GPR15† 2838 NM_005290 0.79 0.79 0.78 0.93 1.00 0.88

GPR157 80045 NM_024980.5 0.57 0.00 0.98 0.60 0.00 1.00

GTF2B 2959 NM_001514.6 0.55 0.03 0.93 0.55 0.00 0.92

HBB 3043 NM_000518.5 0.79 1.00 0.64 0.58 0.94 0.33

HIST1H4E 8367 NM_003545.3 0.57 0.00 0.98 0.60 0.00 1.00

HIST2H2AB 317,72 NM_175065.2 0.57 0.00 0.98 0.60 0.00 1.00

ISY1 57461 NM_001199469.1 0.60 0.05 0.98 0.65 0.13 1.00

KIAA1324 57535 NM_020775.5 0.59 0.05 0.96 0.55 0.06 0.88

KIAA1614 57710 NM_020950.2 0.63 0.15 0.96 0.63 0.06 1.00

LOC100129697 100129697 NM_001290330.2 0.65 0.26 0.93 0.58 0.06 0.92

LOC105377284 105377284 XR_938891.2 0.59 0.05 0.96 0.65 0.13 1.00

LRRN3† 54674 NM_001099658.2 0.78 0.79 0.76 0.85 1.00 0.75

MFSD6L 162387 NM_152599.3 0.67 0.59 0.73 0.65 0.50 0.75

MORC3 23515 NM_015358.3 0.57 0.00 0.98 0.60 0.00 1.00

MTRNR2L1 100462977 NM_001190452.1 0.57 0.03 0.96 0.60 0.00 1.00

NECAB1 64168 NM_022351.5 0.62 0.15 0.95 0.58 0.06 0.92

NEIL3 55247 NM_018248.3 0.57 0.00 0.98 0.60 0.00 1.00

PDCD10 11235 NM_007217.4 0.57 0.00 0.98 0.60 0.00 1.00

PGM5 5239 NM_021965.4 0.55 0.00 0.95 0.50 0.00 0.83

RFFL 117584 NR_037713.1 0.57 0.00 0.98 0.58 0.00 0.96

SDCBP2 27111 NM_080489.5 0.71 0.33 0.98 0.65 0.31 0.88

SMIM8 57150 NM_001042493.3 0.57 0.03 0.96 0.50 0.00 0.83

SYP 6855 NM_003179.2 0.59 0.05 0.96 0.63 0.13 0.96

TGS1† 96764 NM_024831.7 0.80 0.79 0.80 0.78 0.94 0.67

TMC4 147798 NM_001145303.2 0.64 0.49 0.75 0.63 0.44 0.75

USF1 7391 NM_007122.5 0.59 0.03 0.98 0.60 0.06 0.96

UTY​ 7404 NM_182660.1 0.57 0.00 0.98 0.60 0.00 1.00
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instead of simple filtering methods. Thresholding filters, 
as we had previously used, consider each gene indepen-
dently, which can neglect groups of genes that function 
together in pathophysiologic mechanisms and could 
be useful as a biomarker. Filtering methods can also 
select highly correlated, redundant genes that increase 
the number of features required to make accurate pre-
dictions. HSIC LASSO, a nonlinear feature selection 
method, overcomes these issues and identifies combina-
tions of non-redundant genes with strong dependence 
on disease status. Implementing LASSO in the training 
dataset identified 37 unique IA-associated genes, two of 
which (C1QL1, TGS1) had also been identified as part of 
the 26-gene panel in our last expression profiling study 
[23]. The identification of non-redundant features may be 
one reason why the biomarkers created in this study out-
perform our past efforts, as some of the 26 features (with 
the exception of C1QL1 and TGS1) may have ultimately 
been uninformative for classification.

Secondly, a larger sample size also enabled us to lev-
erage more complex machine learning models, namely 
Support Vector Machine and Random Forests which per-
form better in larger datasets [56]. In our previous effort 
we did implement Support Vector Machine, but only 
achieved a testing accuracy of 0.70, possibly because the 
training dataset contained only 30 patients [23]. In this 
larger study we were able to achieve an accuracy of 0.85 
for Support Vector Machine (Gaussian kernel). Never-
theless, we found that in our data Random Forest consist-
ently performed the best, with a testing accuracy of 0.85 
and AUC of 0.99. Both Random Forests and K-Nearest 
Neighbors are weighted neighbors schemes. However, 
the K-Nearest Neighbors algorithm may have had poorer 
performance because this classifier simply uses the train-
ing data for prediction instead of learning a discrimina-
tive rule. The performance of the K-Nearest Neighbors 
classifier is reliant on the quality of the training data, 
which in the case of transcriptomes derived from 
human samples may be noisy. However, this problem is 

Fig. 4  Models’ performance in the training dataset. a PCA using the 37 selected transcripts demonstrated clear separation between samples 
from patients with IA and those from controls. b Estimation of model performance during LOO C-V in the training cohort demonstrated that 
models performed with an accuracy of 0.85–0.91. Considering a 5% prevalence of IA, PPV ranged from 0.33–1 and NPV ranged from 0.98 to 0.99. 
c ROC analysis showed that all models had AUCs ≥ 0.95. d PCA using the 26 previously-identified transcripts demonstrated inferior separation 
between IA and control cases. e Estimation of model performance during LOO C-V in the training cohort demonstrated that models performed 
with an accuracy of 0.71–0.80. Considering a 5% prevalence, PPV and NPV ranged from 0.13–0.41 and 0.97–0.98, respectively. f ROC analysis also 
showed subpar performance compared to newly identified transcripts (AUC range 0.71–0.92). (AUC = area under the ROC curve, C-V = cross 
validation, cSVM = cubic support vector machines, gSVM = Gaussian support vector machines, KNN = k-nearest neighbors, LOO = leave-one-out, 
NPV = negative predictive value, PCA = principal component analysis, PPV = positive predictive value, RF = random forests, ROC = receiver operator 
characteristic)
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well-solved in Random Forest. Through the random sam-
pling process, Random Forest handles outliers by binning 
them. Also, by averaging the decision trees, the Random 
Forest method provides a low bias and moderate variance 
model, which improves the generalizability of the output 
model. In other words, Random Forest not only attains a 
good performance in the training data but also performs 
well in unknown (testing) data. And while Support Vec-
tor Machine performed well here, Random Forest likely 
surpassed Support Vector Machine by avoiding overfit-
ting and achieving better predictive power.

We note that increasing sample size may have intro-
duced more variability in our data due to a larger, het-
erogeneous population that was not cohort-controlled. 
For example, in our entire population we found smoking 
was significantly higher in patients with IA (χ = 0.017), 
which may be because smoking is a well-known risk 
factor for IA formation and rupture [57–59]. Indeed 

two genes in our model, LRRN3 and GPR15, are among 
the top differentially expressed genes in blood between 
current and never smokers according to a meta-anal-
ysis by Huan et  al. [60] Their presence in our predic-
tive model may be because of the higher proportion of 
smokers in IA group or because these genes are cap-
turing biological mechanisms related to smoking that 
are important in IA pathogenesis, such as endothelial 
dysfunction [61–63]. Still, when we performed covari-
ate analysis using MatchIt to create subgroups with 
similar distributions of covariates between IA and con-
trol groups, we found that no one subgroup had sig-
nificantly higher misclassification rates. For instance, 
61% of all subjects in “Subclass 5” were smokers, and 
this subgroup had a misclassification rate of 13%. Yet, 
“Subclass 1”, which had 0% smokers, had a misclassifi-
cation rate of 14%. These results suggest that our pre-
diction models may not be affected greatly by covariate 

Fig. 5  Models’ performance in the testing dataset. a PCA using the 37 selected transcripts in this independent dataset also demonstrated strong 
separation between samples from patients with IA and from controls. b Assessment of true model performance showed that models performed 
with an accuracy of 0.83–0.90. In this dataset all models had a sensitivity of 1. At 5% IA prevalence, the PPV ranged from 0.15 to 0.24 and NPV was 
1 for all models. c ROC analysis showed that all models again had AUCs ≥ 0.95. d PCA using the 26 previously-identified transcripts demonstrated 
mediocre separation between IA and control cases. e Estimation of model performance in the testing cohort demonstrated that models performed 
with an accuracy of 0.83–0.93. Considering a 5% prevalence, PPV and NPV ranged from 0.15–0.52 and 0.99–1, respectively. f ROC analysis also 
showed inferior performance compared to newly identified transcripts (AUC range 0.84–0.97). (AUC = area under the ROC curve, C-V = cross 
validation, cSVM = cubic support vector machines, gSVM = Gaussian support vector machines, KNN = k-nearest neighbors, LOO = leave-one-out, 
NPV = negative predictive value, PCA = principal component analysis, PPV = positive predictive value, RF = random forests, ROC = receiver operator 
characteristic)
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imbalance, albeit testing this in even larger cohorts will 
be needed to confirm these results.

Complex role of circulating neutrophils in intracranial 
aneurysm
Inflammation is widely-recognized to play a central role 
in the pathophysiology of IA [64–66]. It is commonly 
thought that in IA neutrophils are recruited to the 
sac, where they infiltrate the wall and coordinate the 
inflammatory responses [64, 67, 68]. In this study, gene 
ontology enrichment analysis showed that genes with 
higher expression in IA identified by edgeR in the entire 
dataset were related to cell migration and lymphocyte 
migration ontologies. These processes, which were also 
observed in neutrophils from patients with IAs in our 
previous studies [22, 23], increase upon peripheral acti-
vation and prompt inflammatory cell migration and 
infiltration of diseased tissue [64, 69]. IPA analysis mir-
rored these results, showing 3 significant networks, 2 
of which were involved in activation-related processes: 
cell-to-cell signaling and interaction, and inflammatory 
disease function. Interestingly, one of the largest nodes 
of gene connectivity in all the networks was TNF, a 
proinflammatory cytokine with many functions includ-
ing regulation of cell proliferation and apoptosis. TNF 

Fig. 6  Networks derived from IPA of the 37 genes identified by LASSO. Transcripts with increased expression in IA are red; transcripts with lower 
expression in IA are green; fold-change is represented by intensity. a This network (p-score = 47) affiliated with cancer, cellular movement, and 
connective tissue disorders. b This network (p-score = 25) has associated functions of cell cycle, cellular assembly and organization, DNA replication, 
recombination, and repair

Table 3  Clinical characteristic differences in  entire 
population

None of the reported covariates were significantly different in either group (chi-
square test < 0.05) except for smoking†

Control
(n = 79)

Aneurysm
(n = 55)

Chi-square test

Age (Mean ± SE) 61 ± 1.7 60 ± 1.5 (age 60 cutoff )
0.243Age [Median (Q1/Q3)] 65 (54/72) 60 (54/67)

Sex (% of patients)

 Female 54.43% 70.91% 0.054

Smoking (% of patients)

 Current 13.92% 30.91% 0.017†

Comorbidities (% of patients)

 Arthritis 16.46% 27.27% 0.130

 Asthma 7.59% 18.18% 0.063

 Cancer 11.39% 9.09% 0.668

 Diabetes 22.78% 21.82% 0.895

 Heart disease 29.11% 21.82% 0.344

 High cholesterol 55.70% 49.09% 0.451

 Hypertension 59.49% 52.73% 0.437

 IA family history 7.69% 12.73% 0.336

 Stroke history 18.99% 9.09% 0.114
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has been shown to have a mechanistic role in IA forma-
tion in animal models, [70] and an increased presence 
in human IA tissue compared to superficial temporal 
artery control tissue [71]. In this network, TNF has a 
predicted connection to DEFA1, which was signifi-
cantly elevated in neutrophils of IA patients. Higher 
levels of this cytotoxic defensin protein that is con-
tained within neutrophil granules have been reported 
in IA tissue, suggesting that production of this protein 
may occur peripherally before neutrophils enter the IA 
wall [72]. Here the molecules CCR4 (which is a receptor 
of MIP-1, RANTES, CCL17, and MCP-1) [73, 74] and 
CCR6 (which is a receptor of MIP-3α) [75] were also 
related to the TNF node. We suspect that these recep-
tors, which play a role in dendritic and T cell migration 
and recruitment during inflammation, [76] may coor-
dinate inflammatory cell migration once expressed in 
aneurysm tissue.

We also observed the dysregulation of inflammation 
and a potential role of TNF in our bioinformatics analyses 
of model genes selected by LASSO in the training dataset. 
TNF was a hub of connectivity in networks created using 
the LASSO genes. In these networks, we observed an 
indirect relationship between TNF and the complement 
system (i.e. C1QTNF1), which is also associated with 
C1QL1 (one of 37 model genes). This may be because 
complement activation plays a critical role in the inflam-
matory response, [77] has been implicated in IA wall deg-
radation and rupture, [78] and involves proteins that are 
increased in human IA tissue (including CFB, CFH, C1Q, 
and C3AR1 [79]). We suspect that the complement alter-
native pathway may be one mechanism through which 
neutrophils become activated as it can amplify activation 
through a positive feedback mechanism [80]. In addition 
to complement members, the TNF node was also related 
to CD44, a cell surface glycoprotein critical to neutrophil 
recruitment during inflammation. Because neutrophils 
interact with CD44, PSGL-1, and E-selectin ligand 1 as 
they roll along activated endothelial cells, this result may 
reflect neutrophils transmigrating into inflamed endothe-
lium [81]. Our data shows TNF may also interact with 
the transcription factor TP53, a node with connections 
to numerous molecules, many of which have decreased 
expression. TP53 plays a variety of roles in inflammation, 
such as acting on the NF- κB pathway [82]. NF- κB is a 
key transcription factor in the pathogenesis of IA, as it 
controls the inflammatory responses in the vessel wall 
[83]. The activation of NF-κB leads to the upregulation 
of MCP-1 and VCAM that function to recruit mono-
cytes to the IA lumen, where they become macrophages 
and secrete MMP-2 and MMP-9 to degrade the extra-
cellular matrix [84]. Overall, our bioinformatics analy-
ses of genes selected by LASSO, while not overlapping 

greatly with the differentially expressed genes selected by 
edgeR in the entire dataset (with the exception of C1QL1, 
GRP15), show that the biology of neutrophil activation 
and inflammation responses are captured by the IA pre-
diction model gene panel.

In addition to neutrophil activation and heightened 
inflammatory signaling, we observed other aberrant neu-
trophil functions not specifically characterized in IA, 
including our previous studies [22, 23]. In genes identi-
fied in the whole dataset by edgeR, gene ontology enrich-
ment analysis showed that the differentially expressed 
genes with decreased expression in IA had functions 
related to sodium channel activity, ion channel activ-
ity, and gated channel activity, as well as signaling and 
regulation of membrane potential processes (ASIC2, 
GRIK3, SCN5A). GRIK3, glutamate receptor 7, is par-
ticularly interesting as glutamate is a chemotactic factor 
for neutrophils after injury or infection [85]. Glutamate 
binding to its receptors can trigger release of cytokines 
and MMPs and can activate immune responses, all criti-
cal processes in IA [86, 87]. Future studies are needed to 
better understand how these channel activities impact IA 
pathogenesis.

New ontologies were also captured using the genes 
identified by LASSO in the training dataset. Using the 
LASSO genes with lower expression in IA, we found 
dysregulation of apoptosis as gene ontology enrichment 
analysis reported both negative regulation of execution 
phase of apoptosis and regulation of execution phase of 
apoptosis. These were associated with RFFL, which has 
been shown to be related to TNF signaling [88]. Ontolo-
gies were also related to MTRNR2L1 (MTRNR2-Like 1) 
that may function similarly to Humanin (MTRNR2), 
which is protective against cell death by suppressing sev-
eral apoptotic pathways. Several studies have shown that, 
in this way, Humanin may be a neuroprotective factor 
that can influence Alzheimer’s disease and other angi-
opathy-associated neurodegenerative diseases [89, 90]. 
Perhaps in our study, dysregulated MTRNR2L1  expres-
sion (as well as TP53, which also induces apoptosis) [91, 
92] may be responsible for increasing the lifespan of neu-
trophils, which would provide further evidence of neu-
trophil activation in IA. These results are echoed in the 
blood profiling study of IA published by Jin et  al. [93]. 
They reported hsa-miR-21, an upregulated miRNA in IA 
serum, induces apoptosis by extracellular signals, poten-
tially triggering more apoptotic reactions to facilitate the 
medial thinning and destructive remodeling, a hallmark 
of IA pathogenesis [94–97]. Overall, we suspect that cap-
turing neutrophil activation and inflammation responses 
involved in IA is the reason why the 37-gene panel was 
able to detect IA.
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Limitations
In this study, we increased sample size from our previous 
study by adding 94 samples to 40 samples we previously 
analyzed. However, these two batches used different ver-
sions of the Illumina kit for library preparation, which 
necessitated the implementation of batch effect cor-
rection that could potentially have introduced bias or 
skewed our dataset [98]. Secondly, RNA sequencing was 
performed on samples with a wide range of RIN values. 
While we demonstrated that RIN was not a significant 
co-variant of differential expression, in the future meth-
ods such as DegNorm developed by Xiong et  al. [30] 
could be implemented to correct for expression variation 
due to differences in RNA degradation and potentially 
yield more accurate results. Thirdly, all samples were 
recruited from patients receiving cerebral imaging at a 
single center, which may introduce selection bias. Future 
studies are needed to validate our predictive models 
using broader patient populations from multiple centers. 
Fourthly, inflammatory or vascular diseases other than IA 
could affect model prediction. Larger studies with multi-
ple control groups of individuals with other vascular and 
inflammatory conditions are needed to refine our model. 
Lastly, more rigorous qPCR performed specifically on 
model genes with more efficient probes (primers) will be 
needed to translate this gene panel into an assay that can 
show linearity in output and reproducibility over techni-
cal replicates.

Conclusions
We improved IA predictive model performance from 
circulating neutrophil transcripts by using LASSO for 
feature selection and powerful machine learning tech-
niques in a large dataset. The Random Forest algorithm 
performed the best with a testing AUC of 0.99. Bioinfor-
matics using all 134 samples implicated inflammation 
through TNF and neutrophil activation as key processes 
in IA. IPA networks using the 37 LASSO-selected genes 
also reflected these increased inflammatory and signaling 
pathways. Comorbidities and demographics did not sig-
nificantly affect IA prediction. Future studies are needed 
to validate these predictive models.
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