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Recurrent tumor and treatment-induced effects have 
different MR signatures in contrast enhancing and  
non-enhancing lesions of high-grade gliomas
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Abstract
Background.  Differentiating treatment-induced injury from recurrent high-grade glioma is an ongoing challenge in 
neuro-oncology, in part due to lesion heterogeneity. This study aimed to determine whether different MR features 
were relevant for distinguishing recurrent tumor from the effects of treatment in contrast-enhancing lesions (CEL) 
and non-enhancing lesions (NEL).
Methods. This prospective study analyzed 291 tissue samples (222 recurrent tumor, 69 treatment-effect) with 
known coordinates on imaging from 139 patients who underwent preoperative 3T MRI and surgery for a suspected 
recurrence. 8 MR parameter values were tested from perfusion-weighted, diffusion-weighted, and MR spectro-
scopic imaging at each tissue sample location for association with histopathological outcome using generalized 
estimating equation models for CEL and NEL tissue samples. Individual cutoff values were evaluated using re-
ceiver operating characteristic curve analysis with 5-fold cross-validation.
Results.  In tissue samples obtained from CEL, elevated relative cerebral blood volume (rCBV) was associated with 
the presence of recurrent tumor pathology (P < 0.03), while increases in normalized choline (nCho) and choline-to-
NAA index (CNI) were associated with the presence of recurrent tumor pathology in NEL tissue samples (P < 0.008). 
A mean CNI cutoff value of 2.7 had the highest performance, resulting in mean sensitivity and specificity of 0.61 
and 0.81 for distinguishing treatment-effect from recurrent tumor within the NEL.
Conclusion.  Although our results support prior work that underscores the utility of rCBV in distinguishing the ef-
fects of treatment from recurrent tumor within the contrast enhancing lesion, we found that metabolic parameters 
may be better at differentiating recurrent tumor from treatment-related changes in the NEL of high-grade gliomas.

Key Points

1. �MR signatures that distinguish treatment effect and high-grade tumor vary spatially.

2. �MR spectroscopic metrics within nonenhancing regions are the most predictive.
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Tumor recurrence in patients with high-grade glioma (HGG) is 
difficult to diagnose because treatment-induced injury often ap-
pears identical on conventional anatomic MRI. It is estimated 
that 25‒35% of patients who undergo standard-of-care radia-
tion and chemotherapy in the form of temozolomide for HGG 

experience treatment-related injury,1–3 and its appearance is 
even more common with the recent advent of immuno- and 
other targeted therapies in clinical trials. If recurrence is incor-
rectly diagnosed, a patient may be removed from an effective 
therapy, which could invalidate the results of a clinical trial or 
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expose a patient to unnecessary surgical intervention. To 
mitigate these risks, identifying the exact location and ex-
tent of treatment-related changes within newly enlarging le-
sions is critical.

Despite the known pitfalls of using anatomic imaging, 
the current Response Assessment in Neuro-Oncology 
criteria for HGG relies solely on standard T1- and 
T2-weighted MR imaging.4 These techniques allow for 
visualization of anatomic abnormalities but are limited 
in their ability to capture the underlying biology that dif-
ferentiates true recurrent glioma from treatment effects. 
Emerging data suggest that incorporating more advanced 
MRI techniques may be useful for probing underlying bi-
ological differences: diffusion-weighted imaging for cap-
turing the restricted water movement from the density 
of proliferating tumor cells5–10; perfusion-weighted im-
aging for evaluating the increased vasculature recruited 
to support a growing mass11–15; and spectroscopic im-
aging for elucidating the metabolic differences between 
inflammation and proliferating tumor cells.6,14,16 Although 
several groups have investigated the potential for distin-
guishing between treatment effects and recurrent tumor 
using these techniques, the majority of prior studies 
typically involve calculating the mean diffusion-, perfu-
sion-, or spectroscopic-derived parameter value from an 
anatomic region of interest (ROI) and normalizing that 
value against that obtained from contralateral normal-
appearing white matter in order to obtain a threshold 
that can distinguish treatment effects from true tumor 
recurrence. These ROI-based methods suffer from widely 
varying cutoff values for parameters due to interobserver 
dependence, intratumoral heterogeneity, and the coex-
istence of treatment effect and tumor within the same 
lesion. Such studies also typically use radiographic obser-
vations or a single tissue sample for outcome determina-
tion, ascribing a single diagnosis to a mixture of tissue 
types that could mask the heterogeneity of the lesion and 
limit the accuracy of the cutoff value concluded from the 
study and overall clinical diagnosis.

To overcome the complications introduced by tissue 
heterogeneity in ROI-based studies, one strategy is to use 
image-guided tissue samples of known coordinates to di-
rectly map MRI characteristics to histopathology. In 2002, 
Rock et  al pioneered this technique in distinguishing ra-
diation necrosis from recurrent disease using metabolite 
ratios derived from 1H MR spectroscopic imaging (MRSI) at 

the location of sampled tissue.17 Their findings suggested 
that the ratios of choline and lactate/lipid to creatine could 
differentiate samples with pure necrosis and tumor, but 
not those with mixed pathology. In 2009, Hu et al utilized 
this technique in conjunction with dynamic susceptibility 
contrast (DSC) perfusion-weighted imaging to distinguish 
post-treatment radiation effect from recurrent tumor with 
high sensitivity and specificity using relative cerebral 
blood volume (rCBV) values from 13 patients.

The goal of this study was to determine whether the rel-
evance of different MR characteristics for distinguishing 
pathological features of recurrent tumor from the effects 
of treatment in the contrast enhancing and non-enhancing 
lesions of recurrent high-grade gliomas by leveraging a 
unique dataset of image-guided tissue samples of known 
coordinates to avoid complications of tissue heterogeneity 
that confound most lesion-level analyses. Based on prior lit-
erature, we expect that samples from recurrent tumor will 
have increased blood volume and abnormal metabolism, 
with decreased diffusion compared with samples containing 
treatment effect. We also hypothesize that: (i) this difference 
would be more pronounced in diffusion and perfusion met-
rics for samples within the contrast enhancing lesion (CEL), 
while metabolic measures would be equally effective at 
differentiating recurrent tumor from treatment effect in both 
the contrast enhancing and non-enhancing lesions (NEL); 
and (ii) the addition of multiparametric physiologic and met-
abolic MRI in conjunction with tissue sample level analyses 
will provide increased sensitivity and specificity in distin-
guishing recurrent tumor from the effects of treatment in 
both types of lesions compared with anatomic imaging.

Materials and Methods

Patient Recruitment

Institutional Review Board approval was obtained at our 
institution to prospectively enroll consecutive patients 
with an initial pathological diagnosis of a World Health 
Organization grade III or IV glioma who were suspected of 
recurrence between 2007 and 2017. A total of 173 patients 
(median age, 52; range, 21–84) were enrolled who pro-
vided written informed consent to participate and under-
went MR imaging between 1 and 3 days prior to surgical 

Importance of the Study

It is estimated that 25‒35% of patients experience 
treatment-induced effects that can mimic recurrent 
high-grade gliomas, which poses a great diagnostic 
challenge. If recurrence is mistakenly diagnosed, a pa-
tient may be removed from an effective therapy, which 
may invalidate the results of a clinical trial and/or ex-
pose that patient to unnecessary surgical intervention. 
Alternatively, mistaking tumor progression for treatment 
effect would allow an aggressive tumor to exist without 
further treatment. The coexistence of treatment effects 

and recurrent tumor within the same patient is thought 
to impact the classification of lesions as treatment ef-
fect or tumor using summarized MRI characteristics. 
This study aims to determine an optimal combination of 
physiologic and metabolic imaging metrics that can dis-
tinguish pathological features of recurrent tumor from 
the effects of treatment by leveraging a unique dataset 
of image-guided tissue samples that directly maps pa-
thology to MR characteristics.
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resection and tissue sample collection. Demographics 
were typical for this population as shown in Table 1. The 
majority of patients received an initial surgical resection 
followed by the standard-of-care radiotherapy (119 pa-
tients) plus temozolomide (114 patients). Forty-one patients 
also received 1 or more of 19 different additional therapies 
(18 bevacizumab, 8 immunotherapy). Prior treatment his-
tory was unknown for 12 patients.

From each patient, 1–4 tissue samples were obtained 
(mean samples/patient was 2.3, with 1.18 samples/patient 
within the CEL and 0.91 samples/patient within the NEL). 
Of the initial 479 samples from 173 patients, a sample was 
only included in the analysis if it: (i) had a conclusive his-
topathological outcome; (ii) came from a patient whose in-
itial diagnosis was as high-grade glioma; (iii) did not come 
from a region of hematoma or extensive necrosis; (iv) had 
quantifiable anatomic imaging data; and (v) was located 
within either the CEL or NEL (Fig.  1A). This resulted in a 
total of 291 samples from 139 patients, 26 of whom had a 
diagnosis at surgery of grade III and 90 of grade IV, and 23 
were exclusively treatment effect.

MR Acquisition

MR examinations were performed on a 3T scanner (GE 
Healthcare Technologies) using an 8-channel phased-array 
head coil. Standard anatomic imaging included T2-weighted 
fluid attenuated inversion recovery (FLAIR) and fast spin 
echo images, along with 3D T1-weighted inversion re-
covery spoiled gradient imaging pre- and post-injection of 
a gadolinium-based contrast agent. Diffusion-tensor im-
ages (DTIs) were obtained in the axial plane with b = 1000 s/
mm2 and either 6 gradient directions and 4 excitations or 
24 gradient directions and 1 excitation or b = 2000 s/mm2 
and 55 gradient directions (repetition time [TR]/echo time 
[TE]  =  1000/108  ms, voxel size  =  1.7–2.0  ×  1.7–2.0  ×  2.0–
3.0  mm). DSC perfusion-weighted images were obtained 
following a 3  mL/s bolus injection of 0.1  mmol/kg body 
weight gadolinium diethyltriamine pentaacetic acid using 
a series of T2*-weighted echo-planar images (TR/TE/flip 
angle = 1250–1500/35–54 ms/30°–35°, 128 × 128 matrix, slice 

thickness = 3–5 mm, 7–24 slices with 60–80 time points) be-
fore, during, and after the arrival of the contrast agent bolus. 
The temporal resolution was between 1 and 1.5 seconds, with 
total acquisition time ranging 1–2 min. The 3D 1H MRSI was 
acquired using point-resolved spectroscopic selection for 
volume localization and very selective saturation pulses for 
lipid signal suppression (excited volume = 80 × 80 × 40 mm, 
TR = 1100–1250 ms, TE = 144 ms, overpress factor = 1.5 if 
lactate edited, otherwise 1.2, field of view = 16 × 16 × 16 or 
18 × 18 × 16 cm, nominal voxel size = 1 × 1 × 1 cm), flyback 
echo-planar readout gradient in the superior–inferior direc-
tion, 988 Hz sweep width and 712 dwell points. A dual-cycle 
lactate-edited sequence18 was used for 42 patients (83 sam-
ples, 11  min), while a standard single-cycle sequence was 
used for the remaining 38 patients (68 samples, 6 min).

MR Data Processing

Anatomic, diffusion, and perfusion data were aligned 
to the T1 post-contrast image using either FMRIB’s FSL  
Linear Image Registration Tool19,20 or Slicer’s BRAINSFit tool 
with B-spline warping.21 Spherical 5-mm-diameter ROIs 
were generated at the location of the spatial coordinates 
recorded during surgery in order to balance the potential 
error introduced by tissue shift and the need to restrict the 
ROI to the immediate vicinity of the sampled tissue.22 All 
locations were then visually verified for accuracy on ana-
tomic imaging using screenshots taken during the surgery, 
and excluded if there was a mismatch between the coordi-
nate locations and visualized location on imaging.

A pipeline that utilized components of FMRIB’s Diffusion 
Toolkit was applied to estimate relevant diffusion param-
eters from the DWI and DTI data as previously described.19 
In order to account for differences in acquisition param-
eters over the 10-year study duration, voxel values for the 
apparent diffusion coefficient (ADC) and fractional anisot-
ropy (FA) maps were normalized to the mode of intensities 
in normal-appearing brain tissue (resulting in normalized 
[n]ADC and nFA maps). Normalized ADC increases as av-
erage diffusivity of water within a voxel increases and 
therefore its decrease should act as a marker for glial 

  
Table 1.  Clinical and demographic characteristics of the patient population included in this study

Clinical/Demographic Characteristics Patients, n Patients, %

Totals 139 100

Sex Female 56 40.3

Race White 112 80.6

 American Indian 1 0.7

 Asian 6 4.3

 Pacific Islander 2 1.4

 Other 18 12.9

Clinical diagnosis Grade III astrocytoma 11 7.2

 Grade III oligodendroglioma 15 10.8

 Grade IV glioblastoma 87 62.6

 Grade IV gliosarcoma 3 2.2

 Treatment effect 23 16.5

Age at recurrent surgery Median, range 53 21–84
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proliferation, while nFA is an index for the amount of direc-
tional movement of water resulting from the parallel orien-
tation of axonal fibers in white matter.

From the DSC perfusion data, rCBV maps were first 
calculated on a voxel-by-voxel basis utilizing a modified 
gamma-variate function that takes into account leakage 
of the contrast agent.23 To generate a single concentration-
time curve per sample, unquantifiable voxels of noise were 
automatically excluded and the percentage of the tissue 
sample ROI within each perfusion voxel was determined 
before taking a weighted average of the remaining dy-
namic curves based on their percentage overlap with the 
ROI (Fig. 1B).24 This method helped mitigate inaccuracies in 
quantification of perfusion parameters from tissue sample 
ROIs due to the relatively small size of the ROI compared 
with the low resolution of the perfusion scan and the pres-
ence of susceptibility artifacts and necrosis. Relative CBV 
for each tissue sample was calculated as the area under 
the final gamma-variate fitted single concentration-time 

curve after leakage correction. An increase in rCBV reflects 
an increased volume of blood vessels in a given amount 
of brain tissue, and is therefore expected to be elevated in 
regions of recurrent tumor as it recruits blood vessels to 
supply oxygen to an enlarging mass.

Spectroscopic data were reconstructed and 
postprocessed using in-house software, as previously de-
scribed.25–27 To generate a single spectrum centered at the 
location of each tissue sample, 3D spectral arrays were first 
shifted in k-space to reconstruct a spectral voxel on the 
center coordinates of each tissue sample location (Fig. 1B). 
Peak heights and areas were determined from baseline-
subtracted and frequency- and phase-corrected spectra on 
a voxel-by-voxel basis.28 The choline-to-NAA index (CNI) 
and the choline-to-creatine index (CCrI) were obtained as 
previously described, using the entire 3D array of spectra in 
the iterative regression.29 Normalized total choline (nCho), 
creatine (nCre), and N-acetylaspartate (nNAA) intensities 
were calculated using their median value in voxels that had 

  

Consecutive HGG
patients: 173
samples: 479

T2 FLAIR

Perfusion & rCBV

Δ R2* curves

6.00

3.00

0.00

Tissue mask Shift spectra

MRSI & CNI

T1 + gad ADCA B

Inside of a
hematoma/ventricle:

42 samples

No tissue to evaluate:
46 samples

Unquantifiable anatomic
imaging data:
21 samples

Ependymomas:
4 samples

In the normal
appearing brain:

10 samples

Pathology inconclusive:
65 samples

Main study cohor
samples: 291

Histopathological
evaluation of

treatment effect:
69 samples

Histopathological
evaluation of

recurrent tumor:
222 samples

Fig. 1  (A) Flowchart depicting sample inclusion criteria and final sample outcome distribution in the main study cohort. (B) Anatomic imaging de-
rived ROIs (top row) and processing steps for the generation of perfusion and metabolic metrics at the location of the tissue samples.
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been identified during the CNI calculation as being from 
normal brain. Normalized Cho increases with increased 
cellular turnover, nNAA is a neuronal marker, and nCre 
is thought to be relatively constant regardless of tissue 
makeup. Using indices such as CNI and CCrI are appealing 
because they can capture more complex information (eg, 
areas of high cellular turnover with low neuron density 
[CNI]), which can be indicative of tumor tissue.

Together, these post-processing steps resulted in 8 dif-
ferent MRI parameters: nADC and nFA from DTI; rCBV from 
DSC perfusion; and CNI, CCrI, nCho, nCre, and nNAA from 
MRSI.

Tissue Sampling and Histopathological 
Assessment

A minimum of 4 tissue samples at least 1 cm apart were 
preoperatively planned to maximize heterogeneity within 
the hyperintense region on the T2 FLAIR image. Edges of 
cavities or necrotic regions were avoided, and the acces-
sibility of the tissue target to the surgeon was considered 
during planning. During surgery, an intraoperative navi-
gation system (BrainLab or Surgical Stealth) guided the 
neurosurgeon to the targeted locations and was used 
to record target coordinates for excised tissue samples. 
Samples were immediately formalin fixed and paraffin 
embedded.30

Hematoxylin and eosin (H&E) stained slides from tissue 
samples were evaluated by a board-certified pathologist 
(J.J.P.). Slides were assessed for the presence of tumor 
cells, necrosis, and treatment-related abnormal vascu-
lature. Samples that had both signs of treatment-related 
changes and zero tumor cells were considered treatment 
effect. The presence of tumor cells was scored based upon 
review of H&E-stained sections by a neuropathologist 
as 0 = no tumor present, 1 =  infiltrating tumor with rare 
cells, 2 = infiltrating cellular tumor, and 3 = highly cellular 
infiltrating tumor involving >75% of the tissue. Only sam-
ples with more than rare infiltrating tumor cells (tumor 
scores of 2 or greater) were considered recurrent tumor.

Statistical Analysis

Diffusion, perfusion, and spectroscopy parameters sum-
marized from a 5-mm ROI centered on the tissue sample 
coordinates were tested for association with patholog-
ical outcome denoting treatment effect or recurrent HGG. 
Samples were analyzed both together and separately 
based on their location in the contrast enhancing or non-
enhancing lesion. To account for the potential correlation 
among multiple samples derived from the same patient, 
univariate generalized estimating equations (GEE) were fit 
to the data for each MR parameter to estimate population-
average coefficients, conditioning only on the fixed de-
sign matrix. The cutoff for determining significance was a 
P-value <0.05 after a Benjamini–Hochberg (B-H) correction 
for multiple testing was applied. Samples that did not have 
a value for a particular parameter were excluded from 
the analysis of that parameter. To complement these ana-
lyses, univariate GEE was also performed to evaluate the 

association of parameters from all samples combined irre-
spective of the presence of contrast enhancement. Finally, 
beginning with all MR parameters in a model, a backward 
stepwise GEE with elimination by least statistical signifi-
cance was performed on all samples, while taking into ac-
count the presence or absence of contrast enhancement 
with an interaction term to evaluate whether individual 
parameter significance was upheld in a multiparametric 
setting.

To evaluate whether significant parameters from the 
previous analysis were able to separate samples into 
treatment effect and recurrent tumor categories, we used 
a cross-validation thresholding approach, where the sam-
ples were first divided into enhancing and non-enhancing 
groups based on their location. To create 5 folds for cross-
validation within each group, samples were assigned to a 
fold randomly while stratifying by outcome in each fold. All 
samples from a single patient were included in the same 
fold in order to ensure the independence of each fold. To 
evaluate cutoff values for these imaging metrics, 4 folds 
were used to calculate the area under the receiver operator 
characteristic curve (AUC ROC) for all cutoff values and the 
threshold that yielded the highest AUC was chosen. This 
value was then applied to separate the fifth fold by out-
come, and the sensitivity, specificity and accuracy of this 
classification were calculated to gain insight into the per-
formance of the cutoff value. This process was repeated 5 
times, providing 5 different cutoff value estimates and per-
formance metrics. The mean and standard deviation of all 
thresholds and metrics derived from all 5 cross-validation 
experiments were calculated and reported.

In order to evaluate whether a combination of param-
eters could better predict outcome than thresholds 
alone, a logistic regression (LR) model was fit using inde-
pendent significant parameters and all available samples 
(CEL + NEL) with that parametric information. To ensure 
that the validation (or fifth) fold remained independent 
for each cross-validation experiment, standardization was 
performed on the 4 folds used for training and these nor-
malization parameters were saved for application to the 
validation fold. This normalization was necessary to be able 
to compare coefficients among regression models. The ac-
curacy, sensitivity, and specificity of the LR models from 
training on the 4 folds and subsequent application of the 
trained model on the fifth fold were recorded. All modeling 
analyses were performed in R using the caret and pROC 
packages.31,32 To verify this procedure we also performed 
a complementary bootstrapping analysis that randomly 
selected only one sample per patient 1000 times (200/fold), 
with priority given to treatment-effect samples if present.

Results

Contrast-Enhancing Samples

Of the 8 MRI/MRSI parameters evaluated for samples 
within the CEL, the perfusion parameter rCBV was signif-
icantly associated with the binary outcome of treatment 
effect or recurrent tumor (P < 0.03). Figures 2C, D and 3A 
demonstrate the elevated levels of rCBV values among 
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tumor samples compared with treatment-effect samples. 
Supplementary Table 1 reports the number of samples 
included for each test. The model estimations, standard 
errors, Wald test statistics, and P-values for all tested 
parameters are reported in Table 2.

Non-Enhancing Samples

In the NEL samples, however, spectroscopic param-
eters nCho (P = 0.008) and CNI (P = 0.008) were signifi-
cantly associated with the presence of recurrent tumor 
versus treatment effect. Figures 2A, B and 3B, C dem-
onstrate the elevated levels of total choline and CNI 
values among tumor samples compared with samples 
containing purely treatment effect. Supplementary 
Table 1 reports the number of samples included for each 
test. The model estimations, standard errors, Wald test 

statistics, and P-values for all tested parameters are re-
ported in Table 2.

All Samples Combined

When combining the CEL and NEL regions, elevated nCho 
(P = 0.024), CNI (P = 0.0008), and CCrI (P = 0.012) values 
were significantly associated with the presence of recur-
rent tumor. When parameters were combined in a back-
ward stepwise GEE that included the anatomic lesion as 
an interaction term, rCBV (P = 0.036) and CNI (P = 0.003) 
remained significant in the final model.

Cutoff Analyses

After dividing the data into 5 folds for cutoff determina-
tion, the proportion of treatment-effect samples in each 
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Fig. 2  Within-patient imaging differences between treatment-induced injury and recurrent HGG. (A) Non-enhancing CNI parameter maps overlaid 
on the T2 FLAIR image are elevated in HGG samples. (B) Reduced CNI in a sample with treatment-induced injury within the same patient (overlaid 
on the post-contrast T1-weighted image). (C) Enhancing rCBV parameter maps are elevated in HGG (solid white location) versus treatment-induced 
injury (dashed location). (D) The corresponding ΔR2* curves.
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fold ranged from 18% to 29%. The mean rCBV cutoff value 
for distinguishing treatment effect from recurrent tumor 
within the CEL was 1.62 (0.21 SD). However, when this 
cutoff value was applied to the fifth validation fold, the 
mean accuracy was only 50%, with a sensitivity of 0.50 
and specificity of 0.59. For samples in the NEL, the best 
cutoff values to separate tumor and treatment effect were 
2.71 for CNI and 1.10 for nCho. This resulted in mean AUC 
ROC values of 0.73 (0.10 SD) and 0.63 (0.12 SD), for CNI 
and nCho respectively. When applied to the validation 
fold, the mean accuracy for CNI was 68%, while sensitivity 
and specificity were 0.61 and 0.85, respectively. The cutoff 
threshold for nCho resulted in an accuracy of 66%, while 
the mean sensitivity was 0.62 and specificity was 0.65. 
Table 3 reports these values and the standard deviations 

across all 5-fold tests and the corresponding ROC curves 
are shown in Figures 3D, E.

Multivariate Model

Parameter combination into an LR using all significant MR 
parameters resulted in a mean AUC of 0.69 (0.09 SD). When 
tested on the fifth fold, the LR predicted with an average accu-
racy of 64% and sensitivity and specificity of 0.65 and 0.62, re-
spectively (Table 3). The single-sample bootstrapping analysis 
confirmed these results with a median AUC of 0.70 (95% CI: 
0.69, 0.72) and an mean accuracy, sensitivity, and specificity of 
68%, 0.64, and 0.79, respectively, providing confidence in our 
predictions despite the use of multiple samples per patient.

  
rCBV (CEL)

ROC curve of rCBV (CEL)

Specificity (%) Specificity (%)

S
en

si
tiv

ity
 (

%
)

S
en

si
tiv

ity
 (

%
)

ROC curve of CNI, nCho (NEL)

5

100

80

60

40

20

0

100

80

rCBV AUC: 0.61 (0.086 sd)

rCBV

CNI

nCho

CNI AUC: 0.73 (0.096 sd)
nCho AUC: 0.63 (0.12 sd)

60

40

20

0

100 80 60 40 20 0 100 80 60 40 20 0

25

6

5

4

3

2

1

0

20

15

10

5

0

4

3

2

1

0

p < 0.05

rHGG TxE rHGG TxE rHGG TxE

p < 0.01 p < 0.01
rC

B
V

 v
al

ue

C
N

I v
al

ue

nC
ho

 v
al

ue

A

D E

B C
nCho (NEL)CNI (NEL)
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Discussion

While distinguishing recurrent HGG from treatment-
induced effects is an important clinical objective, it has 
remained an immense challenge in part due to the coex-
istence of the 2 phenomena in the same lesion. This study 
attempts to overcome the problem of lesion heteroge-
neity by using surgical tissue samples with known coor-
dinates on imaging acquired with neuronavigation tools. 
To our knowledge, this study includes the greatest number 
of patients with spatially mapped tissue samples to dis-
tinguish recurrent HGG from treatment-induced effects to 
date and takes advantage of incorporating metabolic and 
physiologic derived metrics from DSC perfusion weighted 
imaging, DTI, and MRSI. Through our statistical and predic-
tive approaches, we demonstrated the importance of MRSI 
in distinguishing recurrent tumor from the effects of treat-
ment in the non-enhancing lesion and examined whether 
the combination of vascular and metabolic metrics could 
lead to the generation of more accurate predictions.

Our results support the use of 1H-MRSI for identifying 
regions of abnormal metabolism in the non-enhancing 
region that are indicative of infiltrative recurrent tumor 
cells rather than the effects of treatment. Tumor samples 

demonstrated higher levels of choline-containing metab-
olites (nCho) and elevated CNI compared with treatment-
effect samples, consistent with our current understanding 
of the biological underpinnings of choline and NAA me-
tabolite flux.16 After employing cross-validation to gain 
insight into how a given cutoff threshold would perform 
when applied to external data that were not used in deter-
mining its value, our cutoffs for nCho (1.1) and CNI (2.7) 
separated NEL samples into treatment-effect or recurrent 
tumor categories with mean sensitivity of 0.62, 0.61 and 
specificity of 0.85, 0.65, for nCho and CNI respectively. 
While many prior studies have used single-voxel spec-
troscopy in the enhancing lesion,33–35 our results indicate 
that spectroscopic coverage of the non-enhancing lesion 
area would benefit in the accurate diagnosis of recurrence. 
In turn, a multivoxel spectroscopic approach would pro-
vide greater utility in assessing the metabolic lesion than 
single-voxel sequences, as they are often centered on the 
contrast enhancing region. These spectroscopic findings 
are similar to metabolic differences observed between 
vasogenic edema and enhancing metastatic disease in pa-
tients with brain metastases.34–37 Although recent studies 
apply machine learning techniques to dynamic contrast 
enhanced (DCE) perfusion, DTI, and anatomic imaging,38,39 
the innate biological differences between metastatic brain 

  
Table 2.  Generalized estimating equation (GEE) results from imaging values associated with pathology

Parameter Anatomic Region Coeff Estimate Std Error Wald Value B-H adjusted  
P-value

nADC CEL 0.04 0.39 0.01 0.918

NEL 0.29 0.36 0.66 0.56

CEL+NEL 0.33 0.3 1.18 0.448

FA CEL 0.11 0.45 0.07 0.913

NEL  −0.25 0.57 0.19 0.66

CEL+NEL  −0.25 0.37 0.45 0.571

rCBV CEL 0.31 0.11 8.72 0.024*

NEL 0.29 0.29 0.99 0.512

CEL+NEL 0.23 0.15 2.49 0.22

nNAA CEL 0.06 0.17 0.12 0.913

NEL 0.47 0.82 0.33 0.977

CEL+NEL  −0.37 0.40 0.85 0.48

nCho CEL 0 0 2.04 0.411

NEL 1.4 0.41 11.48 0.008**

CEL+NEL 0.19 0.07 6.76 0.024*

nCre CEL 0 0 2.04 1.029

NEL 0.93 0.46 4.16 0.08

CEL+NEL  −0.06 0.15 0.19 0.66

CNI CEL 0 0.17 0.12 0.211

NEL 0.29 0.09 9.85 0.008**

CEL+NEL 0.05 0.01 15.08 0.0008**

CCrI CEL 0 0 2.62 0.211

NEL 0.16 0.08 4.41 0.096

CEL+NEL 0.06 0.02 8.98 0.012*

*P < 0.05, **P < 0.001.
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tumors and gliomas prohibit their generalizability. Though 
more rigorous validation is necessary before incorporation 
into a clinical workflow, this study lays the groundwork for 
future investigation into the utility of these parameters in a 
prospective, independent cohort with image-guided tissue 
samples using more sophisticated machine learning algo-
rithms. This has potential to direct surgeons to which part 
of the non-enhancing lesion contains infiltrating tumor.

Although the recent meta-analysis of ROI-based studies 
by Van Dijken et al found that the greatest sensitivity and 
specificity for distinguishing recurrent tumor from treat-
ment effects lies in the spectroscopic parameters derived 
from the CEL, we were not able to replicate these results 
with our analyses. This could be because ROI-based studies 
do not account for the spatial heterogeneity that exists in 
metabolism within the lesion. Despite our voxel shifting 
methods to reconstruct spectra at the center of the tissue 
sample location to avoid errors from interpolation, it was 
still possible that pathological heterogeneity existed within 
the 1 cc spectral voxel. Additionally, spectral voxels at the 
location of CEL tissue samples often overlapped with ne-
crotic regions and non-enhancing regions because of their 
larger size, potentially affecting the quantification of CNI.

Our findings in tissue samples obtained from within the 
contrast enhancing lesion suggest that elevated rCBV is 
significantly associated with recurrent tumor compared 
with treatment effects. The GEE and cutoff analysis sug-
gest that rCBV is useful for differentiating recurrent tumor 
from treatment effects in the CEL. These findings are con-
sistent with ROI-based studies that report as high as 87% 
sensitivity and 86% specificity when differentiating recur-
rent tumor from treatment-induced effects from the con-
trast enhancing ROI. Although these individual smaller 
studies report higher sensitivity and specificity, their 
cutoff values were highly variable, ranging from 0.71 to 
3.7 for rCBV, reflecting the difficulty in recommending a 
universal cutoff. It was our hope that our analysis would 
provide clarity to this body of work by mapping local MRI 
characteristics directly to pathology. Although the cutoff 
for rCBV in our study was 1.59 (0.21 SD), our sensitivity 
and specificity were not significantly better than random 
chance. These results may be in part attributed to the very 
large range of rCBV values observed in high-grade tumor 
tissue samples (min: 0.10, max: 5.72, med: 1.61). This large 
range, taken in combination with previous rCBV reports, 

supports the notion that a “signature” rCBV value that can 
distinguish high-grade tumor from treatment-related in-
jury remains difficult to define and that multiparametric 
analyses with more advanced machine learning method-
ologies in larger datasets may be necessary to adequately 
address this problem.

After analyzing the association of singular MR param-
eters to outcome, we assessed whether the combination of 
parameters improves classification of samples into treat-
ment effects or recurrent HGG. Although it does not model 
the potential correlation among samples derived from the 
same patients, logistic regression was chosen for its inter-
pretability and reluctance to overfitting, and was further 
validated by comparing with the result attained from ran-
domly selecting 1 sample per patient and bootstrapping 
the data. For this analysis, 5-fold cross-validation was used 
where each fold was separated by patient and stratified by 
outcome to control for information leakage and optimistic 
prediction. Only parameters from modalities that were de-
termined to be useful for differentiating treatment effects 
from recurrent HGG in the univariate analyses were retained 
in the multivariate models. Combining the results into a lo-
gistic regression resulted in a model that, compared with 
cutoff analyses, had similar sensitivity (0.65) and specificity 
(0.63) when tested on the fifth fold, suggesting that mod-
eling parameters together may not improve the classifica-
tion of tissue samples by pathology. Though these results 
seem counterintuitive at first, it is likely that combining the 
anatomic regions of CEL and NEL averages out the signal 
that was present in each separate anatomic region, further 
substantiating our hypothesis that recurrent tumor in these 
regions have distinct metabolic and physiologic character-
istics. For example, because the appearance of the CEL is 
driven by the extravasation of contrast by leaky blood ves-
sels, rCBV values in the CEL have a significantly different 
value distribution from those in the NEL; therefore, the 
signal driving the difference in rCBV in the CEL is lost when 
combined with samples in the NEL.

The low sensitivity in predicting pathology from MR 
parameters and reliably classify subregions of a lesion in 
our dataset can be attributed to 3 main causes. First, the 
parameters that were determined as being the most im-
portant for prediction of treatment effects and tumor were 
obtained in only 52% (perfusion) or 67% (MRSI) of pa-
tients (Supplementary Table 1) because they were not part 

  
Table 3.  Threshold and logistic regression analysis results

Modality DSC MRSI DSC + MRSI

Analysis Type Cutoff Cutoff Logistic Regression

Parameter rCBV CNI nCho rCBV, CNI

Anatomic Region CEL NEL NEL CEL+NEL

Threshold 1.62 (0.21) 2.71 (0.06) 1.09 (0.03) n/a

AUC ROC 0.61 (0.09) 0.73 (0.10) 0.63 (0.12) 0.69 (0.09)

Accuracy % 50% (7%) 68% (9%) 66% (13%) 64% (16%)

Sensitivity 0.50 (0.10) 0.61 (0.07) 0.62 (0.11) 0.65 (0.16)

Specificity 0.59 (0.25) 0.85 (0.22) 0.65 (0.22) 0.62 (0.21)

Values in parentheses are means and standard deviations.

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa094#supplementary-data
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of routine clinical evaluation. This, along with imbalanced 
classes, limited our ability to build a predictive model that 
could be tested on an unseen dataset with these param-
eters. Still, using a 5-fold cross-validation approach al-
lowed us to instead estimate the predictive value of our 
MR metrics, whereby we could iterate over all available 
treatment-effect samples and observe the stability of the 
prediction. Although we removed samples that largely 
consisted of necrosis, our modest results could also be 
explained by the possibility of some necrosis coexisting 
within tissue samples made up of mostly tumor or treat-
ment effect. Although a recent review article summarizing 
25 studies of brain shift reported maximum shifts between 
4 and 31 mm during the course of resection,39 the vast ma-
jority of our tissue samples were acquired with a biopsy 
needle before opening the dura and resecting the tumor 
tissue, where most reported shifts have been 2–5 mm, with 
maximum shifts of <10 mm. These results informed our ra-
tionale for using a 5 mm ROI around the center of the bi-
opsied sample, even though the diameter of the excised 
tissue was 2  mm. This is less of an issue for MRSI than 
other imaging metrics, because the voxel size is 1 mm3 and 
we shift the reconstruction of the spectra voxel in k-space 
so that it is centered on the location of the tissue sample 
coordinates. Despite our efforts to further correct for errors 
due to tissue shift by performing extensive quality con-
trol through manual visualization of each tissue sample 
location and exclusion of samples that were structurally 
inaccurate, it is highly likely that this shift is the main con-
tributor to reducing the accuracy of our results, especially 
when lesion heterogeneity is pronounced.

In conclusion, this study attempts to overcome the heter-
ogeneity inherent in treated HGG lesions by mapping path-
ological findings directly to MR parameters. Our results 
suggest the need for separate MR markers of recurrent 
tumor for enhancing and non-enhancing lesions, high-
light the potential utility of using 3D MRSI to obtain CNI 
maps that include the non-enhancing region in the recur-
rent high-grade setting, and support previous studies that 
suggest rCBV should be used to differentiate treatment ef-
fects from recurrent tumor within the contrast enhancing 
region. These findings lay the foundation for a larger, multi-
institutional investigation that includes MRSI of the non-
enhancing region and multiparametric MRI, along with 
machine learning for differentiation of treatment-induced 
injury from true recurrent tumor.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
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