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SUMMARY

Calcium imaging data promises to transform the field of neuroscience by making it possible to record from
large populations of neurons simultaneously. However, determining the exact moment in time at which a
neuron spikes, from a calcium imaging data set, amounts to a non-trivial deconvolution problem which
is of critical importance for downstream analyses. While a number of formulations have been proposed
for this task in the recent literature, in this article, we focus on a formulation recently proposed in Jewell
and Witten (2018. Exact spike train inference via �0 optimization. The Annals of Applied Statistics 12(4),
2457–2482) that can accurately estimate not just the spike rate, but also the specific times at which the
neuron spikes. We develop a much faster algorithm that can be used to deconvolve a fluorescence trace
of 100 000 timesteps in less than a second. Furthermore, we present a modification to this algorithm
that precludes the possibility of a “negative spike”. We demonstrate the performance of this algorithm for
spike deconvolution on calcium imaging datasets that were recently released as part of thespikefinder
challenge (http://spikefinder.codeneuro.org/). The algorithm presented in this article was used in the Allen
Institute for Brain Science’s “platform paper” to decode neural activity from the Allen Brain Observatory;
this is the main scientific paper in which their data resource is presented. Our C++ implementation,
along with R and pythonwrappers, is publicly available. R code is available on CRAN and Github, and
pythonwrappers are available onGithub; see https://github.com/jewellsean/FastLZeroSpikeInference.
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1. INTRODUCTION

Due to recent advances in calcium imaging technology, it has become possible to record from large
populations of neurons simultaneously in behaving animals (Dombeck and others, 2007; Ahrens and
others, 2013; Prevedel and others, 2014). These data result in a fluorescence trace for each neuron.

However, most downstream analyses require not a fluorescence trace, but instead a measure of the
neuron’s activity over time. Consequently, a number of unsupervised and—more recently—supervised
methods have been developed to infer neural activity on the basis of the fluorescence trace (Yaksi and
Friedrich, 2006; Holekamp and others, 2008; Sasaki and others, 2008; Dyer and others, 2010, 2013;
Grewe and others, 2010; Vogelstein and others, 2009, 2010; Pnevmatikakis and others, 2013; Deneux
and others, 2016; Friedrich and Paninski, 2016; Theis and others, 2016; Friedrich and others, 2017; Jewell
and Witten, 2018).

In this article, we make use of a generative model that connects the observed fluorescence trace yt to
the underlying and unobserved calcium concentration ct , and the unknown spike times (Vogelstein and
others, 2010; Friedrich and Paninski, 2016; Friedrich and others, 2017). This model assumes that the
observed fluorescence is a noisy version of the underlying calcium, which exponentially decays, unless
there is a spike, in which case there is an instantaneous increase in the calcium concentration, as follows:

yt = β0 + β1ct + εt , εt ∼ind. (0, σ 2), t = 1, . . . , T ;

ct = γ ct−1 + zt , t = 2, . . . , T , (1.1)

where zt ≥ 0, and where zt > 0 indicates the presence of a spike at the tth timestep. At most timesteps
zt = 0, corresponding to no spike, and the calcium will decay exponentially at a rate governed by the
parameter γ , which is assumed known. For simplicity, in what follows, we assume that the intercept
β0 is equal to zero. However, this is easy to relax; see Section 2.4 for a straight-forward extension, and
Section 3 for practical considerations. Moreover, we set β1 equal to one, since the problems we will solve
are scale-invariant. That is, the value of β1 does not affect the scientific conclusions.

Under the additional assumption that the errors εt are normally distributed, model (1.1) suggests
estimating the concentration by solving the following constrained �0 optimization problem

minimize
c1,..., cT , z2,..., zT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

1(zt �=0)

}
subject to zt = ct − γ ct−1 ≥ 0, (1.2)

where λ is a non-negative tuning parameter that controls the tradeoff between how closely the calcium con-
centration matches the fluorescence trace,

∑T
t=1(yt −ct)

2, and the number of non-zero spikes,
∑T

t=2 1(zt �=0).
The solution to this optimization problem directly provides an estimate for the spike times; that is, if ẑt �= 0,
then we infer a spike at time t. We note that this problem is over-parameterized, in the sense that knowing
c1, . . . , cT determines z2, . . . , zT .

While (1.2) follows from the biological process described in (1.1), the �0 penalty makes the problem
nonconvex and thus seemingly intractable. Consequently, rather than solving (1.2), prior approaches have
solved a convex relaxation to (1.2) (Vogelstein and others, 2010; Friedrich and Paninski, 2016; Friedrich
and others, 2017), where the �0 penalty is replaced by an �1 penalty.

In recent work, Jewell and Witten (2018) showed that it is possible to efficiently solve the related
nonconvex optimization problem

minimize
c1,..., cT , z2,..., zT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

1(zt �=0)

}
subject to zt = ct − γ ct−1, (1.3)
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obtained by removing the positivity constraint, ct − γ ct−1 ≥ 0, from (1.2). The positivity constraint
enforces the biological property that a firing neuron can only cause the calcium concentration to increase.
Nonetheless, despite the slight loss in physical interpretability caused by the omission of the positivity
constraint, Jewell and Witten (2018) showed that solving (1.3) leads to improved performance over existing
deconvolution approaches that perform a convex relaxation of (1.2). In particular, the method of Jewell
and Witten (2018) provides an accurate estimate of the specific timesteps at which a neuron fires.

Unfortunately, the algorithm proposed in Jewell and Witten (2018) for solving (1.3) is too slow to
conveniently run on large-scale data. For traces of 100 000 timesteps, the implementation runs in a few
minutes for a single value of the tuning parameter λ; in practice the user must apply the algorithm over a
fine grid of values of λ, leading potentially to hours of computation time for a single trace. Furthermore, a
single experiment could result in hundreds or thousands of fluorescence traces (Ahrens and others, 2013;
Vladimirov and others, 2014).

In this article, we develop a fast algorithm for solving problem (1.3); for traces of 100 000 timesteps
our implementation runs in less than a second. Furthermore, this new algorithm can easily accommodate
the positivity constraint that was omitted from (1.3); in other words, we can directly solve problem (1.2).
Additionally, we exploit ideas from Haynes and others (2017) to efficiently “choose” good values of λ;
that is, values of λ where the solution to (1.3) changes.

The algorithm we develop to solve (1.2) was used to obtain the key scientific results in the Allen
Institute’s main scientific paper from theAllen Brain Observatory (deVries and others, 2018).Additionally,
the Allen Institute for Brain Science recently released an update to their software development kit that
provides users with the output from our algorithm for close to 60 000 neurons during different experimental
conditions.

In what follows, we introduce our new algorithm for solving (1.2) and (1.3) in Section 2. We compare
its performance in Section 3 to a convex relaxation of (1.2) on a number of calcium imaging datasets that
were recently released as part of the spikefinder challenge (http://spikefinder.codeneuro.org/). We
close with a discussion in Section 4.

2. A FAST FUNCTIONAL PRUNING ALGORITHM FOR SOLVING PROBLEMS (1.3) AND (1.2)

2.1. A review of Jewell and Witten (2018)

Jewell and Witten (2018) point out that the �0 optimization problem (1.3) is equivalent to a changepoint
detection problem,

minimize
0=τ0<τ1<...<τk <τk+1=T ,k

{
k∑

j=0

D(y(τj+1):τj+1) + λk

}
, (2.4)

where

D(ya:b) ≡ min
α

{
1

2

b∑
t=a

(
yt − αγ t−b

)2

}
. (2.5)

In problem (2.4), we select the optimal changepoints τ1, . . . , τk and the number of changepoints k such
that the cost of segmenting the data into k + 1 exponentially decaying regions is minimal, where (2.5)
is the cost associated with the region that spans the ath to bth timesteps. Problems (2.4) and (1.3) are
equivalent in the sense that ẑτ̂1+1 �= 0, . . . , ẑτ̂k +1 �= 0 and all other ẑt = 0.

http://spikefinder.codeneuro.org/
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To solve the changepoint problem, Jewell and Witten (2018) exploit a simple recursion (Jackson and
others, 2005),

F(s) = min
0=τ0<τ1<···<τk <τk+1=s,k

{
k∑

j=0

D(y(τj+1):τj+1) + λk

}
= min

0≤τ<s

{
F(τ ) + D(y(τ+1):s) + λ

}
, (2.6)

where F(s) is the optimal cost of segmenting the data y1:s ≡ [y1, . . . , ys], and where we define F(0) ≡ −λ.
This results in an algorithm with computational complexity O(T 2), which can be substantially improved
by noticing that the minimization on the right hand side of (2.6) can be performed over a smaller set
Es without sacrificing the global optimum (Killick and others, 2012); details are provided in Jewell and
Witten (2018). As mentioned in the introduction, the algorithm runs in a few minutes for traces of length
100 000, and yields the global optimum to (1.3). We note that the recursion (2.6) does not naturally lead
to an algorithm to solve (1.2); this is discussed in further detail in Section 2.3.

2.2. Functional pruning for solving (1.3)

2.2.1. Motivation for functional pruning. In order to motivate the potential for a much faster algorithm
for solving (1.3) than the one proposed in Jewell and Witten (2018), consider Figure 1a.

In this figure, we are interested in determining the optimal cost of segmenting the data up to time 40,
that is, calculating F(40) in (2.6). Instead of directly applying the recursion (2.6), we consider a slightly
different question: What is the optimal most recent changepoint before the 40th timestep, conditional
on, the unknown calcium concentration c40? Given the previously stored values F(0), . . . , F(39), and
the data y1:40, it is straightforward to calculate the best most recent changepoint τ ∗(c40), as τ ∗(c40) =
argmin
0≤τ<40

{
F(τ ) + 1

2

∑40
t=τ+1(yt − γ t−40c40)

2 + λ
}

, for any value of the calcium concentration c40.

Figure 1a displays the most recent changepoint τ ∗(c40) as a function of c40. We observe that regardless
of the value of the calcium at the current timestep—and consequently, regardless of the fluorescence values
y41, y42, y43, . . . , yT —the only possible times for the most recent changepoint before the 40th timestep are
20, 37, and 39; that is, τ ∗(c40) ∈ {20, 37, 39} for all possible c40.

However, the algorithm proposed in Jewell and Witten (2018) does not exploit the fact that 20, 37, and
39 are the only possible times for the most recent changepoint before the 40th timestep: the minimization
in (2.6) is performed over the set {0, . . . , 39}, or else over a slightly smaller set {18, . . . , 39} using ideas
from Killick and others (2012). This suggests that by viewing the cost of segmenting the data up until the
sth timestep as a function of the calcium at the sth timestep, we could potentially develop an algorithm
that is much faster than the one in Jewell and Witten (2018) in that it would only require performing the
minimization in (2.6) over {20, 37, 39}. The idea of using this type of conditioning was first suggested by
Rigaill (2015) and Maidstone and others (2017), albeit to speed up algorithms for detecting changepoints
in a different class of models.

2.2.2. The functional pruning algorithm. To begin, we substitute the cost function D(y(τ+1):s) into the
recursion (2.6), in order to obtain

F(s) = min
0≤τ<s

{
F(τ ) + D(y(τ+1):s) + λ

}

= min
0≤τ<s

{
F(τ ) + min

α

{
1

2

s∑
t=τ+1

(
yt − αγ t−s

)2

}
+ λ

}
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Fig. 1. Algorithm 1: (a) motivation and (b) example. (a) A simple example to show that there are only a few possible
values for the most recent changepoint before timestep 40. We consider solving for the most recent changepoint,
given data y1:40, for each possible value of the calcium concentration at the 40th timestep, c40. For each possible
value of c40, we display the estimated calcium concentration going back in time to the most recent changepoint
before timestep 40. The colors indicate the time of the most recent changepoint. In this example, there are only
three possibilities for the most recent changepoint: {20, 37, 39}. For example, τ ∗(0.001) = 37, τ ∗(0.02) = 20,
and τ ∗(1) = 39. (b) Evolution of Costτs and Cost∗s (α) for Example 1. The left-hand panels display the functions
Cost∗s−1(α/γ ) + 1

2 (ys − α)2 and minα′ Cost∗s−1(α
′) + λ + 1

2 (ys − α)2, and the right-hand panels show the function
Cost∗s (α), which is the minimum of those two functions. Rows index the timesteps, s = 1, 2, 3. The functions are
colored based on the timestep of the most recent changepoint, that is, the value of τ corresponding to Rτ

s . Top: When
s = 1, Cost∗1(α) = 1

2 (y1 − α)2; this corresponds to the region R0
1 = [0, ∞). Center: When s = 2, Cost∗2(α) is the

minimum of two quantities: Cost∗1(α/γ ) + 1
2 (y2 − α)2, which corresponds to the most recent changepoint being at

timestep zero, and minα′ Cost∗1(α′) + λ + 1
2 (y2 − α)2, which corresponds to the most recent changepoint being at

timestep one. These two functions are shown on the left-hand side, and Cost∗2(α) is shown on the right-hand side.
Bottom: When s = 3, Cost∗3(α) is calculated similarly; see Example 1 for additional details.
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= min
α

min
0≤τ<s

{
F(τ ) +

{
1

2

s∑
t=τ+1

(
yt − αγ t−s

)2

}
+ λ

}

= min
α

min
0≤τ<s

Costτs (α)

= min
α

Cost∗s (α), (2.7)

where

Costτs (α) ≡ F(τ ) + 1

2

s∑
t=τ+1

(
yt − αγ t−s

)2 + λ, (2.8)

and

Cost∗s (α) = min
0≤τ<s

Costτs (α). (2.9)

In words, Costτs (α) is the cost of partitioning the data up until time s, given that the most recent changepoint
was at time τ , and the calcium at the sth timestep equals α. Cost∗s (α) is the optimal cost of partitioning
the data up until time s, given that the calcium at the sth timestep equals α.

The following proposition will prove useful in what follows.

Proposition 1 For Cost∗s (α) defined in (2.9), the following recursion holds:

Cost∗s (α) = min
{

Cost∗s−1(α/γ ), min
α′ Cost∗s−1(α

′) + λ

}
+ 1

2
(ys − α)2. (2.10)

The proof of Proposition 1 is in Appendix S1 of the supplementary material available at Biostatistics
online. The recursion in (2.10) encompasses two possibilities: either there is a changepoint at the (s−1)st
timestep, and we must determine the optimal cost up to that time, minα′ Cost∗s−1(α

′) + λ + 1
2 (ys − α)2,

or there is no changepoint at the (s − 1)st timestep, Cost∗s−1(α/γ ) + 1
2 (ys − α)2. The recursion in (2.10)

is reminiscent of (2.6), and raises the following question: can we use (2.10) as the basis for a recursive
algorithm for solving the problem of interest, (1.3)? At first, it appears almost hopeless, since the recursion
(2.10) involves a function of α, a real-valued parameter. However, as we will see, it turns out that Cost∗s (α)

and Costτs (α) are simple functions of α that are easy to analytically manipulate.
Observe that, by definition (2.9), the optimal cost Cost∗s (α) takes the form

Cost∗s (α) =

⎧⎪⎪⎨
⎪⎪⎩

Cost0
s (α), α ∈ R0

s ,
...

...

Costs−1
s (α), α ∈ Rs−1

s ,

(2.11)

where Rτ
s ≡

{
α : min0≤τ ′<s Costτ

′
s (α) = Costτs (α)

}
; this is the set of values for the calcium at the sth

timestep such that the most recent changepoint occurred at time τ . Furthermore, by inspection of (2.8),
we see that Costτs (α) is itself a quadratic function of α for all τ . Thus, Cost∗s (α) is in fact piecewise
quadratic. This means that in order to efficiently store the function Cost∗s (α), we must simply keep track
of the regions R0

s , . . . , Rs−1
s , as well as the three coefficients (constant, linear, quadratic) that define the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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quadratic function corresponding to each region. We will now present a small toy example illustrating how
the recursion (2.10) can be used to build up optimal cost functions, each of which is piecewise quadratic.

EXAMPLE 1 Consider the simple dataset y = [1.00, 0.98, 0.96, . . .] with λ = 1
2 and γ = 0.98. We start

with Cost∗1(α), which is just a quadratic centered around y1,

Cost∗1(α) = Cost0
1(α) = 1

2
(y1 − α)2 = 1

2
(1.00 − α)2, α ∈ R0

1 ≡ [0, ∞).

Then, at the next time point, we form Cost∗2(α) based on (2.10),

Cost∗2(α) = min
{

Cost∗1(α/γ ), min
α′ Cost∗1(α

′) + λ

}
+ 1

2
(y2 − α)2

= min
{

1

2
(1 − α/γ )2, 0 + 1

2

}
+ 1

2
(0.98 − α)2

=
{

1
2 (1 − α/γ )2 + 1

2 (0.98 − α)2, α ∈ R0
2 ≡ [0, 2γ )

1
2 + 1

2 (0.98 − α)2, α ∈ R1
2 ≡ [2γ , ∞)

.

Again, using the recursion (2.10) we obtain the next optimal cost function,

Cost∗3(α) = min
{

Cost∗2(α/γ ), min
α′ Cost∗2(α′) + λ

}
+ 1

2
(y3 − α)2

= min
{

Cost∗2(α/γ ),
1

2

}
+ 1

2
(0.96 − α)2

=

⎧⎪⎪⎨
⎪⎪⎩

1
2 + 1

2 (0.96 − α)2, α ∈ R2
3 ≡ γ 2

{[
0, 1 − 1√

1+γ 2

)
∪

[
1 + 1√

1+γ 2
, ∞

)}
1
2 (1 − α/γ 2)2 + 1

2 (0.98 − α/γ )2 + 1
2 (0.96 − α)2, α ∈ R0

3 ≡ γ 2
[

1 − 1√
1+γ 2

, 1 + 1√
1+γ 2

) .

We note that Cost∗3(α) is defined over just R0
3 and R2

3. This example is displayed in Figure 1b.

Although we have shown how to efficiently build optimal cost functions Cost∗s (α) from s = 1, . . . , T ,
it remains to establish that these cost functions can be used to determine the optimal changepoints, that
is, the values of τ1, . . . , τk that solve (1.3). These can be obtained by finding the value of τ that satisfies

τ ∗(s) = {τ : min
α

Costτs (α) = min
α

Cost∗s (α)} (2.12)

for τ ∗(T ), τ ∗(τ ∗(T )), . . . until 0 is obtained. Full details are provided in Algorithm 1. To summarize, we
have developed a recursive algorithm for solving (1.3) using the recursions in Proposition 1.

EXAMPLE 2 “Example 1 revisited”
We return to Example 1 to illustrate how (2.12) can be used to determine the optimal changepoints. In

the interest of simplicity, we assume that T = 3; in other words, we have observed all of the data. Then,
τ ∗(3) = {τ : minα Costτ3(α) = minα Cost∗3(α)}, where

min
α

Costτ3(α) =
{

minα Cost2
3(α) = 0.73, α ∈ R2

3

minα Cost0
3(α) = 5.4 × 10−8, α ∈ R0

3

.
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Algorithm 1: A functional pruning algorithm for solving (1.3)

Initialize: Compute Cost∗1(α) := Cost0
1(α) = 1

2 (y1 − α)2, and set R0
1 = [0, ∞)

1 foreach timestep s = 2, . . . , T do
2 Calculate and store Cost∗s (α) := min{Cost∗s−1(α/γ ), minα′ Cost∗s−1(α

′) + λ} + 1
2 (ys − α)2

3 Set Rs−1
s = {α : Cost∗s (α) = minα′ Cost∗s−1(α

′) + λ + 1
2 (ys − α)2}

4 foreach τ = 0, . . . , s − 1 do
5 Rτ

s = (γRτ
s−1) ∩ (Rs−1

s )c

6 end
7 end
8 Initialize list of changepoints cp := (T )

9 Set the current changepoint τ cur := T
10 Initialize list of estimated calcium concentrations c := ()

11 while τ cur > 0 do
12 τ prev := τ cur

13 Determine the most recent changepoint τ cur :=
{
τ : argmin

α

{
Cost∗τprev (α)

} ∈ Rτ
τprev

}
14 Determine the calcium concentration at τ prev, α∗ := argmin

α∈Rτcur
τprev

{Cost∗τprev (α)}

15 Update list of changepoints cp := (τ cur , cp)

16 Update list of calcium concentrations, c := (α∗, c)
17 foreach timestep s = (τ prev − 1), . . . , (τ cur + 1) do
18 Calculate calcium concentration, α∗/γ , and then append to list, c := (α∗/γ , c)
19 Scale α∗ := α∗/γ
20 end
21 end

Output : Set of changepoints cp, number of changepoints k := card(cp), and estimated calcium
concentrations c.

Therefore, the most recent changepoint is τ ∗(3) = 0. In fact, since the most recent changepoint is at
timestep 0, we say that there are no changepoints.

Algorithm 1 is an instance of the class of functional pruning algorithms proposed in Maidstone and
others (2017).

2.2.3. Computational time of functional pruning. We saw in Example 1 that Proposition 1 can lead to a
recursive algorithm for solving the problem of interest (1.3). At first glance, since Cost∗s (α) is piecewise
quadratic with s regions (2.11), and our recursive algorithm requires computing Cost∗1(α), . . . , Cost∗T (α),
it appears that a total of 1 + 2 + . . . + T = O(T 2) operations must be performed in order to deconvolve a
fluorescence trace of length T . Critically, however, this is not the case. This is because, in practice, Cost∗s (α)

is piecewise quadratic with substantially fewer than s regions, as we saw in Figure 1a. To see this, recall

from (2.11) that the τ th region up to timestep s is defined as Rτ
s ≡

{
α : min0≤τ ′<s Costτ

′
s (α) = Costτs (α)

}
.

However, if Rτ
s is the empty set—that is, if there is no α such that min0≤τ ′<s Costτ

′
s (α) = Costτs (α)—then

Cost∗s (α) is, in fact, not a function of the τ th region.
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Fig. 2. Timing comparisons between three algorithms for solving (1.2) and (1.3) with λ = 1. Functional pruning
approach used in Algorithm 1 and Algorithm S8.1 of the supplementary material available at Biostatistics online
(purple), and two algorithms from Jewell and Witten (2018): one based on recursion (2.6) (Optimal partitioning), and
one based on an improvement to (2.6) that makes use of ideas from Killick and others (2012) (Inequality pruning).
Fifty sample datasets are simulated according to (1.1) with coefficient β0 = 0, decay parameter γ = 0.998, normal

errors εt
ind∼ N(0, σ = 0.15), Poisson distributed spikes zt

ind∼ Pois(θ) where θ ∈ {0.1, 0.01, 0.001}, and initial calcium
value c1 ∼ Pois(θ). Standard errors are on average < 0.1% of the average computation time. Panels correspond to
different values of θ . Timing results were obtained on an Intel Xeon E5-2620 2.0 GHz processor.

In practice, Rτ
s will often be the empty set. For instance, see Figure 1a. We note that in this example,

at timestep s = 40, the optimal cost function is only a function of three regions,

Cost∗40(α) =

⎧⎪⎨
⎪⎩

1.88α2 − 0.17α + 2.08, α ∈ R37
40 ≡ [0, 0.06]

142.08α2 − 39.60α + 3.85, α ∈ R20
40 ≡ [0.06, 0.22]

0.50α2 − 0.10α + 2.10, α ∈ R39
40 ≡ [0.22, ∞)

.

In a similar way, in Example 1, we saw that Cost∗3(α) was a function of two regions.
Therefore, though its worst-case performance is upper-bounded by O(T 2), in practice, Algorithm 1 is

typically much faster than this. In Appendix S6 of the supplementary material available at Biostatistics
online, we show that the maximum number of regions, maxs=0,...,T |{j : Rj

s �= ∅, 0 ≤ j ≤ s − 1}|, is a small
fraction of T ; for T = 100 000, fewer than 30 regions are required.

Furthermore, by slightly modifying Theorem 6.1 of Maidstone and others (2017), we can show that
Algorithm 1 is no worse than the algorithm proposed in Jewell and Witten (2018). In fact, as shown in
Figure 2, Algorithm 1 is typically up to a thousand times faster than that of Jewell and Witten (2018) on a
fluorescence trace of length 100 000. In simulations, our C++ implementation of Algorithm 1 runs in less
than one second on traces of length 100 000.

2.3. An efficient algorithm to solve the constrained problem (1.2)

As stated in the introduction, our main interest is to solve (1.2) for the global optimum. Problem (1.2)
differs from problem (1.3) in that there is an additional constraint that enforces biological reality: firing
neurons can only cause an increase, but not a decrease, in the calcium concentration. The algorithm in
Jewell and Witten (2018) cannot be used to solve (1.2), because it relies on the recursion in (2.6), which
does not allow for any dependence in the calcium concentration before and after a changepoint. Thus, at
the time of this writing, there are no algorithms available to efficiently solve (1.2) for the global optimum.

In this section, we utilize a simple modification, due to Hocking and others (2017), to the functional
recursion (2.10) that ensures that the constraint ct − γ ct−1 ≥ 0 is satisfied. First, recall from (2.10) that

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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Cost∗s (α) = min
{
Cost∗s−1(α/γ ), minα′ Cost∗s−1(α

′) + λ
} + 1

2 (ys − α)2, where we take the minimum over
two terms, which result from adding an additional point ys to the current segment, Cost∗s−1(α/γ )+ 1

2 (ys −
α)2, and adding a new candidate changepoint at s − 1 and starting a new segment at the sth timestep,
minα′ Cost∗s−1(α

′) + λ + 1
2 (ys − α)2.

In the latter case, if there is a spike at the sth timestep, then in order to enforce the positivity
constraint, zs = cs − γ cs−1 ≥ 0, the term minα′ Cost∗s−1(α

′) + λ in (2.10) needs to be modified to
minα′:α≥α′ Cost∗s−1(α

′/γ ) + λ. Therefore, we replace (2.10) with

Cost∗s (α) = min
{

Cost∗s−1(α/γ ), min
α′:α≥α′ Cost∗s−1(α

′/γ ) + λ

}
+ 1

2
(ys − α)2, (2.13)

and we replace (2.8) with

Costτs (α) ≡ min
α′:α′≤γ τ−sα

[
Cost∗τ (α

′) + 1

2

s∑
t=τ+1

(
yt − αγ t−s

)2 + λ

]
. (2.14)

We note that this is a slight abuse of notation since Cost∗s (α) and Costτs (α) take on different definitions
depending on the optimization problem ((1.2) or (1.3)). Equations (2.13) and (2.14) can be used to develop
an efficient recursive algorithm to solve problem (1.2). Details of the algorithm itself are included in
Appendix S2 of the supplementary material available at Biostatistics online. A continuation of Example 1
that solves (1.2) is included in Appendix S5 of the supplementary material available at Biostatistics online.
Figure 2 shows the running time of solving (1.2).

2.4. Solving (1.1) for non-zero intercept β0

Thus far, we have considered (1.1) with β0 = 0. To accommodate the possibility of nonzero baseline
calcium, we consider the problem

minimize
c1,..., cT , z2,..., zT ,β0

{
1

2

T∑
t=1

(yt − (β0 + ct))
2 + λ

T∑
t=2

1(zt �=0)

}
subject to zt ≥ ct − γ ct−1. (2.15)

Instead of directly solving (2.15) with respect to (c1, . . . , cT , z2, . . . , zT , β0), we consider a fine grid of values
for β0, and solve (1.2) with y−β0 usingAlgorithm S8.1 of the supplementary material available at Biostatis-
tics online, for each value of β0 considered. The solution to (2.15) is the set {ĉ1, . . . , ĉT , ẑ2, . . . , ẑT , β0}
corresponding to the value of β0 that led to the smallest value of the objective, over all values of β0

considered.

2.5. Solving (1.1) with additional spike constraints

The methods used to solve (1.2) and (1.3) can also be used to solve the related nonconvex problem

minimize
c1,..., cT

{
1

2

T∑
t=1

(yt − ct)
2

}
subject to ct − γ ct−1 ≥ zmin or ct − γ ct−1 = 0, (2.16)

proposed in Friedrich and others (2017). In Appendix S4 of the supplementary material available at
Biostatistics online, we examine this proposal more closely. Remarkably, we show that Algorithm S8.1

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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of the supplementary material available at Biostatistics online can be generalized to solve

minimize
c1,..., cT

{
1

2

T∑
t=1

(yt − ct)
2 + λ

T∑
t=2

1{ct−γ ct−1 �=0}

}
subject to ct − γ ct−1 ≥ zmin or ct − γ ct−1 = 0

(2.17)

exactly! We note that this is equivalent to (2.16) by taking λ = 0.

3. REAL DATA EXPERIMENTS

In this section, we illustrate the performance of the solution to (1.2) for spike deconvolution across
a number of datasets, which were aggregated as part of the recent spikefinder challenge
(http://spikefinder.codeneuro.org/). Each dataset consists of both calcium and electrophysiological record-
ings for a single cell. As part of the spikefinder challenge, all data recordings were standardized by
resampling to 100 Hz and linear trends were removed from the calcium trace via preprocessing steps
described in Theis and others (2016).

Throughout this section, due to computation considerations, the solutions to (1.2) and (1.3) are obtained
using slight modifications of Algorithm 1 and Algorithm S8.1 of the supplementary material available at
Biostatistics online. These modifications are described in Appendix S3.1 of the supplementary material
available at Biostatistics online. Additionally, since the spikefinder data removed linear trends from
the raw calcium trace, we do not estimate β0 in (1.1). Instead, we set β0 = 0; our empirical results suggest
that estimation of β0 may not be necessary.

In our experiments, we will treat the spikes ascertained using electrophysiological recording as the
“ground truth”, and will quantify the ability of spike deconvolution algorithms to recover these ground truth
spikes on the basis of the calcium recordings. The data sets differ in terms of the choice of calcium indicator
(GCaMP5, GCaMP6, jRCAMP, jRGECO, OGB), scanning technology (AOD, galvo, and resonant), and
circuit under investigation (V1 and retina).

Throughout this section, we compare our proposal (1.2) to a recent approach from the literature that
employs an �1 (convex) relaxation to (1.2),

minimize
c1,..., cT , z2,..., zT

{
1

2

T∑
t=1

(yt − ct)
2 + λ|c1| + λ

T∑
t=2

|zt|
}

subject to zt = ct − γ ct−1 ≥ 0, (3.18)

proposed by Friedrich and Paninski (2016) and Friedrich and others (2017). Friedrich and others (2017)
developed a very fast algorithm to solve (3.18); in simulated examples their algorithm solves (3.18) approx-
imately 40–60× faster than Algorithm 1 and 40–900× faster than Algorithm S8.1 of the supplementary
material available at Biostatistics online. This is not surprising, since (3.18) is a convex problem, whereas
(1.2) and (1.3) are nonconvex problems. Moreover, in practical applications, Algorithm 1 and Algo-
rithm S8.1 of the supplementary material available at Biostatistics online are often fast enough. Indeed,
de Vries and others (2018) uses Algorithm S8.1 of the supplementary material available at Biostatistics
online to deconvolve traces from nearly 60 000 neurons.

Since the solution to (3.18) often results in many small non-zero elements of ẑt , we consider post-
thresholding. That is, given ẑ2, . . . , ẑT that solve (3.18), and a threshold L > 0, we set z̃t = ẑt1(ẑt>L); in
other words, we conclude that a spike is present only if ẑt > L.

In Section 3.1, we compare our proposed approach (1.2) to (3.18) on data from the spikefinder
challenge. We describe our experimental approach in Section 3.1.1. Section 3.1.2 illustrates these methods
for a single cell, and in Section 3.1.3, we examine results for all datasets considered in the spikefinder

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
http://spikefinder.codeneuro.org/
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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challenge. In Section 3.2, we illustrate on a real-data example that solving (1.2) gives superior estimates
than solving (1.3). In Section 3.3, we compare the estimated increase in calcium due to a spike (using
(1.2)) to the actual number of recorded spikes (based on the ground truth electrophysiological recordings).

R code to reproduce all experiments is available on GitHub at https://github.com/jewellsean/fast-
nonconvex-experiments.

3.1. Comparison of (1.2) to (3.18) on data from the spikefinder challenge

3.1.1. Description of methods for Sections 3.1.2–3.1.3. We now describe the methods that will be used
in Sections 3.1.2–3.1.3. Our main objective is to accurately estimate the times at which spikes occur. Thus,
we use two measures that directly compare two spike trains, both of which have been used extensively
in the neuroscience literature (Quiroga and Panzeri, 2009; Reinagel and Reid, 2000; Gerstner and others,
2014): (i) van Rossum distance with timescale parameter τ = 0.1 (van Rossum, 2001; Houghton and
Kreuz, 2012) and (ii) Victor-Purpura distance with cost parameter 10 (Victor and Purpura, 1997, 1996).
We also use an additional measure: (iii) the correlation between two downsampled spike trains; details of
this measure are provided in Theis and others (2016). As we will see, measures (i) and (ii) are sensitive to
the timing of spikes, whereas measure (iii) is somewhat insensitive to the timing of the spikes, and instead
quantifies the similarity between the spike rates.

To analyze the performances of the proposals (1.2) and (3.18) over a single fluorescence trace, we take
a training/test set approach. Given a fluorescence trace of length T , the first �T/2� timesteps are used in
the training set, and the remainder are used for the test set. We solve (1.2) and (3.18) for a range of values
of the tuning parameter λ on the training set; in the case of (3.18) we also use a range of threshold values
L.

For all tuning parameter values considered, we apply the three measures mentioned earlier to the
estimated and true spike trains, and select the tuning parameter values that optimize these measures on the
training set. We then solve (1.2) and (3.18) on the test set with the selected values of the tuning parameters,
and evaluate test set performance.

As pointed out by Pachitariu and others (2018), estimating the decay rate γ in (1.1) is difficult.
Therefore, as in Pachitariu and others (2018), we categorize calcium indicators into three groups based
on their decay properties. As in Vogelstein and others (2010), within each calcium indicator rate category,
we set γ = 1 − �

φ
, where � is 1 / (frame rate), and φ is a time-scale parameter based on the category,

defined as

φ =

⎧⎪⎨
⎪⎩

0.7, fast category

1.25, medium category

2, slow category

.

For example, in Figure 3, GCaMP6f is classified as a fast indicator and the data is recorded at 100Hz.
Therefore, we take γ ≈ 0.986.

In practice, users typically do not have the benefit of a training set to select the tuning parameter value
λ to solve (1.2) or (1.3). Therefore, we recommend using the procedure proposed in de Vries and others
(2018), which selects λ based on the firing rate, decay rate γ , and estimated signal-to-noise ratio.

3.1.2. Results for a single cell. In Figure 3, we illustrate this procedure for cell 13, GCaMP6f, V1, from
Chen and others (2013). Each row corresponds to one of the measures described in Section 3.1.1. The
left column displays these measures on the training set, for the solution to (1.2) with different values of λ,
and for the post-thresholded solution to (3.18) with different values of λ and L. The right column shows

https://github.com/jewellsean/fast-nonconvex-experiments
https://github.com/jewellsean/fast-nonconvex-experiments
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Fig. 3. Illustrative example for cell 13, GCaMP6f, V1, from Chen and others (2013) after preprocessing; see Theis
and others (2016). Different spike measures are displayed in each row. Left: Performances of the post-thresholded
solution to (3.18) and the solution to (1.2). Right: The cell’s fluorescence trace is displayed in grey. The estimated
spikes on the test set from the “best” choice of the tuning parameter λ, as determined by either van Rossum, Victor-
Purpura, or a correlation-based measure on the training set, are displayed under the fluorescence trace. The true spike
times, as determined using electrophysiological recording, are shown in black. The colors in the left-hand panels
correspond to the colors in the right-hand panel.

the fluorescence trace along with the estimated spikes, on the test set, using tuning parameters selected
on the training set.

There are a number of important observations to draw from Figure 3. As measured by van Rossum
and Victor-Purpura, the estimated spikes from (1.2) are much more accurate than those estimated (and
post-thresholded) using the convex relaxation (3.18). This agrees with our visual inspection of the right
hand panel: the estimated spikes from problem (1.2) more closely match the number and timings of the
true spikes than those estimated from problem (3.18).

In contrast, if performance is measured by correlation, then the estimated spikes obtained from (3.18)
result in slightly better performance than the estimated spikes from (1.2). However, in the training set
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there are 75 true spikes, whereas (3.18) outperforms (1.2) when approximately 200 spikes are estimated.
Therefore, selecting the tuning parameter for (3.18) based on correlation leads to a substantial overestimate
of the number of spikes, and therefore, poor overall accuracy in the number and timing of the spikes. This
pattern has been observed in other �1 regularization problems (Zou, 2006; Maidstone and others, 2018),
and persists across cells in the spikefinder data (results not shown).

To summarize, when van Rossum and Victor-Purpura distance are used to evaluate performance, our
proposal (1.2) substantially outperforms the approach in (3.18). When performance is evaluated using
correlation, the performance of (3.18) is slightly better than that of (1.2); however, this better performance
is achieved when far too many spikes are estimated, indicating that correlation is a poor choice for
quantifying the accuracy of spike detection.

3.1.3. Results for all datasets in the spikefinder challenge. In this section, we examine the per-
formance of the solutions to (1.2) and (3.18) on all datasets collected as part of the spikefinder
challenge. For the ten datasets included in this challenge, Table S1 of the supplementary material avail-
able at Biostatistics online tabulates the calcium indicator; circuit; publishing authors; average, minimum,
and maximum fluorescence trace length; the number of cells measured; and the time-scale classification.
In total, there are 174 traces, each of which contains fewer than 100,000 timesteps. We analyze these 174
cells as described in Section 3.1.1.

Figure 4a compares the test set performance, with respect to the van Rossum, Victor-Purpura, and
correlation measures, for each of the 174 cells. As measured by the van Rossum and Victor-Purpura
distance, the solution to (1.2) outperforms the solution to (3.18). However, under the correlation measure,
the solution to (3.18) achieves higher correlations than the solution to (1.2). These results are consistent
with those on a single cell presented in Section 3.1.2, where it was shown that van Rossum and Victor-
Purpura accurately estimate spike times, whereas correlation yields a cruder measure of spike rate and
encourages overestimation of the number of spikes.

3.2. The solution to (1.2) outperforms the solution to (1.3)

As mentioned earlier, in this article, we have developed not only an algorithm for solving (1.3) that is
much faster than the algorithm proposed in Jewell and Witten (2018), but also an algorithm for solving
(1.2), which cannot be solved using techniques from Jewell and Witten (2018). By incorporating the fact
that a firing neuron causes an increase, but never a decrease, in the calcium concentration, the estimated
spikes from problem (1.2) are closer to the ground truth spikes than the estimated spikes from (1.3). In
practice, the solutions to (1.2) and (1.3) are typically quite similar; however, the solution to (1.2) benefits
from greater interpretability. See Appendix S8 of the supplementary material available at Biostatistics
online for an example.

3.3. Comparison of the estimated spike magnitudes from (1.2) to the true number of spikes.

The data from the spikefinder challenge was resampled to 100 Hz before we downloaded it. At this
sampling frequency, since one timestep is just 1/100th of a second, there are very few timesteps with more
than one true spike. Nonetheless, for instances where there is more than one spike in a single timestep,
we wish to ask the question: Do larger values of the estimated spike magnitudes, ĉt − γ ĉt−1, correspond
to more true spikes (as measured by electrophysiology) in the tth timestep?

Figure 4b investigates whether there is a relationship between the estimated spike magnitude ĉt −γ ĉt−1

and the number of spikes measured by electrophysiology at the tth timestep. Because the estimated spike
magnitude of ĉt −γ ĉt−1 is not directly comparable across cells, for each cell we transform the magnitudes
into percentiles. We then compare the percentile of ĉt − γ ĉt−1 to the true number of spikes within a 0.1

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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Fig. 4. Results for all datasets in the spikefinder challenge. (a) Optimal van Rossum, Victor-Purpura, and cor-
relation measures for our proposal, (1.2), and a competing proposal, (3.18). Small values of the van Rossum and
Victor-Purpura measures suggest accurate estimation of the timing and number of spikes, whereas a large value of
the correlation measure suggests accurate estimation of the spike rate, though perhaps an overestimate of the number
of spikes. Each dot represents the performance of (1.2) and (3.18) on a single cell, for each of the 174 cells. Cells are
colored based on the dataset from which they were obtained (see Table S1 of the supplementary material available at
Biostatistics online). (b) Large increases in the estimated spike magnitude, ĉt − γ ĉt−1, are associated with more true
spikes, as measured by electrophysiology, at the tth timestep. For each cell, we transform the spike magnitudes into
percentiles, and then compare the percentile of ĉt − γ ĉt−1 to the true number of spikes within a 0.1 second window
of t. Left: For each cell in each of the ten datasets, we display each timestep for which a spike is estimated to occur;
however, to avoid overplotting, hexagonal bins are used to represent points covered by the hexagon; darker colors
indicate more points. The black curve represents the loess fit across all of the points. Right: Loess curves along with
95% confidence intervals for each dataset. Cells are colored based on the dataset from which they were obtained (see
Table S1 of the supplementary material available at Biostatistics online). Details are provided in Section 3.3.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy083#supplementary-data
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second window of t. Figure 4b displays the percentiles and the number of spikes across all 174 traces on
a test set; tuning parameters were chosen to optimize the van Rossum distance on a training set. The left
panel displays a loess curve fit to all ten datasets, and the right panel shows the loess curves along with
95% confidence intervals for each dataset. As expected, a larger value of ĉt − γ ĉt−1 is associated with
more spikes in the ground truth data.

4. DISCUSSION

Determining the times at which a neuron fires from a calcium imaging dataset is a challenging and impor-
tant problem. In this article, we build upon the nonconvex approach for spike deconvolution proposed
in Jewell and Witten (2018). Though Jewell and Witten (2018) proposed a tractable algorithm for solv-
ing the nonconvex problem, it is prohibitively slow to run on large populations of neurons for which
long recordings are available. The algorithm proposed in this paper solves the optimization problem of
Jewell and Witten (2018) for fluorescence traces of 100 000 timesteps in less than a second. Moreover,
Algorithm S8.1 of the supplementary material available at Biostatistics online overcomes a limitation of
Jewell and Witten (2018) by avoiding “negative” spikes; that is, a decrease in the calcium concentration
due to a spike. We show that these algorithms have excellent performance, relative to existing convex
relaxations, as quantified by the van Rossum and Victor-Purpura measures, on datasets collected as part
of the spikefinder challenge (http://spikefinder.codeneuro.org/). Moreover, Algorithm S8.1 of the
supplementary material available at Biostatistics online was recently used to decode data from nearly
60 000 neurons in the Allen Institute for Brain Science’s “platform paper” for the Allen Brain Observatory
(de Vries and others, 2018).

In this article, we assume that the calcium concentration decays exponentially according to a first-order
auto-regressive model. Although this is typically a good approximation, there are datasets for which—due
to different experimental conditions—spike times estimated from (1.2) and (1.3) are systematically biased
due to model misspecification. In future work, we propose to extend the functional pruning framework to
more general calcium models.

In this article, we focus on developing point estimates of the times at which a neuron spikes. However,
it is also of interest to propagate uncertainty from the deconvolution procedure to downstream analyses
that rely on the spike times. It remains an open question to define the notion of confidence associated with
a set of estimated spikes.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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