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Precise measurement 
of correlations between frequency 
coupling and visual task 
performance
Joseph Young1*, Valentin Dragoi2 & Behnaam Aazhang1

Functional connectivity analyses focused on frequency-domain relationships, i.e. frequency coupling, 
powerfully reveal neurophysiology. Coherence is commonly used but neural activity does not follow 
its Gaussian assumption. The recently introduced mutual information in frequency (MIF) technique 
makes no model assumptions and measures non-Gaussian and nonlinear relationships. We develop a 
powerful MIF estimator optimized for correlating frequency coupling with task performance and other 
relevant task phenomena. In light of variance reduction afforded by multitaper spectral estimation, 
which is critical to precisely measuring such correlations, we propose a multitaper approach for 
MIF and compare its performance with coherence in simulations. Additionally, multitaper MIF and 
coherence are computed between macaque visual cortical recordings and their correlation with 
task performance is analyzed. Our multitaper MIF estimator produces low variance and performs 
better than all other estimators in simulated correlation analyses. Simulations further suggest that 
multitaper MIF captures more information than coherence. For the macaque data set, coherence 
and our new MIF estimator largely agree. Overall, we provide a new way to precisely estimate 
frequency coupling that sheds light on task performance and helps neuroscientists accurately capture 
correlations between coupling and task phenomena in general. Additionally, we make an MIF toolbox 
available for the first time.

The function of different brain regions is often studied by measuring functional connectivity1, which considers 
time-domain or frequency-domain relationships between different neural signals, and correlating such connec-
tivity with task-relevant phenomena such as task performance. In this work, we focus on the frequency-domain 
aspects of functional connectivity and utilize such aspects to better understand one brain region in particular: the 
visual cortex. Significant insight into task performance2, short-term memory3, autism4, and epilepsy5 has been 
revealed by frequency-domain relationships, which we refer to as frequency coupling, between neural signals. 
Although the relationship between frequency coupling and task-relevant phenomena is typically characterized 
via correlation, frequency coupling itself can be estimated by a variety of different techniques, and our first 
contribution is the development of a powerful approach for measuring such coupling. Coherence6 is perhaps 
the most common approach and is a frequency-domain version of Pearson’s correlation coefficient. However, 
coherence is based on second-order statistics, i.e. power spectrums, and therefore is only sufficient when the time 
series being considered are Gaussian Processes (GPs). Considering that neural signals are almost certainly not 
Gaussian5, full statistical dependence will not be quantified by coherence when used on such signals.

Mutual Information in the Frequency domain (MIF) overcomes this by its data-driven, model-free nature. 
A recent formulation of MIF5, 7 inspired by previous work8 showed how mutual information can be applied to 
the frequency domain to address the aforementioned Gaussian restriction and more fully evaluate frequency 
coupling. MI in frequency is effectively a generalization of coherence that can evaluate nonlinear relationships 
between two time series. It does so without any model constraint by quantifying true statistical dependency 
across frequency components of each time series.

However, coherence is commonly estimated using the multitaper method9, which is a clever technique that 
projects data onto multiple orthogonal functions (tapers) in order to produce multiple independent power 
spectral estimates. The key advantage of this approach is that it provides a lower-variance estimate10 of frequency 
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coupling, which is critical in estimating Pearson correlation coefficients (Fig. 1) between such coupling and task-
relevant phenomena such as task performance. Specifically, the maximum measurable correlation coefficient 
between two quantities is inversely related to the amount of estimation variance11–15. In this work, we consider 
correlations between frequency coupling and the particular phenomena of visual task performance. This is 
motivated by the fact that frequency-domain activity has been shown to be relevant to task performance16–19. 
Therefore, the first key objective of this work is to develop a multitaper estimation technique for MIF to reduce 
estimator variance, and a toolbox for this estimator has been made available on GitHub (https​://githu​b.com/
jy46/MIF-Toolb​ox, https​://doi.org/10.5281/zenod​o.38798​02). The previous work5 did not take advantage of the 
multitaper method, and its introduction will provide more robust estimates of correlations between frequency 
coupling and task-relevant phenomena. In particular, we are able to use multitaper MIF to more precisely meas-
ure the association between frequency coupling and visual task performance.

We also explore how this new multitaper estimator of MIF and coherence differ for simulated non-Gaussian 
Processes (non-GPs), since coherence can only fully describe GPs. In fact, prior work5 provided an analytic 
transformation from coherence to MIF for such GPs. Since coherence only relies on the second-order statistics 
of the two processes being analyzed for frequency coupling, one naturally wonders if this transformation will 
underestimate coupling in the case of non-GPs, which possess higher than second-order characteristics. In order 
to address this question, we perform simulations and demonstrate that the transformation indeed provides an 
underestimate of the MIF value, providing further evidence of MIF’s ability to capture higher than second-order 
relationships and suggesting that coherence is missing information for non-GPs.

Methods
Maximizing correlations.  Frequency coupling is often correlated with task-relevant phenomena, such as 
task performance. A key consideration that is often overlooked is the variance of one’s estimator for X or Y when 
computing the Pearson correlation coefficient between them. By considering the error or variance present in 
estimating X or Y, it can be shown that the measured correlation ρ̂ is guaranteed to be lower than the true cor-
relation ρ and that the estimation variance is inversely related to this measured correlation11–15.

To put this into context, imagine the case where frequency coupling X and a subject’s task accuracy Y are 
perfectly correlated ( ρ = 1 ). If X and Y could be measured with zero error/variance, then the measured cor-
relation would accordingly be 1 (Fig. 1, top-left). However, if we simply consider the presence of error/variance 
in estimating X (Fig. 1, top-middle and top-right), then the estimated correlation will decrease. Intuitively, we 

̂ρ

̂ρ1 = ̂ρ2 = ̂ρ3

̂ρ

̂ρ1 > ̂ρ2 > ̂ρ3

Figure 1.   Illustration of how the variance in estimating X is inversely related to the maximum measurable 
Pearson correlation coefficient ρ(X,Y) = cov(X,Y)/σXσY

11–15, while the bias in estimating X does not affect 
the correlation. Therefore, one should seek to find a minimal variance estimator of X. Note that in the upper 
panel points were individually shifted in the X dimension to modify the variance of X while points in the lower 
panel were shifted by the same amount and direction in the X dimension to modify bias. Points have the same Y 
value across all plots.

https://github.com/jy46/MIF-Toolbox
https://github.com/jy46/MIF-Toolbox
https://doi.org/10.5281/zenodo.3879802
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know that a higher variance estimator of X will produce points that are more likely to be off of the line exist-
ing in the XY-plane that represents the underlying perfectly linear relationship between X and Y, reducing the 
measured correlation.

We further note that the bias of one’s estimate, i.e. a general offset in estimates, does not effect the measured 
correlation (Fig. 1, bottom panel) since the data is centered via mean subtraction when computing the Pearson 
correlation coefficient. Therefore, a chief priority when considering correlations between frequency coupling 
and task-relevant phenomena is to reduce variance in frequency coupling estimation so that the measurable 
correlation is increased and thereby more accurately assessed.

Coherence.  Coherence is a frequency coupling metric based on the correlation between two time series in 
the frequency domain that is a comprehensive measure of statistical dependence only in the case of linearly-
related GPs5,20. Consider a random process X(t) with t taking on discrete values t1 , t2 , ..., tn . If [X(t1) , X(t2) , ..., 
X(tn)] follows a multivariate Gaussian distribution, then it has a covariance structure � and is a GP. If we have a 
similarly defined process Y(t), the coherence between X(t) and Y(t) is defined mathematically as20,21:

where SX(f ) and SY (f ) are the power spectral densities of stochastic processes X(t) and Y(t), respectively, while 
SXY (f ) is the cross power spectral density between X(t) and Y(t). Note that this definition (1) has the advantage 
of being real valued20. For frequencies for which the stochastic processes X(t) and Y(t) are uncorrelated, the 
coherence is 0, while for perfectly correlated frequencies it will be 120.

In order to estimate the coherence between two random processes X(t) and Y(t), one takes non-overlapping 
windows (trials) of sample paths of both processes and then point-wise multiplies them separately by each of 
the orthogonal taper functions9,22 (Fig. 2). The FFT and complex conjugate of the FFT of these windows are then 
multiplied to produce estimates of SX(f ) and SY (f ) for each trial and taper. Similarly, the FFT of the windows cor-
responding to X(t) is multiplied with the complex conjugate of the windows corresponding to Y(t) to provide esti-
mates of SXY (f ) . All estimates are averaged across trials and tapers to produce ŜX , ŜY , and ŜXY , which are finally 
plugged into (1). This multitaper approach reduces estimation variance10, and thereby increases the measurable 
correlation (Fig. 1) between coherence and task-relevant phenomena (as per the previous section)11–15. In the 
next section, we will describe how we take advantage of this multitaper approach for MI in frequency estimation.

MI in frequency (MIF).  Given that neural signals are almost always non-Gaussian5 one must consider non-
GPs involved in higher-order relationships, which our powerful MIF estimator is well-suited to capture. In con-
trast to measures such as coherence6 and traditional cross-frequency coupling metrics23, mutual information 
(MI) measures statistical dependence for linear and nonlinear relationships. Importantly, it makes no modeling 
assumptions. Considering two continuous random variables X and Y, the MI between them is defined as24:

where h(X) = −
∫

S p(x) log p(x)dx
24, i.e., the differential entropy of X, and p(x) is the probability density associ-

ated with X and S denotes the support of X where p(x) > 0 . We note that the joint differential entropy h(X, Y) 
is similarly defined: h(X,Y) = −

∫

S p(x, y) log p(x, y)dxdy
24. In terms of intuition, h(X) is a measure of the 

uncertainty of X and therefore MI can be thought of as the information that X and Y provide about each other. 

(1)CXY (f ) =
|SXY (f )|

2

SX(f )SY (f )
,

(2)I(X;Y) = h(X)+ h(Y)− h(X,Y),

Figure 2.   Example tapers22 used in the multitaper technique9. Data windows would be multiplied element-wise 
by the tapers, and then input into the FFT in order to produce independent spectral estimates.
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Probabilistically, it is a measure of dependence where an MI value of 0 represents full independence between 
X and Y and any value greater than 0 represents dependence between X and Y. Note that the MI between two 
continuous random variables is a non-negative quantity, and is unbounded.

However, since our analysis is focused on time series data, specifically local field potentials (LFPs), depend-
ency exists between time samples and therefore random processes X(t) and Y(t) must be considered rather than 
the aforementioned random variables. A recent formulation5 inspired by previous work8 showed how MI can be 
applied to the frequency domain representations of X(t) and Y(t) by using Cramér’s representation of a random 
process25,26. The following is the corresponding time and frequency relationship for X(t), which follows for Y(t), 
as well as the explicit frequency domain representation of X(t)5,25,26:

where dX̃(f ) is referred to as an increment and the integral displayed is a Fourier-Stieltjes integral. Note that we 
slightly redefine dX̃(fi) to now refer to the random vector [dX̃R(fi), dX̃I (fi)] , where dX̃R(fi) and dX̃I (fi) are the real 
and imaginary components of dX̃(fi) , respectively. Note that this is done similarly for dỸ(fi) . MI in Frequency 
(MIF) was formulated5 using the increments dX̃(fi) and dỸ(fj) of X̃(f ) and Ỹ(f ) at frequencies fi and fj . Therefore 
MIF, denoted MI(·, ·) , can be defined as5:

which can also be defined in terms of entropy:

Since MIF can be computed between frequency fi of dX̃ and a different frequency fj of dỸ  , this results in an 
MIF matrix indexed by the possible frequency pairings. This highlights the power of MIF to quantify nonlinear 
relationships across frequencies, which is fundamentally different from the restriction of coherence to same-
frequency interactions as made clear by the single frequency indexing in (1). Finally, we mention that coherence 
(1) has a direct relationship to MIF for linear GPs5:

In order to estimate MI in the frequency domain between two random processes X(t) and Y(t), we augmented the 
procedure described in5 with the multitaper approach9. One begins by taking non-overlapping windows of sample 
paths of both processes, and independence between windows is assumed. For example, one could use windows 
of recordings at the same relative time point (e.g. stimulus onset) across trials of an experiment, meaning that 
windows in that case will correspond to trials. In a different scenario, such as the resting state where no stimuli 
are being introduced, one could reasonably assume that recordings are stationary and therefore consecutive non-
overlapping windows of each channel could be used without regard to any notion of “trials”. The former approach 
describes the process that we will use in our analyses and therefore our wording describes that context, however 
this process is easily applicable to the latter scenario by considering trials to just mean windows. In either case, 
the acquired windows are then point-wise multiplied separately by each of the orthogonal taper functions9,22 
(Fig. 2). The Fourier transform of each of these is computed at a given frequency fi , providing samples for esti-
mating the increments dX̃(fi) and dỸ(fi)27. We mention that the Fourier transform of these windows will yield 
two-dimensional samples of dX̃(fi) and dỸ(fi) for each frequency fi , with one dimension corresponding to the 
real component, i.e. dX̃R(fi) and dỸR(fi) , and the other dimension corresponding to the imaginary component, 
i.e. dX̃I (fi) and dỸI (fi) . These samples which are specific to one frequency can be seen in our toy example in 
Fig. 3, where each window/trial provides a complex sample for each taper. Technically, there would be two plots: 
one for samples of dX̃(fi) , and one for samples of dỸ(fi).

Samples of dX̃(fi) and dỸ(fi) across trials for the same frequency fi are then plugged into a k-nearest neighbors 
(k-nn) entropy estimator28–31 from which MIF can then be measured5. Since variance reduction is our focus, k is 
chosen to be half the number of samples as per the recommendation of prior work28. However, one must consider 
how to handle the fact that these samples were acquired by different tapers. We can in fact implement three dif-
ferent multitaper approaches (Fig. 3). We can naively input all samples across tapers into the estimator together, 
or we can pre-average samples across tapers in the complex plane before inputting them into the estimator, or 
finally we can post-average MIF estimates across tapers by computing independent MIF estimates specific to each 
taper and then averaging them. We note that for coherence the naive and pre-averaging approaches turn out to 
be equivalent to each other and to the traditional method of estimating coherence. The post-averaging approach 
to coherence is not investigated since the primary focus of this paper is to develop a better MIF estimator and 
compare it with the commonly used approach to coherence. We further know that a post-averaged coherence 
would still fail to capture features detected by MIF.

In the results section we will detail the performance of the “pre” and “post” estimators in terms of variance, 
and also compare them with the more traditional approach of using Hamming windows. This will reveal that 
often post is the lowest-variance estimator and therefore is the best estimator for correlating frequency coupling 
with task-relevant phenomena (Fig. 1). We found that the “naive” approach yields the highest variance, and 
therefore we do not focus on it in our results. Again, the lower the estimation variance, the higher the maximum 
correlation that we can measure11–15.

(3)X(t) =

∫

∞

−∞

ej2π ftdX̃(f ), X̃(f ) = X̃R(f )+ jX̃I (f ),

(4)MI(fi , fj) = I(dX̃(fi); dỸ(fj)),

(5)MI(fi , fj) = h(dX̃(fi))+ h(dỸ(fj))− h(dX̃(fi), dỸ(fj)).

(6)MI(f , f ) = −log(1− CXY (f )).
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Results
The following sections detail the key components of our results: (1) determination of the multitaper MIF estima-
tor with low variance and the best performance for correlation analyses, (2) analysis of how much more informa-
tion MIF captures compared to coherence in simulations, and (3) use of our MIF estimator and coherence to 
explore correlations between frequency coupling and visual task learning.

MIF estimator comparison.  For comparing the variance of the proposed multitaper MIF estimators and 
determination of how well their estimates would correlate with task-relevant phenomena, we utilized a random 
sinusoid model similar to what was used in prior work5:

where A ∼ Rayleigh(1) , B ∼ Rayleigh(σB) , � ∼ Uniform(0, 2π) , and � ∼ Uniform(0, 2π) . We note that X(t), 
W(t), and Y(t) are GPs, and therefore the true MIF between X(t) and Y(t) for f0 is known5 to be:

For any other frequency besides f0 , the MIF between X(t) and Y(t) will be zero.
A perfect estimator with no estimation variance would have a Pearson correlation coefficient of 1 between 

its estimates and true MIXY (f0, f0) values (see Fig. 1 for intuition), and therefore we determine which estimator 
is best by exploring which has the highest correlation with true MI in frequency values. 100 sample paths of the 
sinusoids (7–9) were generated for a fixed σB , meaning the true MIF value was known (10). This corresponds 
to 100 trials or windows of experimental data, a common regime for researchers. We note that the sample path 
or window length is proportional to the frequency resolution one can achieve, and therefore one would have to 
consider trade-offs between frequency resolution and the number of sample paths or windows chosen for real 
data. Since this is an example and since only the number of sample paths corresponds to the number of data 
points used to estimate MIF, the sample path length and f0 can be chosen arbitrarily and have no effect on this 
example analysis. MIF was estimated from these sample paths using the different taper approaches with the 
k-nn MI estimator28, and this process was performed 10,000 times for a specific range of σB values in order to 
determine the correlation between estimates and true values. Figure 4 displays the results of these simulations 
and shows that the post estimator is the best estimator because it has the highest correlation with true MI in 
frequency values. Qualitatively, the estimation variance of post also appears to be the lowest since it visually has 
the highest density of points along the diagonal.

To put this into context, we could consider the scenario where a task-relevant phenomena is perfectly cor-
related with frequency coupling. For example, in the final section of our results, we analyze how macaque task 
performance correlates with coupling. In such cases, the variance of the estimation technique limits the maximum 

(7)X(t) = Acos(2π f0t +�)

(8)W(t) = Bcos(2π f0t +�)

(9)Y(t) = X(t)+W(t)

(10)MIXY (f0, f0) = log

(

1+
SX(f0)

SW (f0)

)

= log

(

1+
1

σ 2
B

)

.

Figure 3.   Three possible approaches for multitaper MIF estimation. The plot on the left depicts how the FFT 
output for a particular frequency fi of windows/trials of X(t) or Y(t) could look with multiple tapers applied, and 
“Average” refers to the data produced by averaging across samples produced by the different tapers. MIF can be 
estimated from this data in the three different ways depicted on the right, where estimator refers to the k-nn MI 
estimator28.
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correlation that can be measured between such task-relevant phenomena and coupling11–15, and therefore our 
result shows that the post estimator should be used.

The top row of plots in Fig. 5 expands upon Fig. 4 by considering a variety of separate ranges for true MI values 
and displays the correlations between those values and the estimates produced not only by k-nn but also by four 
other MI estimation techniques. Specifically, we considered neural network33, fixed-bin histogram34, adaptive-bin 
histogram35,36, and Kernel Density Estimation (KDE)5,37,38 approaches to MI estimation. We utilized two bins for 
the fixed-bin histogram and three bins for the adaptive-bin histogram approaches, as these generally produced 
the highest correlations between MI estimates and true values across different bin numbers, of which only lower 
bin numbers were considered since these will produce lower estimation variance. The bandwidth of the KDE 
kernel was chosen via smoothed cross-validation39. Overall, we found that the k-nn approach combined with 
the post multitaper method performed best in terms of producing the highest correlations between estimates 
and true MI values (top right plot in Fig. 5). This is consistent with the previous figure, further confirming post 
k-nn is the best estimator for frequency coupling in correlation studies. The decrease in performance associated 
with higher true MI values exhibited across all of the estimators tested has been noted previously to be an issue 
in MI estimation40. Histogram and k-nn methods used 10,000 MIF points estimated from 100 sample paths 
for correlation values, while KDE and the neural network approach used 1000 MIF points estimated from 100 
sample paths because of infeasible computation time.

KDE did not exhibit any differences across windowing approaches, while for every other MI estimator our 
post approach produced the best performance out of the windowing methods. KDE’s insensitivity to the window-
ing methods is likely due to the small grid size used in its implementation (“ks” package for R41), which cannot 
be increased without becoming computationally infeasible for this analysis. For the neural network approach, 
which is called Classifier based Conditional Mutual Information (CCMI), we used code available on GitHub 
(https​://githu​b.com/sudip​todip​15/CCMI)33, and for the adaptive-bin histogram method we used the code pro-
vided with a previous work36.

The second row of plots in Fig. 5 quantitatively explore the estimator variance that was visually observed in 
Fig. 4. This was done by generating 100 sample paths (7–9) and estimating MIF, then repeating this 10,000 times 
(1000 for CCMI and KDE because of infeasible computation time) in total for each true MI value. Finally, the 
variance of the estimates for each true MI value was computed and plotted. For the fixed-bin histogram, adaptive-
bin histogram, and k-nn approaches there was a general inverse relationship between estimator variance and 
estimator performance (as measured by the correlation between estimates and true values), where post produced 
the best performance and lowest variance among the windowing approaches within each estimation technique. 
KDE exhibited no distinction between variances for the three windowing approaches, which is consistent with 
it not exhibiting any difference in terms of performance across the windowing approaches and is undoubtedly 
due to the grid size issue mentioned previously. Although not visible in the figure, using the pre windowing 
approach for CCMI actually produces lower variance than the post approach. It is unclear why this is the case, 
however we note that variances for CCMI are remarkably low (on the order of 10−5 and smaller) which causes 
one to wonder about precision issues for variance measurement.

The variances in the second row of plots in Fig. 5 should not be compared across MI estimation methods. 
Although it is one of the primary emphases of our work that reducing estimator variance is key to producing 
better estimators for correlation analyses, variance by itself does not tell one anything about an estimator’s 
performance. To provide intuition, we consider an estimator that produces a constant value independent of the 
true MI. The variance of this estimator will be zero, but to its detriment the correlation between its estimates and 

Figure 4.   Density scatter plots32 comparing Pearson correlation coefficients ρ between true and estimated MIF 
values for frequency f0 for different MIF estimator types applied to samples from the random sinusoid model 
(7–9). A perfect estimator would have a correlation of 1 between its estimates and the true values, meaning that 
post is the best estimator since it has the highest correlation. Visually it has the highest density of estimates along 
the diagonal, which is an indicator of lower estimation variance and higher correlation between estimates and 
true values.

https://github.com/sudiptodip15/CCMI
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Figure 5.   Top row: performance of MIF estimation approaches measured by the correlation between estimated 
and true MIF values for frequency f0 (7–9). k-nn with the post multitaper approach performs best (highest 
correlation). Each point is the correlation between 1e4 MIF estimates (1e3 for KDE and the neural network 
because of infeasible computation time) using 100 sample paths and a range of true MIF values, the center 
of which is used as the x value. Ranges spanned ±0.2 around the center. Second row: estimator variance for 
different true MIF values. Except for the neural network and Kernel Density Estimation (KDE), post has 
the lowest variance across all approaches which corresponds to it having the highest performance across 
windowing methods. Pre exhibits slightly lower variance than post for the neural network and KDE displays no 
differentiation for windowing methods. Sample sizes same as top row. Bottom: enlargement of k-nn correlation 
and variance plots.
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true values will also always be zero. Therefore, variances should generally only be compared across windowing 
approaches within an MI estimator type and should always be considered in combination with performance as 
measured by correlations between estimates and true values.

We also analyzed the asymptotic properties of the pre and post k-nn estimators in Fig. 6 by considering dif-
ferent sample sizes with 1000 estimates used for each sample size. With k set to 3 for the pre estimator in order 
to emphasize its focus on bias reduction, the left plot in Fig. 6 demonstrates the strong degree to which bias is 
removed with increasing sample size. In contrast, with k set to half the sample size for the post estimator in order 
to emphasize its focus on variance reduction, the right plot in Fig. 6 displays how this variance reduces with 
sample size and that it is considerably lower than that of the pre approach on the left. It is clear from this figure 
that variance is reduced with increasing sample size for either approach, implying that once a certain sample size 
threshold is reached that the difference in variances between the two approaches may become negligible. For the 
next section where we compare the level of information captured by MIF versus coherence, the pre estimator is 
ideal because of its remarkable bias reduction and respectable variance reduction.

MIF and coherence: simulations.  To compare the information captured by MIF and coherence, we 
started by computing both of these quantities on simulations of the GP model (7–9) introduced in the previous 
subsection with σB = 1 . However, in order to evaluate asymptotic behavior, we increased the number of gener-
ated sample paths from 100 to 10,000 and utilized the pre estimator because of its lower bias (Fig. 6) which is 
useful for this particular analysis. This is because we are comparing MIF and coherence values to determine 
the level of information captured by each metric, making lower bias desirable in this case. However, we note 
that the information advantage shown for pre MIF will also be fully present in post MIF, because both will still 
measure statistical dependence while coherence will only measure correlations between frequency components. 
We further note that because it was computationally infeasible to perform the analysis in Fig. 6 for a sample size 
of 10,000 with 1000 iterations, the estimates in this section were performed 100 times in order to provide error 
bars around each estimate to still give a sense of the spread and to therefore indicate where MI and coherence 
truly differ.

The results of this comparison are shown in the left hand side in Fig. 7. Because the simulations utilize 
GPs, we can compute the transformation from coherence to MIF by applying the previously discussed formula 
( MIXY (f , f ) = −log(1− CXY (f ))

5) to the estimated coherence. Including this calculation in Fig. 7 as the first 
bar confirms that this equation accurately models the relationship between MIF and coherence for GPs since it 
takes on a similar value to that of MIF (first bar). In other words, it would seem coherence and MIF capture the 
same level of information for simulated GPs.

However, a simple change to the distribution of A and B from Rayleigh to uniform in the previous model, 
i.e. A, B ∼ Uniform(−0.5, 0.5) , causes this model to be a non-GP. For example, the 4th moment (kurtosis) can 
be computed analytically to be 2.7. Since the kurtosis of a Gaussian process is 3, we can say that this model is 
now a non-GP.

The plot on the right hand side in Fig. 7 displays the results of applying multitaper MIF and the transformed 
coherence to this new model. For this non-GP model, using the coherence-to-MIF equation underestimates the 
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Figure 6.   Analysis of asymptotic properties of pre and post approaches with the k-nn estimator. Left: violin 
plots42 display the distribution of MIF estimates as a function of sample size in relation to the true MIF value 
indicated by the dashed line. 1e3 estimates comprise each distribution. The trendline intersects the mean of each 
distribution in order to indicate decreasing bias with increasing number of samples, while the narrowing of the 
distributions indicate decreased variance with increased sample size. Right: same analysis performed for the post 
estimator, which exhibits poor bias but considerably smaller variance than the pre estimator. The decrease of 
this variance with sample size is highlighted by the two trendlines following the 5th and 95th percentiles of each 
distribution.
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MIF that is estimated from realizations of the simulation. This highlights the gap in coupling measurement, i.e. 
the lack of information captured by coherence, that could occur if one is only considering second-order statistics 
rather than full statistical dependence.

MIF and coherence: visual cortical data.  Having developed the lower variance post multitaper MIF 
estimator, we then explore how it performs compared to coherence on visual cortical recordings. In particular, 
we analyzed local field potential (LFP) recordings from the activity of neurons in mid-level visual cortex (area 
V4) while two monkeys learned a simple image rotation task16 as portrayed in Fig. 8. Rhesus macaques were 
presented with two stimuli, each displayed for 300 ms with a 0.8–1.2 s blank period in between. The first stimulus 
was a gray scale circular image of a natural scene, while the second was a potentially rotated (up to 20◦ ) version 
of the first. Monkeys then decided if image orientations were a match or non-match, and received a juice reward 
for responding correctly within 1.5 s after the offset of the second image. Therefore, each trial was approximately 
3.6 s in total. For each day, the image shown in each trial was the same, however different images were shown 
across days. Accordingly, on learning days monkeys were presented with novel imagery, whereas on non-learn-
ing days monkeys were presented with previously seen imagery. The analyses of this work focus on learning days, 
since larger changes in task accuracy allow for a correlation analysis between accuracy and coupling measured 
by coherence or MIF.

LFPs for one monkey were recorded using two 16-channel Plexon U-Probes with electrodes 100µm apart 
while for the other monkey recordings were from pairs of MPI microelectrodes16. For MIF calculations, we 
directly used the channels of the microelectrodes for the second monkey while using averages across channels 
within probes for the first monkey because of channel proximity.

Our analysis focuses on the theta band (4–8 Hz) because of inspiration from previous analyses. Specifically, 
prior analysis16 of this particular data set found heightened theta band (4–8 Hz) spike-field coherence associ-
ated with learning during each stimulus presentation, and other work on a similar task found interesting theta 
(3–9 Hz) coupling and performance results during the delay period47. The former analysis16 focused on spike-field 
coherence, i.e. coherence between spike timings and LFPs, while we analyze coupling instead between LFPs, both 
in terms of coherence and MIF. The latter analysis47 was categorically different from our findings, since its timing 
suggests an association with short-term memory. In contrast, we analyze phenomena taking place approximately 
during the latter part of image two presentation continuing into the beginning of the decision period.
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Figure 7.   Comparison of frequency coupling estimated by MIF and coherence (C) between GPs and non-GPs, 
with the estimated coherence being transformed to MIF (6) and accordingly labeled “ −log(1− CXY (f0)) ”. Left: 
both MIF and the transformed coherence capture all information about the coupling between GPs, as evidenced 
by the −log(1− CXY (f0)) value being basically identical to the estimated MIF. 1e4 samples were used for each 
estimate, with 100 iterations performed in order to provide variance errorbars for each estimate (which are too 
small to be easily visible). Right: the −log(1− CXY (f0)) transformation underestimates the MIF value, implying 
that coherence is not capturing all of the information about the coupling between non-GPs.
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In particular, we analyzed theta (4–8 Hz) coupling between V4 LFPs in the time window starting at 1.6 s and 
ending at 2 s from the first stimulus onset. This window takes place approximately during the latter part of image 
two presentation continuing into the beginning of the decision period. We used 300 ms windows starting at 1.6, 
1.65, and 1.7 s to get three different estimates of coherence and MIF within the theta band for the first 100 trials 
of a given experimental day for a given monkey. 300 ms was chosen since that is the length of stimulus presenta-
tion, and 100 trials were utilized to provide a reasonable coherence/MIF estimate. These three estimates were 
averaged to produce one estimate of coherence and one estimate of MIF for that window of trials. Then, we slid 
the window of 100 trials by ten trials and computed new estimates, and continued this until reaching the end of 
the collection of trials for the given day. A sliding window of trials was implemented in order to provide more 
data points in correlating frequency coupling with accuracy, and we accordingly utilized a software package43 
to estimate confidence intervals that account for the dependency between windows that this introduces. This 
process produced a series of coherence estimates and a series of MIF estimates indexed by the particular window 
of trials. Similar to a prior significance testing approach48, coherence and MIF values were significance tested 
by comparison with a threshold equal to the 95th percentile of the maximum distribution, which was estimated 
with 5000 samples each resulting from taking the maximum coherence/MIF value across frequency for a given 
permutation of the set of the trial windows of one of the two LFPs. Monkey task accuracy was also computed 
for the (unpermuted) windows of trials, and then correlated with the significance tested coherence and MIF 
estimates. This was done for two monkeys with 2 days of data each, producing four correlations between task 
accuracy and coherence, as well as between task accuracy and MIF, which are displayed in Fig. 9.

In Fig. 9 each pair of bars is a result for the same learning day, with days A and B coming from one monkey 
and days C and D coming from a second monkey. Both post MIF and coherence in the theta band (4–8 Hz) 
exhibit similar behavior for this data. Note that we utilized a software package43 to estimate confidence intervals 
for the correlation estimates in Fig. 9, where a purple/green “ ∗ ” designates a significant Pearson correlation 
coefficient R for which the 95% confidence interval excludes zero. The confidence intervals account for auto-
correlation induced by the sliding window approach via use of a block bootstrap technique43,49–52. Although 
unspecified by the software, the relevant papers43,49 imply that 2000 bootstrap samples were used, along with 1000 
resamplings of each of those bootstrap samples in order to improve confidence interval accuracy43. Furthermore, 
a black “ ∗”44 indicates p ≤ 0.05 and “ ∗ ∗ ∗ ” indicates p ≤ 0.001 for the significance of correlation differences45,46 
via a two-tailed Z-test which accounted for the fact that both correlations have accuracy as a common variable. 
Although days C and D show statistically significant differences, we consider coherence and MIF to be showing 
generally the same findings for this particular data set because the correlations on day C are very low and both 
correlations are positive on day D.

Discussion
Interestingly, the post approach to multitaper MIF estimation provides very low variance (Fig. 5) when using 
k-nn, which suggests that averaging MIF estimates across tapers is the key to reducing variability in estimates 
for k-nn. As to why post produces lower variance than pre, we consider a high level hypothesis where an MIF 
estimator is taken to be a highly nonlinear and nonconvex function that receives complex samples as input and 
produces an MIF estimate as output. The nonlinearity and nonconvexity of this function will cause it to be rife 
with hills and valleys. Therefore, even though the spectral estimates in the pre case have been averaged, there 
are no strong guarantees on what output the MIF function will give for these spectral inputs. In fact, these 
inputs could cause the function to take a value at the peak of a hill or at the floor of a valley. By contrast, the post 
estimator is able to average across function outputs, meaning that this landscape ridden with hills and valleys 
is effectively low-passed and therefore the estimator variance is reduced. In accordance with the notion of the 
bias-variance trade-off, this variance reduction comes at a potential cost: the post approach has higher bias than 
the pre approach, and also has a higher bias than the traditional Hamming approach. However, the primary focus 
of this work was on changes in frequency coupling that correlate with task phenomena rather than the absolute 

Figure 8.   Time structure of each trial of the visual delayed matching-to-sample task learned by two rhesus 
macaques16. Monkeys fixated for 0.5 s, then two images were displayed in the periphery of their visual field for 
0.3 s each, with a 0.8–1.2 s blank period in between. Macaques were then given 1.5 s to respond whether or not 
the identical images had matching orientations.
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values of frequency coupling, making variance rather than bias the priority. When absolute values are impor-
tant, such as in our comparison between MIF and coherence on simulated data, the pre approach proves useful.

In comparing coherence and MIF for simulations of GPs and non-GPs, it is remarkable how a change from 
Rayleigh to uniform distributions appeared to cause information to be missed by coherence. This is concerning 
since sinusoidal waveforms with uniformly distributed amplitudes seem biologically plausible, yet the com-
monly used metric of coherence will not entirely capture relationships between such signals. In contrast, MIF 
will capture the full statistical dependence between these signals. Further models should be simulated to see 
how this phenomena translates across them. Additionally, we recognize that the statistical power (sensitivity) for 
detecting an effect could defer between coherence and MIF, and therefore we suggest this as another important 
avenue for future work.

Our development of a lower-variance k-nn estimator for MIF was critical in accurately measuring correla-
tions between frequency coupling and visual task performance, since higher variance reduces the maximum 
measurable correlation11–15. For our particular data set, coherence and MIF behaved mostly similarly. However, 
theoretically, we know that MIF captures full statistical dependence while coherence is limited to second-order 
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Figure 9.   Top: scatter plots of average monkey task accuracy against coherence/MIF. Each point is comprised 
of 100 trials, and n indicates the number of points in each plot. Coherence and post MIF exhibit minor 
differences for each day. Bottom: correlations between coherence/MIF and accuracy based on scatter plot data 
are compared. Similar to the scatter plots, coherence and post MIF tend to exhibit minor differences in their 
correlations with accuracy for this data set. We utilized a software package43 to estimate confidence intervals 
for correlation estimates, where a purple/green “ ∗ ” designates a significant Pearson correlation coefficient R for 
which the 95% confidence interval (calculated to account for autocorrelation induced by sliding overlapping 
windows) excludes zero. For the black “ ∗”44 p = 0.0268 and for “ ∗ ∗ ∗ ” p = 0.0002 regarding the significance of 
correlation differences45,46. Differences on days C and D are statistically significant, but because correlations are 
low on day C and both are positive on day D we consider coherence and MIF to mostly agree for this particular 
data.
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statistics. Therefore, future work should demonstrate this fact empirically with a suitable data set that exhibits 
stronger deviations from Gaussianity.

Additionally, we briefly consider interpretation of the results found from applying MIF to the visual cortical 
data. If the MIF values displayed in Fig. 9 are in fact all accurate, it could possibly be concluded that theta MIF 
is associated with macaques’ general state of alertness. As pointed out previously16, heightened LFP power17,18 
within the gamma band is one example of a quantity among others that has correlated with a higher state of 
arousal. However, significance testing makes it clear that theta coupling measured by MIF is considerably more 
likely to be capturing phenomena that is more specific than general arousal, since one day of each monkey 
exhibits significant positive correlations between theta MIF and accuracy, while the other day of each monkey 
has no significant correlation.

In conclusion, we developed a powerful approach to performing estimation of MIF for maximizing measur-
able correlations with task-relevant phenomena in the form of the “post” k-nn estimator, which was associated 
with lower estimation variance than other k-nn methods. Furthermore, simulations revealed MIF’s superiority 
in general over coherence to fully capture frequency coupling by being more informative. We found that coher-
ence and MIF mostly agreed when applied to our particular visual cortical LFP data set, however we expect that 
in many cases MIF will outperform coherence empirically and future work should focus on this application. 
Therefore we provide neuroscientists with a robust way to measure frequency coupling that is ideal for correlat-
ing such coupling in neural data with task-relevant phenomena.

Data availability
We provide access to our MIF toolbox here: https​://githu​b.com/jy46/MIF-Toolb​ox (https​://doi.org/10.5281/
zenod​o.38798​02). The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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