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ABSTRACT

The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM rec-
ognition element (PRE) in the 3′′′′′-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in
steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcrip-
tion and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of
PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also ap-
plied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our
results with prior knowledge, we developed a “rulebook” of key contextual features that differentiate functional versus
nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of
RNA targets by the human PUM proteins.
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INTRODUCTION

The control of gene expression at the posttranscriptional
level is critical for diverse biological processes including
proper organismal development in multicellular organ-
isms. Many regulators, including RNA-binding proteins
(RBPs), control the stability of target mRNA transcripts
through the recognition of key sequence elements in the
3′-UTRs of mRNAs (Wickens et al. 2002; Jonas and
Izaurralde 2015). A recent survey of all known human
RBPs indicated that a substantial fraction bind to mRNAs;
however, for any given RBP, the binding specificity, set of

mRNAtargets, and functional role for theRBPateach target
still remains poorly understood (Gerstberger et al. 2014).

The PUF (Pumilio and FBF [fem-3 binding factor]) family
of proteins represent a well-studied class of RBPs (Wickens
et al. 2002;Miller andOlivas 2011;Goldstrohmet al. 2018).
PUF proteins possess a shared carboxy-terminal Pum ho-
mology domain (PUM-HD). Structurally, the human PUM-
HDconsists of eight helical repeats containing specific ami-
no acids that both intercalate into and form hydrogen
bonds and van der Waals contacts with the nucleobases
of the target RNA, conferring specificity for a UGUANAUA
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consensus sequence, referred to as a PUM recognition ele-
ment (PRE) (Wang et al. 2001, 2002). In general, RNA rec-
ognition by the PUM-HD is modular, predictable, and
programmable (Wang et al. 2002; Dong et al. 2011; Camp-
bell et al. 2014). Furthermore, interactions with protein
partners can also alter sequence preference (Campbell
et al. 2012; Weidmann et al. 2016; Qiu et al. 2019).
Functionally, the PUF family of proteins controls stemcell

fate and developmental processes (Wickens et al. 2002).
Mammalian PUMproteins have roles in regulating sperma-
togenesis andoogenesis (Foxet al. 2005; Chenet al. 2012),
neuronal development and function (Vessey et al. 2010;
Siemen et al. 2011; Gennarino et al. 2015; Zhang et al.
2017; Dong et al. 2018; Zahr et al. 2018), immune function
(Narita et al. 2014; Brocard et al. 2018), and cancer (Kedde
et al. 2010; Lee et al. 2016; Naudin et al. 2017; Tichon et al.
2018). PUM1 missense or deletion mutants lead to adult-
onset ataxia (Pumilio1-related cerebellar ataxia [PRCA]),
and loss of one copy leads to developmental delay and sei-
zures (Pumilio1-associated developmental disability, atax-
ia, and seizure [PADDAS]) (Gennarino et al. 2018). Yet,
the target mRNAs responsible for these biological out-
comes are largely opaque. In humans, there are two mem-
bers of the PUF family, PUM1 and PUM2, which share 75%
overall sequence identitywith 91%sequence identity in the
PUM-HD. In addition, human PUM1 and PUM2 share 78%
and 79% sequence identity in the PUM-HD to DmPum, re-
spectively (Spassov and Jurecic 2002; Goldstrohm et al.
2018). Human PUM1 and PUM2 are expressed across tis-
sues and their expression is highly overlapping (Spassov
and Jurecic 2002; Goldstrohm et al. 2018). However, the
presence of distinct phenotypes from PUM1 and PUM2
loss of function indicates likely functional differences, ei-
ther in RNA binding and/or downstream effects of the hu-
man PUM proteins, which remain to be explored.
Targeted experiments have indicated that human PUM1

and PUM2 are capable of repressing expression through
recognition of PREs in a reporter mRNA’s 3′-UTR, likely
through recruitment of the CCR4–NOT complex and sub-
sequent degradation of the mRNA target (Van Etten et al.
2012). Additionally, similar assays have shown that repres-
sion by the human PUM2 PUM-HD alone—that is lacking
the amino-terminal domains of PUM2—requires the poly
(A) binding protein PABPC1, suggesting that the human
PUMs could accelerate mRNA degradation by inhibiting
translation (Weidmann et al. 2014). However, the impor-
tance of PUM-mediated decay relative to other potential
contributing factors to regulation in vivo has still not
been demonstrated. In addition, PUM-mediated repres-
sion is not the only type of gene regulation by human
Pumilio proteins. Recently, expression of a key regulator
of hematopoietic stem cell differentiation, FOXP1, was
shown to be enhanced by human PUM1/2 binding to the
3′-UTR (Naudin et al. 2017). Similar increases in transcript
abundance of PUM targets have also been observed tran-

scriptome-wide (Bohn et al. 2018), yet the mechanism of
PUM-mediated activation remains to be elucidated.
High-throughput measurements of PUM1 and PUM2

binding sites in vivo have confirmed specificity for a PRE
and have identified a diverse set of PUM targets in human
cell lines (Galgano et al. 2008; Morris et al. 2008; Hafner
et al. 2010; VanNostrand et al. 2016). Thus, sequence-spe-
cific recognition of the PRE is an important aspect of target
recognition for the PUM proteins. However, key questions
about PUM-mediated gene regulation remain. At the se-
quence level, there are on the order of 10,000 potential
PRE sites across the full set of annotated human 3′-UTRs,
but only ∼1000 genes exhibit changes in steady-state
RNA levels in response to depletion of PUM1 and PUM2
(Bohn et al. 2018). Additionally, models using a simple
count of PREs in the 3′-UTR of a transcript do not
completely capture the complexity of PUM-mediated
gene regulation (Bohn et al. 2018). The identification of
additional sequence features that discriminate functional
PREs from apparently nonfunctional PREs will improve
the understanding of PUM-mediated gene regulation.
Furthermore, the measurement of steady-state RNA levels
does not allow for differentiation between the individual
contributions of transcription and RNA stability, and thus
the relative importance of PUM effects on stability versus
transcription genome-wide remain unknown.
Through the use of genome-wide sequencing method-

ologies, we set out to answer two key questions in a consis-
tent framework: First, what are the biochemical RNA
binding activities of PUM1 and PUM2 and how do they dif-
fer; and second, what are the primary mechanisms through
which PUM1/2 exert regulatory effects in vivo?Wedemon-
strate that human PUM1/2 modulate the abundance of
mRNA targets primarily through controlling mRNA stabil-
ity and not transcription. We further show, through side-
by-side high-throughput in vitro binding assays, that
PUM1 and PUM2 PUM-HDs have highly similar prefer-
ences for the same sets of sequences, but that the proteins
differ in their stringency of recognition for perfect vs. near-
perfect target site matches. In addition, we identify a key
set of contextual features around PREs that contribute
meaningful information in predicting PUM-mediated regu-
lation including proximity to the 3′ end of a transcript and
the AU content around PRE sites. Taken together, our
study illuminates key contributors to determining function-
al PRE sites and represents a rich resource for interrogating
the control of mRNA stability by the PUM RBPs.

RESULTS

Global analysis of PUM-mediated regulation
of mRNA stability

The effects of PUM1 and PUM2onmRNA stability have not
been measured on a transcriptome-wide scale; thus, we
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applied a bio-orthogonal labeling strategy coupled with
RNAi depletion of the PUMs. Previously, we measured
changes in steady-state RNA abundance after PUM deple-
tion using RNA-seq (Bohn et al. 2018). A limitation of that
approach is that it could not disentangle changes in tran-
scription from changes in RNA stability. Given that target-
ed experiments have indicated that the human PUM
proteins act to control gene expression through the mod-
ulation of RNA stability (Morris et al. 2008; Van Etten et al.
2012), we sought to determine whether this is the primary
mode of PUM action at a transcriptome-wide scale using
the Bru-seq and BruChase-seq methodology (Paulsen
et al. 2014). In brief, Bru-seq and BruChase-seq involve
the metabolic labeling of RNA using 5-bromouridine
(BrU), which is readily taken up by the cells and incorporat-
ed into the nascent NTP pool (Ohtsu et al. 2008). After in-
cubation with BrU over a short time period, newly
synthesized and labeled RNAs are selectively purified
from total RNA using an anti-BrdU antibody and se-
quenced (Bru-seq). Labeled RNA abundance is then
tracked over time by chasing with high concentrations of
uridine in the absence of BrU and isolating BrU-labeled
RNA at additional time points (BruChase-seq).

To distinguish relative changes in transcription from
changes in RNA stability between WT and PUM1/2 knock-
down cells, we combined our Bru-seq and BruChase-seq
results measured over two time points. A 0 h time point
was taken at the transition to unlabeled media after 30
min of incubation in BrU-containing media, and a 6-h
chase time point taken to coincide with the mean mRNA
half-life in cultured mammalian cells (Yang et al. 2003;
Sharova et al. 2009; Schwanhäusser et al. 2011; Lugowski
et al. 2018). Post hoc analysis shows that our approach per-
mitted the detection of PUM-mediated effects on mRNA
stability over a wide range of mRNA half-lives (Supplemen-
tal Fig. S1A).

To determine the impact of PUM1/2 on relative RNA
abundances, the experiment was performed in the pres-
ence of a mix of siRNAs targeting both PUM1 and PUM2
mRNAs (siPUM) or in the presence of scrambled nontar-
geting control siRNAs (NTC), as previously established
(Fig. 1A; Van Etten et al. 2012; Bohn et al. 2018). Cells
were treated with siRNAs for 48 h before BrU labeling,
identical to the method used in Bohn et al. (2018). These
previously validated siRNAs have high specificity for either
PUM1 or PUM2 transcripts and do not appear to have off-
target effects on nontarget transcripts (Supplemental Fig.
S1B). Overall, four biological replicate samples were col-
lected for each time point and RNAi condition resulting
in a total of 16 samples and above the minimum recom-
mendations for replicates suggested by the ENCODE con-
sortium for RNA-seq and ChIP-seq experiments (ENCODE
Project Consortium 2012; Landt et al. 2012). HEK293 cells
were chosen for this study as they express both PUM1 and
PUM2, have been previously used to analyze PUM activity

(Van Etten et al. 2012; Bohn et al. 2018), support efficient
BrU-labeling (Tani et al. 2012), and support robust RNA in-
terference (Chang et al. 2012). As we have previously dem-
onstrated (Van Etten et al. 2012; Bohn et al. 2018),
knockdown of both PUM1 and PUM2 is necessary to alle-
viate PUM repression of PRE-containing mRNAs. The use
of two time points permits measurements of relative
changes in mRNA stability and relative changes in nascent
mRNA abundance between the two conditions, but does
not allow for determination of decay rate constants for
each transcript. An in-depth discussion on the tradeoffs
and interpretation of measuring global RNA decay with
minimal time points is given in Wolfe et al. (2018).

Clear changes in RNA abundance can be seen between
time points and conditions at the gene level. Consider the
Cyclin G2 (CCNG2) mRNA, which encodes a cyclin in-
volved in the cell cycle, contains two PREs in its 3′-UTR,
and was among the most dramatically affected mRNAs
(Fig. 1B). At the 0 h time point, read coverage resulting
from recent transcription for four distinct replicates in
each condition can be seen with the trace for each repli-
cate transparently overlaid (n.b. read coverage includes
immature RNAs that still contain introns) (Fig. 1B, top, non-
overlaid tracks can be found in Supplemental Fig. S2A). At
the 6 h time point, only mature RNA remains, with read
coverage primarily observed at exons and no longer prev-
alent in the intronic regions (Fig. 1B, bottom). Here, silenc-
ing of both PUM1 and PUM2 clearly increases RNA
abundance relative to the nontargeting control at the 6 h
time point, but does not appear to impact transcription
as seen at the 0 h time point.

To quantify the effect of silencing PUM1 and PUM2 on
changes in relative labeled RNA abundance between the
0 and 6 h time points, we used DESeq2 (Love et al.
2014) to model the count of reads observed from each
gene using a generalized linear model that allows us to
separate the effects of PUM knockdown on RNA stability
from those on nascent RNA abundance (transcription),
and to account for any batch effects between replicates
(Supplemental Fig. S2B) and changes in RNA stability
not associated with the PUM knockdown treatment (see
Materials and Methods for details). Using this methodolo-
gy, we find that hundreds of genes show altered RNA
stability under PUM knockdown conditions. Figure 1C dis-
plays an overview of PUM-mediated effects on stability as a
volcano plot, with 10,132 genes represented in a two-di-
mensional histogram. Using an FDR-corrected P-value
threshold of 0.05 and a fold-change cutoff of log2(1.75)
(seeMaterials andMethods), we found 60 genes were stat-
istically significantly destabilized (88 with no fold-change
cutoff) and 248 genes were statistically significantly stabi-
lized in the PUM knockdown condition (406 with no fold-
change cutoff). Of these destabilized genes, 31 were
also identified as having lower abundance under PUM
knockdown in the Bohn et al. (2018) RNA-seq data set
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(46 with no fold-change cutoff). Likewise, of the stabilized
genes, 104 were also identified as having higher abun-
dance under PUM knockdown in the Bohn et al. (2018)
RNA-seq data set (135 with no fold-change cutoff). Thus,

here we identify 29 new mRNAs that are stabilized by
PUM and 144 new mRNAs that are destabilized by PUM
as compared to Bohn et al. (2018). As expected, both
PUM1 and PUM2 were substantially destabilized in the

BA

C D

FIGURE 1. Bru-seq and BruChase-seq allow for determination of PUM-mediated effects on RNA stability. (A) Experimental design for measuring
PUM-mediated effects on RNA stability. HEK293 cells incubated for 30 min in the presence of 2 mM BrU prior to time 0. Cells were then washed
and cultured in media containing 20 mM unlabeled uridine for 6 h. At 0 h (Bru-seq) and 6 h (BruChase-seq) timepoints, a portion of cells were
harvested and BrU labeled RNA was isolated for sequencing. Changes in relative RNA abundance between the 0 and 6 h time points were com-
pared between cells grown in the presence of silencing RNA targeting PUM1 and PUM2 (siPUM) and a nontargeting control siRNA (NTC). Cells
were treated with siRNAs for 48 h prior to BrU labeling to allow for PUM depletion. (B) Read coverage traces for CCNG2 as measured in reads per
million (RPM) at a resolution of 30 bp over the region shown (chr4:78077800–78092000, hg19). Traces are shown for siPUM (orange) and NTC
(blue) conditions at both 0 h (top) and 6h (inverted bottom) time points. Four replicates for each combination of siRNA and time point are overlaid.
Known isoforms for CCNG2 are represented above. (C, top) Volcano hexbin plot displaying global changes in RNA stability under PUM knock-
down conditions. The log2 fold change in stability under PUM knockdown conditions compared to the siNTC control after controlling for batch
effects is displayed here, where positive values indicate stabilization upon PUM knockdown and negative values indicate destabilization upon
PUM knockdown (see Materials and Methods for details). No change in stability is represented with a dotted line at 0. Statistical significance
is displayed on the y-axis as the −log10 (FDR-corrected P-value) where larger values indicate a smaller P-value. An FDR-corrected P-value
<0.05 is represented with a horizontal dashed line. A selection of genes known to be regulated by PUM (Morris et al. 2008; Bohn et al. 2018)
and genes newly identified in this study are labeled. For selected genes only, cyan triangles indicate genes that have a PRE in any annotated
3′-UTR as determined by a match to the PUM1 motif we identified using SEQRS (Fig. 2A). Red squares indicate genes that did not have a PRE
in their 3′-UTR. Unlabeled genes are binned into a two-dimensional histogram to avoid overplotting. (Bottom) Marginal distribution of log2FC
in stability in PUM knockdown for genes with a PRE in their 3′-UTR (cyan) and genes without a PRE in their 3′-UTR (red). Median values for
each distribution are plotted as a dashed line in the appropriate color. The star indicates a statistically significant difference in the median stability
as measured by a two-sided permutation of shuffled labels (n=1000, P<0.001). (D) Analysis of changes in nascent RNA abundance versus
changes in stability. Four separate statistical tests were calculated for each gene: (i) a test for statistically significant changes in RNA stability (Δ
Stability≠ 0), (ii) a test for statistically significant changes in nascent RNA abundance (Δ Txn≠ 0), (iii) a test for no change in RNA stability (Δ
Stability = 0), and (iv) a test for no change in nascent RNA abundance (Δ Txn=0). Genes are plotted as an (x,y)-coordinate where each coordinate
represents the ±log10 (FDR-corrected P-value) of the test with greater evidence (Δ≠ 0, +log10; or Δ=0, −log10) for each axis (see Materials and
Methods for details). Representative genes displaying a range of stability effects are labeled. Red squares represent genes that were destabilized
in PUM knockdown, whereas cyan triangles represent genes that were stabilized in PUM knockdown. All other genes were binned into a two-di-
mensional histogram. Gray rectangles represent a statistical significance cutoff ofQ-value >0.05. (Left, below) Marginal histograms for each axis
are plotted with matching gray rectangles to represent the same statistical significance cutoff of Q-value >0.05.
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PUM knockdown condition relative to the WT condition,
indicating that the siRNAs were successful in disrupting
PUM1/2 expression and that our methodology is capable
of detecting known changes in RNA stability. Additionally,
we found that genes with a PRE in their 3′-UTR were, on av-
erage, more stabilized in the PUM knockdown condition
than those without a PRE in their 3′-UTR (Fig. 1C, bottom).
Taken together, this data identifies hundreds of new PUM-
regulated genes and provides broad evidence that PUM1/
2 selectively modulate the stability of specific target
transcripts.

To further dissect the effects of PUM knockdown on
transcripts in our data set, we tested for statistically signifi-
cant changes for both nascent RNA abundance and RNA

stability for each gene under a null model centered around
a log2 fold change of 0. In addition, we strove to identify
genes for which we had robust evidence that no substan-
tial changes were occurring under PUM knockdown condi-
tions, at the level of nascent RNA abundance or RNA
stability, by considering a null model centered around
the boundary of a defined region of practical equivalence
spanning from −log2(1.75) to log2(1.75) for each metric
(see Materials and Methods for details); such a test is im-
portant because failure to reject the null hypothesis
cannot, by itself, be taken as evidence favoring the alterna-
tive. Rejection of the null hypothesis in our practical equiv-
alence test, however, permits us to confidently state that
the abundance of a given transcript is not meaningfully

E
B

A

C

D

FIGURE2. SEQRS analysis of Human PUM1 and PUM2PUM-HDs reveals preference for the canonical PUM recognition element. (A, top) Position
weight matrices representing 8-mer sequence preferences for purifiedHuman PUM1 PUM-HD, as determined for each SEQRS round. (Bottom) 8-
mer enrichment, as measured by log2(Enrichment SEQRS round/Enrichment no protein) (seeMaterials andMethods for details) for each 8-mer as
binned byHamming distance from the canonical UGUAAAUA PUM recognition element. Enrichment scores for 8-mers within twomismatches are
filled in red. (B) Same as inA, but for HumanPUM2PUM-HD. (C ) Closer view of HumanPUM2PUM-HDPWMs. (D) Same as inA, but forDrosophila
Pum PUM-HD. (E) Correlation of 8-mer enrichment between Human PUM1 and Human PUM2 PUM-HDs. Enrichment for all possible 8-mers are
displayed in a two-dimensional histogram. The dashed black line represents one-to-one correspondence. All 8-mers within one mismatch to the
UGUAAAUA sequence are plotted as red points with the color specifying the positionwithin themotif where themismatch occurs. The red line is a
linear fit using only the UGUAAAUA 8-mer and all 8-mers within one mismatch.
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changed. In total, four statistical tests were run for each
gene: a test for change and a test for no change for both
nascent RNA abundance and RNA stability. For each axis
of Figure 1D, the smaller of the twoFDR-correctedP-values
(i.e., test for change vs. test for no change) was chosen as
the coordinate for that term, which enabled classification
of each gene into one of four quadrants: (i) genes that
change in both stability and nascent RNA abundance (Fig.
1D, upper right quadrant), (ii) genes that change only in
stability (Fig. 1D, lower right quadrant), (iii) genes that chan-
ge only in nascent RNA abundance (Fig. 1D, upper left
quadrant) and (iv) genes that change in neither stability
nor nascent RNA abundance (Fig. 1D, lower left quadrant).
Thus, using this methodology, we identified 308 genes
with a statistically significant change in stability (Fig. 1D, up-
per and lower right quadrants).Wewere also able to identify
a set of 5503 genes with evidence for no change in stability
under our experimental conditions, that is, we are confident
that PUM knockdown is having no effect on the stability of
these genes (Fig. 1D, upper and lower left quadrants).
Finally, we find that we have insufficient information to reli-
ably classify 14,606 genes due to a failure to reject the null
on either a test of change or test of no change in RNA stabil-
ity under PUM knockdown conditions. At the level of na-
scent RNA abundance, we show only four genes (ETV1,
C1S, ETV5, ANKRD30B), with a statistically significant chan-
ge under PUM knockdown conditions (105 with no fold
change cutoff) (Fig. 1D, right and left upper quadrants).
Additionally, we find 12,245 genes with a statistically signifi-
cant lack of change in nascent RNA abundance, that is, we
are confident that PUM knockdown is having no effect on
the nascent RNA abundance of these genes (Fig. 1D, right
and left lower quadrants). Finally, we found that 10,542
genes have insufficient information to reliably classify due
to a failure to reject the null on either a test of change or a
test of no change in nascent RNA abundance under PUM
knockdown conditions. Collectively, our results show that
PUM meaningfully modulates RNA stability, with little or
no effect on transcription. Throughout the remainder of
the paper, we will use the words EFFECT and NOEFFECT
to refer to genes for which PUMknockdownhas a significant
effect on RNA stability and those for which our testing indi-
cated nopractical change in RNA stability uponPUMknock-
down, respectively.

High-definition specificity of PUM1 and PUM2

The sequence preferences of PUM proteins have been an-
alyzed using a variety of approaches. RNA binding of full-
length mammalian PUM1 and PUM2 to mRNAs has been
previously probed in vivo (Galgano et al. 2008; Hafner
et al. 2010; Van Nostrand et al. 2016; Sternburg et al.
2018), whereas the sequence preferences of their RNA-
binding domains were probed in vitro (Campbell et al.
2012; Ray et al. 2013; Dominguez et al. 2018; Jarmoskaite

et al. 2019). A general preference for the PRE consensus
motif UGUANAUA has emerged, with subtle differences
in the information content for the position weight matrices
(PWMs) obtained from each technique, particularly at the
3′ end of the PWM. However, prior in vitro determination
of human PUM sequence preferences have involved only
one round of selection (Dominguez et al. 2018) or a select-
ed subset of possible sequences (Jarmoskaite et al. 2019),
yielding a limited and potentially biased view of PUM1 and
PUM2 binding specificity. In vivo analyses of PUM1 and
PUM2 RNA binding have reported only partially overlap-
ping sets of bound RNAs, including many that have no
identifiable consensus binding elements (Galgano et al.
2008; Hafner et al. 2010). These observations suggest
the possibility that we do not fully know the RNA binding
specificity of PUM1 and PUM2, indicating a need for unbi-
ased approaches to profile the specificities of PUM1 and
PUM2 for both high and low affinity sites. We applied in vi-
tro selection and high-throughput sequencing of RNA and
sequence specificity landscapes (SEQRS) to purified PUM-
HDs of each protein (Lou et al. 2017). SEQRS allows for the
determination of an RNA-binding protein’s sequence spe-
cificity by selecting for RNAs that interact with the RBP
out of a pool of randomized 20-mers generated by T7 tran-
scription of a synthesized DNA library. The RNA pulled
down from a previous round is reverse-transcribed into
DNA to be used as the input for the next round of tran-
scription and selection, allowing for exponential enrich-
ment of preferred sequences that are then identified via
sequencing. There are several key advantages to this ap-
proach over other in vitro methods including an unbiased
starting pool, the use of 20-mers to probe a large se-
quence space, and multiple rounds of selection that allow
for detection of specificity for a range of affinities. We per-
formed five rounds of SEQRS to PUM1 or PUM2 and quan-
tified the abundance of each of the 65,536 possible 8-mers
for each round (including those that would overlap with the
adjacent static adapter sequences; see Materials and
Methods for details).
To obtain representative PWMs for each round of selec-

tion (Fig. 2A,B, top), we used the top enriched 8-mer,
UGUAAAUA, as a seed sequence to create a multinomial
model from the abundance of every possible single mis-
matched 8-mer to the seed sequence (see Materials and
Methods for details). This data analysis approach has yield-
ed similar results to that of expectation-maximization algo-
rithms such as MEME (Bailey et al. 2006) and has been
used successfully with SELEX experiments using DNA-
binding proteins (Jolma et al. 2010, 2013). For compari-
son, we applied the same pipeline to previously published
SEQRS data for the D. melanogaster Pumilio PUM-HD
(Weidmann et al. 2016; Lou et al. 2017) and find that it
readily captures the Pumilio sequence preference for the
UGUANAUA PRE (Fig. 2D, top). Importantly, the PWMs
defined here (Fig. 2A,B,D, top panels) are representative
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of only the most highly enriched sequences in each data
set and round.

To determine how representative the UGUANAUA con-
sensus motif is for the entire data set of each protein, we
grouped each 8-mer based on its distance from the
UGUAAAUA seed sequence, and then considered the rel-
ative enrichment of a given 8-mer within each round.
Scores above 0 indicate higher relative abundance relative
to the input pool, and scoresbelow0 indicate lower relative
abundance. We find that 8-mers within one to two mis-
matches of the UGUAAAUA seed sequence are highly en-
riched compared to8-merswithmore than twomismatches
across each round for each protein (Fig. 2A,B,D, bottom).

The PWM obtained from SEQRS experiments for the
PUM2PUM-HD (Fig. 2B,C) suggests that PUM2 has weaker
enrichment for the canonical PUM PRE compared to
PUM1, whereas sequence preferences obtained from in
vivo transcriptome-wide experiments were nearly indistin-
guishable (Galgano et al. 2008; Hafner et al. 2010). This
may indicate differences between in vitro and in vivo con-
ditions that specifically impact PUM2, that PUM2 PUM-HD
does not bind as efficiently to RNA as the full-length PUM2
protein, or that additional protein partners mediate the
downstream effects of PUM1 and PUM2 differently in
vivo. However, comparing PWMs between these two pro-
teins only considers the most highly enriched sequences in
each data set. As seen in Figure 2C, the consensus motif
emerging from the PUM2 SEQRS data strongly resembles
those for other PUMs, albeit with less apparent stringency.

To compare the overall sequence preferences between
PUM1 and PUM2, we plotted the enrichment scores for all
possible 8-mers in each data set against each other (Fig.
2E). We find that the 8-mer enrichment scores between
these two proteins are highly correlated (Spearman ρ=
0.63), which indicates that PUM1 and PUM2 PUM-HDs
have overall similar sequence preferences when consider-
ing all possible sequences rather than only highly enriched
sequences. PUM1 has an overall stronger enrichment for
highly enriched sequences compared to PUM2, whereas
PUM2 shows a larger dynamic range for nonideal targets,
which may explain the differences in obtained PWMs for
each protein. When considering only the 8-mers within
one mismatch to the UGUAAAUA seed sequence used
for creating the PWMs, we find that enrichment scores be-
tween PUM1 and PUM2 are nearly perfectly correlated
(Spearman’s ρ=0.91). Furthermore, mismatches in the 3′

end of the motif appear to be less detrimental to enrich-
ment by PUM1 and PUM2 compared to mismatches in
the 5′ end of the motif, which is also represented by the
lower information content at the 3′ end of the PWMs.
Taken together, the SEQRS data and analysis provide a
precise definition of the PUM1 and PUM2 PREs, demon-
strating that PUM1 and PUM2 exhibit highly correlated
specificities, but with differences in apparent binding affin-
ities for nonideal targets. Below, we utilize this information

to explore additional determinants of PUM regulation in
target mRNAs and to develop predictive models. Due to
the overall similarity in sequence preferences between
these two proteins and the higher overall information con-
tent for PUM1, the SEQRS round 5 PWM for PUM1 will be
used to define PREs throughout the text, unless otherwise
indicated.

Contextual features around PREs are associated
with PUM-mediated RNA stability effects

Determining what distinguishes a functional binding site
from a nonfunctional binding site is a major question for
any RBP. Taken as a whole, RBPs tend to bind similar
low-sequence complexity motifs in vitro (Dominguez
et al. 2018). Additionally, probing of RBP binding in vivo
at a transcriptome-wide scale has indicated that the major-
ity of predicted binding sites are not bound for some RBPs
(Taliaferro et al. 2016). Global in vivo experiments with the
Pumilio family of proteins have established that mam-
malian Pumilio proteins recognize the UGUANAUA PRE
in the 3′-UTR of target genes (Galgano et al. 2008;
Hafner et al. 2010; Van Etten et al. 2012; Zhang et al.
2017). However, predicting the PUM-mediated effect on
gene expression from sequence information and/or
PUM-binding measurements remains an elusive goal
(Bohn et al. 2018).

To determine sequence motifs de novo that have ex-
planatory power for our RNA stability data set, we used
FIRE (Elemento et al. 2007) to find motifs in the 3′-UTR of
transcripts that share high mutual information with our
RNA stability data set by taking the normalized interaction
term (see Materials and Methods for details) and discretiz-
ing it into 10 bins, with an equal number of genes in each
bin. Figure 3A shows that FIRE rediscovers the canonical
UGUANAUA PRE using only the RNA stability data as in-
put. Furthermore, the UGUANAUA PRE is enriched in tran-
scripts that are highly stabilized under PUM knockdown
conditions, indicating that these transcripts are directly
regulated by PUM through recognition of a UGUANAUA
PRE in their 3′-UTR.

To determine whether there was evidence for PUM
binding at PREs associated with a change in RNA stability,
we used publicly available in vivo binding data for human
PUM2 obtained using photoactivatable ribonucleo-
side-enhanced cross-linking and immunoprecipitation
(PAR-CLIP) (Hafner et al. 2010). The PAR-CLIP technique
involves incorporation of 4-thiouracil (4sU) into the total
cellular RNA pool allowing for efficient cross-linking of pro-
teins that bind near an incorporated 4sU. Upon creation of
sequencing libraries from PAR-CLIP samples, a T→C mu-
tation is induced at the cross-linking site, which can be
used as additional evidence for a protein binding. We
used PAR-CLIP data from Hafner et al. (2010) to determine
the amount of binding signal at PREs associated with
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FIGURE 3. Features associated with a PUM recognition element (PRE) explain variability in PUM-mediated effect on decay. (A) Results of motif
inference using FIRE (Elemento et al. 2007) on the stability in PUM knockdown data discretized into 10 equally populated bins. Red bars within
each bin represent the spread of RNA stability values within each bin. Stability in PUM knockdown is represented by a normalized interaction term
between time and condition throughout this figure, where positive values indicate stabilization upon PUM knockdown and negative values indi-
cate destabilization upon PUM knockdown (see Materials and Methods for details). (B) Five percent truncated average of Pum2 PAR-CLIP read
coverage (Hafner et al. 2010) over each PRE site in the 3′-UTRs of genes with a statistically significant change in RNA stability (blue) compared to
genes in which there was a statistically significant lack of change in stability (orange; see Materials and Methods for details on NOEFFECT test).
Shaded regions represent bootstrapping (n=1000) within each group. Dashed lines indicate the PRE site. (C ) Violin plots representing the dis-
tributions of RNA stability for genes with 0 to 15 PRE sites within their 3′-UTR. Stars represent statistical significance as measured by a Wilcoxon
rank sum test using equality of pseudomedianwith the 0 PRE case as the null hypothesis. (D) Distribution of AU content in a 100 bpwindow around
all unique PRE sites in the 3′-UTRs of the human transcriptome. The observed distribution (red) is compared to the distribution of AU content
around PRE sites in 1000 simulated sets of 3′-UTRs the same size as the true set of 3′-UTRs as simulated from a third-order Markov model trained
on the true 3′-UTR sequences. The dotted line represents the average overall AU content of the entire set of 3′-UTRs in the human transcriptome.
(E) Relationship of AU content in a 100 bpwindow around a PRE to RNA stability. (Left) Marginal histogramof RNA stability for geneswith 0 PREs in
their 3′-UTRs. (Right) 2D histogram of RNA stability and AU content around each PRE site for all genes with at least one PRE in the 3′-UTR. Dotted
line represents the average AU content over the entire set of 3′-UTRs in the human transcriptome. (Bottom) Marginal kernel density plot of AU
content around a PRE site split amonggeneswith a statistically significant change in RNA stability (red) and geneswith a statistically significant lack
of change in stability (blue). Dotted black line represents the average AU content of 3′-UTRs. Dashed lines represent the median AU content
around a PRE for the EFFECT (red) and NOEFFECT (blue) genes. The star represents a statistically significant difference in medians using a
one-sided permutation test (n=1000) of shuffled class labels. (F ) Distribution of length-normalized locations of PRE sites in the 3′-UTRs of the
human transcriptome. The observed distribution (red) is compared to that of PRE sites found in 1000 simulated sets of 3′-UTRs calculated as
in D. (G) Relationship of normalized location of PRE site in 3′-UTR to RNA stability. Plots as in E. (H) Violin plots representing the distributions
of RNA stability for genes with 0 to 6 full PRE sites clustered within a 100 bp window. Stars represent statistical significance as measured by a
Wilcoxon rank sum test using the 0 PRE case as the null distribution. (I ) Comparison of the observed frequencies of PRE site clustering over all
possible 100 bp windows in the full set of human 3′-UTRs with at least one PRE in them to the probabilities expected from a Poisson null distri-
bution. Error bars represent 95% confidence intervals based on 1000 bootstraps of the observed distribution.
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transcripts that have a statistically significant change in
RNA stability under PUM knockdown (EFFECT class,
Fig. 1D) and compared it to transcripts with a statistically
significant lack of change in RNA stability (NOEFFECT
class, Fig. 1D). In Figure 3B, we report the average PAR-
CLIP read coverage in a 40 bp window around PREs in
the 3′-UTR of transcripts associated with the EFFECT and
NOEFFECT classes. We use a 5% truncated mean to re-
move the impact of extreme outliers on the average cover-
age reported. To estimate a 95% confidence interval on
the average coverage (shaded region), we performed
bootstrapping (n=1000) by sampling vectors of read cov-
erage for individual PREs with replacement. Here, we
clearly see that PREs in transcripts with a change in RNA
stability have a higher binding signal than those with no
change in RNA stability. This is consistent with higher over-
all PUM binding at PREs associated with changes in RNA
stability but, as the PAR-CLIP signal is not normalized to
RNA abundance, the possibility that these transcripts
were simply more abundant under the PAR-CLIP condi-
tions cannot be definitively ruled out.

Our analysis shows that PUM-mediated changes in RNA
stability are associated with the presence of a 3′-UTR PRE
and experimental evidence for in vivo PUM binding.
However, knowledge of the presence or absence of a
PRE in the 3′-UTR alone, or even the number of PREs, is
not sufficient to predict the magnitude of PUM-mediated
repression measured at the level of transcript abundance
(Bohn et al. 2018). Here, we demonstrate that a similar lev-
el of variation can be seen in direct measurements of RNA
stability. Figure 3C displays the overall distribution of RNA
stability measurements for transcripts with increasing num-
bers of PREs in annotated 3′-UTRs.We find that an increase
in the number of PREs is associated with an increase in
RNA stability when PUMs are depleted. Even so, wide var-
iations in RNA stability can be seen for each category.
Thus, a simple count of PREs does not fully explain PUM-
mediated action at a particular transcript, and other fea-
tures likely play an important role in shaping the effect of
PUM on each target.

The local sequence context around PREs is an important
potential source for variations in their regulatory effects.
We trained a third-order Markov model on the full set of
unique annotated human (hg19) 3′-UTRs that were greater
than 3 bp long (29,380 3′-UTRs). Using this Markov model,
we simulated 1000 different sets of 29,380 3′-UTRs that
were the same length and shared similar sequence compo-
sition to the set of true 3′-UTRs. We then searched for
matching PREs in the simulated sets of 3′-UTRs and calcu-
lated the AU content in a 100 bp window around these
PREs. On average, we discovered 12,200 matching PREs
(standard deviation of 112) in simulated sets of 3′-UTRs
compared to the 14,086 matching PREs in the annotated
set of 3′-UTRs.We find that the true set of PREs have, on av-
erage, higher local AU content than PREs in simulated sets

of 3′-UTRs (Fig. 3D). Additionally, in the simulated 3′-UTRs,
the local AU content for PREs is centered around the aver-
age AU content for all 3′-UTRs, as would be expected if
there was no selective pressure for PREs to occur in AU-
rich areas of 3′-UTRs. This relationship is similar to the en-
richment of PREs in AU-rich regions reported by Jiang
et al. (2013). Importantly, we further show direct evidence
that the local AU content surrounding a PRE is associated
with a functional effect on PUM-mediated regulation.

To determine the relationship between local AU content
and changes in RNA stability upon PUM knockdown, we
plotted the AU content of a 100 bp window surrounding
a PRE within a gene’s 3′-UTR against the corresponding
RNA stability measurement for that gene (Fig. 3E, top).
For 3′-UTRs with more than one PRE, the PRE with the
highest local AU content was considered. We find that
large changes in RNA stability are associated with higher
local AU content. Additionally, PREs in transcripts that
had a statistically significant stability effect in PUM knock-
down had higher local AU content compared to PREs in
transcripts with no change in stability (P<0.001, Fig. 3E,
bottom). Together, these data indicate that local sequence
context beyond the PREs plays a role in PUM regulatory
function.

Previously proposed mechanisms of PUM-mediated
control of RNA stability involve interaction with the
CCR4–NOT complex and/or PABPs, both of which act at
the 3′ end of mRNA transcripts to promote deadenylation
or participate in translation initiation (Van Etten et al.
2012; Weidmann et al. 2014). Thus, the location of PUM
binding sites within the 3′-UTR of target transcripts may
play a role in determining PUM-mediated effects on stabil-
ity byphysically locatingPUMnear knowncoregulators. Us-
ing the Markov models described above, we determined
the location of PREs within 3′-UTRs. As shown in Figure
3F, we see that the observed distribution of true PRE loca-
tions in length-normalized 3′-UTRs appear enriched toward
the 3′ endof 3′-UTRs (red) as compared to PREs foundwith-
in 1000 simulated sets of 3′-UTRs (gray). Again, this sug-
gests a selective pressure for PRE sites to exist at the
3′ end of 3′-UTRs as compared to the uniform distribution
of PREs found in simulated 3′-UTRs with similar sequence
properties. This observation is consistent with Jiang et al.
(2013) who reported enrichment toward the 3′ end for
PREs in human 3′-UTRs compared to a shuffled PRE motif
with preserved overall sequence content. While their anal-
ysis approach is complementary to ours, our statistical test
allows for the exact identity of the PRE to remain intact,
thereby maintaining a PRE-centric assessment rather than
one based solely on the general sequence content within
the motif. Uniquely, our analysis also incorporates mRNA
stability measurements and shows that transcripts with a
PRE toward the 3′ end of the 3′-UTR tend to have a larger
RNA stability effect (Fig. 3G, center). Moreover, PREs in
transcripts that had a statistically significant change in
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stability in PUM knockdown were, on average, closer to
the 3′ end of the 3′-UTR than those with no change in
RNA stability (P<0.001, Fig. 3G, bottom), supporting a
functional role for PRE location in the 3′-UTR of target
transcripts.
Given that higher AU content around a PRE and the lo-

cation of a PRE within the 3′-UTR are correlated both
with PUM-mediated RNA decay and with each other, we
assessed whether each was contributing independent in-
formation to predictions of PUM effects on RNA stability
by fitting a logistic regressionmodel to categorize PREs as-
sociated with EFFECT genes from PREs associated with
NOEFFECT genes. We fitted three models, one using
only AU content as a predictor, one using only the relative
location of a PRE within the 3′-UTR as a predictor, and one
using both AU content and the relative location of a PRE.
We then compared the models using the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion
(BIC), twomeasures used for selecting themost parsimoni-
ous model from a series of candidate models where the
model with the lowest value is the most favored, with pen-
alties applied for the inclusion of additional independent
variables. Here, we find that including both variables is
more favorable than a model using only the AU content
as a predictor (ΔAIC=−6.26, ΔBIC=−0.16) or only the rel-
ative location as a predictor (ΔAIC=−30.55, ΔBIC=
−24.45). These findings suggest that, despite the apparent
correlation between AU content and PRE location, each
feature still contributesmeaningful and independent infor-
mation to predicting PUM function.
High-throughput analysis of many human RBPs has indi-

cated that some RBPs preferentially bind bipartite motifs,
suggesting that clustering of RBP binding sites may con-
tribute to binding specificity and subsequent function
(Dominguez et al. 2018). To determine the relationship be-
tweenPRE clustering andRNAstability in PUMknockdown,
we discretized transcripts according to the maximum num-
ber of complete PREs that werewithin a sliding 100 bpwin-
dow in the 3′-UTR of a transcript and plotted the
distribution of RNA stability measurements for each cluster
(Fig. 3H). Similar to the associationwith the number of PREs
(Fig. 3C), we find that havingmore PREs clustered together
is associated, on average, with a higher stabilization effect
under PUM knockdown conditions. We also find that PREs
tend to cluster together more than one would expect by
chance by determining the divergence from a simple
Poisson model (Fig. 3I, P<0.001 for clusters 2–5; see
Materials and Methods for details). Taken together, this
analysis suggests that clustering of PREs occurs more often
than expected by chance, andmay facilitate PUMaction on
target transcripts. Taken together, our results connect mul-
tiple features (location, number, clustering, and the AU
context of PREs) to PUM-mediated changes in RNA stabil-
ity, providing new insights into the determinants of func-
tional PUM output.

Pumilio proteins modulate the stability of genes
involved in neural development, cell signaling,
and gene regulation

Mammalian Pumilio proteins have been shown to regulate
the abundance of mRNAs from a diverse set of genes
(Morris et al. 2008; Chen et al. 2012; Zhang et al. 2017;
Bohn et al. 2018; Zahr et al. 2018). Given that our experi-
ments were performed in HEK293 cells, which were de-
rived from embryonic kidney and have neuronal and
adrenal characteristics (Shaw et al. 2002), we would expect
that many of the genes that are expressed in these cells
would be associated with neuronal functions. Indeed, we
found that PUM specifically modulates the RNA stability
for genes involved in these functions. For example, we
see strong stabilization of the MEGF9 transcript under
PUM knockdown conditions (Fig. 4A, top). MEGF9 en-
codes a transmembrane protein that is highly expressed
in the central and peripheral nervous system (Brandt-
Bohne et al. 2007). Furthermore, of the five PREs we iden-
tify in two unique 3′-UTRs for MEGF9, we see the most
PUM2 binding signal for the 3′-most PRE (Fig. 4A, bottom
right), which also shows a high AU content compared to
the overall distribution of PRE sites (Fig. 4A, bottom left).
Taken together, these data implicate the PUM proteins
as direct posttranscriptional regulators of MEGF9, acting
through destabilization of the mRNA under native
conditions.
TheGSK3BmRNA, which encodes a serine-threonine ki-

nase that is associated with neurological disease, is
strongly stabilized under PUM knockdown conditions
(Fig. 4B, top; Jope and Johnson 2004; Jorge-Torres
et al. 2018).GSK3B 3′-UTRs contain four PREs (Fig. 4B, be-
low) with largely similar adjacent AU content (Fig. 4B, bot-
tom left). The 3′ most distal PRE has evidence for PUM2
binding consistent with the global trends we describe in
Figure 3. Thus, GSK3B provides another example of a di-
rect target mRNA that is destabilized by PUMs.
Intriguingly, we also see examples of RNAs that are de-

stabilized when PUM is knocked down, suggesting that
PUM may normally act to stabilize these transcripts. As
one example we highlight the TFDP2 mRNA, which en-
codes an E2F cofactor that is important in cell cycle pro-
gression and linked to cancer (Kent and Leone 2019).
Our data show that TFDP2 is highly destabilized under
PUM knockdown conditions (Fig. 4C, top). The TFDP2
mRNA has a single PRE site toward the 3′ end of the 3′-
UTR and has high adjacent AU content (Fig. 4C, bottom
and lower left), suggesting direct regulation by PUM, al-
though the experimental evidence for PUM2 binding in
PAR-CLIP data is limited (Fig. 4C, lower right).
Another example of a highly destabilized transcript un-

der PUM knockdown conditions is the ELAVL1 mRNA,
which encodes the HuR RNA-binding protein (Fig. 4D,
top). The ELAVL1 RBP stabilizes RNA transcripts by
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binding to AU-rich elements in the 3′-UTR of transcripts
(Lebedeva et al. 2011) and is dysregulated in several types
of cancer (Wang et al. 2013). The 3′-UTR of ELAVL1 con-
tains a PRE at the end of the 3′-UTR (Fig. 4D, bottom), con-

sistent with regulatory potential. This data suggests that
ELAV1 may be a direct target for PUM-mediated stabiliza-
tion, though this conclusion is tempered by the average lo-
cal AU enrichment of this PRE (Fig. 4D, lower left) and
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FIGURE4. PUM-mediated effects on RNA stability under PUMknockdown include stabilization and destabilization. (A, top) Read coverage traces
for MEGF9 and surrounding region (chr9:123348195–123491765, hg19) as measured in reads per million (RPM) at 100 bp resolution. Traces are
shown for siPUM (orange) and NTC (blue) conditions at both 0H (upper track) and 6H (inverted lower track) time points. Four replicates for each
combination of siRNA and time point are transparently overlaid. Known isoforms forMEGF9 are represented above. The black arrow indicates the
direction of the 5′ and 3′ ends of the transcribed RNA molecule from the gene shown. Coverage plots were generated using pyGenomeTracks
(Ramírez et al. 2018). N.b. in this and subsequent panels, the appearance of high density in the 3′-UTRs of the 6H samples is simply due to the
presence of a small number of peaks that dominate the visualization when shown at the scale of the entire gene; the mean and median density in
the 3′-UTR is in fact not substantively different from earlier exons. All sequencing data are available at GEO accession GSE145237. (Below)
Diagram of unique MEGF9 3′-UTRs. Sites matching the PUM1 SEQRS motif are represented as vertical lines and labeled alphabetically from
3′ to 5′ for each UTR. (Below left) AU content of a 100 bp window around each PRE labeled above in the overall distribution of surrounding
AU content for all PUM1 SEQRS motif matches in the entire set of 3′-UTRs. (Below right) PAR-CLIP read coverage (Hafner et al. 2010) of 40 bp
around each indicated PRE. Number of reads with a T→C mutation are shown in red, whereas the number reads with no T→C mutation are
shown in gray. (B) As in A, but for GSK3B and surrounding region (chr3:119509500–119848000). (C ) As in A, but for TFDP2 and surrounding re-
gion (chr3:141630000–141900000). Annotations for the 3′ end of the GK5 gene are included due to their proximity to the TFDP2 5′ end. (D) As in
A, but for ELAVL1 and surrounding region (chr19:8015000–8080000).
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limited experimental evidence for PUM2 binding (Fig. 4D,
lower right).
To discover categories of genes that are globally associ-

ated with RNA stability changes in PUM knockdown, we
applied iPAGE—a computational tool that uses mutual in-
formation to find informative Gene Ontology (GO) terms
associated with discretized gene expression data
(Goodarzi et al. 2009)—to our stability data set as repre-
sented by the normalized interaction term discretized
into five equally populated bins. This analysis will discover
pathways regulated both indirectly and directly by PUM
out of the full set of annotated GO terms. Figure 5A dis-
plays the iPAGE results with several GO terms that are ei-
ther significantly overrepresented (red-filled box) or
underrepresented (blue-filled box) within a discretized
bin across the full range of stability data.
For a finer grain view of certain PUM-regulated path-

ways, we plotted the RNA stability results for each gene in-
volved in selected GO terms that were enriched in genes
destabilized by PUM KD (blue text, Fig. 5A) or enriched
in genes stabilized by PUMKD (red text, Fig. 5A) as indicat-
ed by our iPAGE analysis.
In Figure 5B, we report specific GO terms that were

enriched in genes that were stabilized under PUM knock-
down and thus likely contain PUM-repressed targets.
Highlighted GO terms include guanyl-nucleotide ex-
change factor activity (GO:0005085; Fig. 5B, far left),
which includes guanine nucleotide exchange factors
(GEFs) that regulate a diverse suite of cellular functions
(Rossman et al. 2005); and genes involved in peptidyl-
serine phosphorylation (GO:0018105; Fig. 5B, mid-left),
representing a broad class of kinases including those in-
volved in neurological disease and inflammation (Ahmad
et al. 2016; Jorge-Torres et al. 2018); and genes involved
in transcriptional repressor activity (GO:0001078, Fig. 5B,
mid-right), including proteins involved in regulating he-
matopoiesis and controlling neurological develop-
ment (Jankovic et al. 2008; Xu et al. 2010; Caubit et al.
2016). Supporting the idea that PUMs directly repress
subsets of genes within these GO terms, we find that
genes with a PRE in their 3′-UTR are significantly more sta-
bilized under PUM knockdown than those lacking a PRE
(Fig. 5B).
Nearly all the genes in the GO term for the CCR4–NOT

deadenylase complex (GO:0030014; Fig. 5B, far right)
were mildly stabilized under PUM knockdown. Several
genes in this category have a PRE in their 3′-UTR, including
both such genes with a statistically significant change in
stability. These effects are particularly interesting because
human Pumilio proteins have been shown to recruit the
CCR4–NOT complex to repress target mRNAs (Gold-
strohm et al. 2006; Van Etten et al. 2012; Weidmann
et al. 2014; Arvola et al. 2020). These new observations
suggest that PUM could also directly inhibit expression
of CCR4–NOT and thus globally lower deadenylation

rates, perhaps providing a feedback loop that modulates
PUM activity.
In Figure 5C, we also highlight two GO terms enriched

for genes that were destabilized by PUM knockdown:
the ficolin-1-rich granule lumen (GO:1904813, left), which
is involved in innate immunity, and myelin sheath
(GO:0043209, right). Unlike the PUM-repressedGO terms,
these categories show a limited association with PREs in
their 3′-UTR. Moreover, among transcripts in these GO
terms showing significant effects of PUM knockdown on
stability, those that were destabilized by PUM knockdown
do not have detectable PREs, whereas those with detect-
able PREs are stabilized by PUM knockdown. These find-
ings indicate that PUM is indirectly regulating the
putative PUM-activated transcripts in these GO terms, or
that the PRE is not the primary determinant of such activity.
Overall, transcript-level analysis reveals two general

trends: (i) Transcripts stabilized by PUM knockdown tend
to have an identifiable bound PRE, providing high confi-
dence that they represent direct PUM-repressed targets.
(ii) Transcripts that are destabilized by PUM knockdown
tend to not have an identifiable or bound PRE (although
exceptions do exist), and thus either represent targets
that PUM stabilizes through indirect mechanism(s) or for
which the PRE is not the primary feature that PUM
recognizes.

Conditional random forest models allow
for prediction of PUM-mediated effects
from sequence-specific features

A long-standing goal in the study of RBPs is to develop the
ability to reliably predict their functional impact on any giv-
en RNA in the transcriptome. A previous model of PUM-
mediated regulation exhibited modest performance by in-
corporating the number of PREs in various locations across
the transcript including the 5′-UTR, CDS, and 3′-UTR (Bohn
et al. 2018). Here, we use a different approach, which al-
lows us to include a larger feature set of possible predic-
tors for PUM-mediated regulation. Using conditional
random forest models (Hothorn et al. 2006b), we divided
genes into EFFECT and NOEFFECT classes, as shown in
Figure 1D. Four different definitions for a PRE were incor-
porated into the analysis (Fig. 6A) including: (i) the PUM1
and (ii) the PUM2 SEQRS motifs (Fig. 2A,B); (iii) the
PUM2 motif determined by Hafner et al. (2010) from
PAR-CLIP data; and (iv) a direct match of the UGUANAUW
consensus sequence (referred to here as regex, or regular
expression, from computer terminology for a class of
search patterns) defined in previous studies (Wang et al.
2002; Jiang et al. 2013) that emerged de novo from differ-
ential RNA expression changes induced by PUMs (Bohn
et al. 2018).
We focused on PREs found in the 3′-UTRs of target

genes. For each definition of a PRE, we calculated several
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features based on our analysis in Figure 3, including AU
content around a PRE, clustering of PREs, total count of
PREs, a score for PRE match to the specific PRE definition,
relative location of the PRE in the 3′-UTR, number of
miRNA sites near a PRE, and predicted secondary structure
around a PRE. In addition to these features, we included
motif matches for additional human RBPs, in vivo PUM
binding data, predictions of secondary structure, and
the fraction of optimal codons for the CDS of target
genes (see Materials and Methods for details). As our
data is highly unbalanced (308 EFFECT genes versus
5503 NOEFFECT genes, after only including genes that

have defined values for all features) we trained 10 different
machine learning models where the NOEFFECT class was
randomly down-sampled to match the number of EFFECT
class genes in each model. Within each down-sampled
data set, fivefold cross-validation was performed to assess
performance.

To determinewhich features best predict EFFECT genes
from NOEFFECT genes, we used an AUC-based permuta-
tion variable importance measure (Janitza et al. 2013),
which indicates the average change in the area under
the curve (AUC) of a receiver operator characteristic
(ROC) plot across all trees with observations from both
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FIGURE 5. Gene ontology terms associated with PUM-mediated changes in RNA stability. (A) Results of iPAGE analysis to find GO terms sharing
mutual information with PUM-mediated effects on RNA stability, discretized into five equally populated bins. Red bins indicate overrepresenta-
tion of genes associated with the corresponding GO term. Blue bins indicate underrepresentation of genes associated with the corresponding
GO term. A black box indicates a statistically significant over- or underrepresentation with a P-value <0.05 using a hypergeometric test (Goodarzi
et al. 2009). Throughout this figure, stability in PUM knockdown is represented by a normalized interaction term between time and condition,
where positive values indicate stabilization upon PUM knockdown and negative values indicate destabilization upon PUM knockdown (see
Materials andMethods for details). (B) SelectedGO terms whosemembers are overrepresented in the RNAs that are stabilized under PUM knock-
down, as labeled in red in A. For each GO term, a volcano plot is shown for all genes within the GO term. Volcano plots are shown as two-dimen-
sional histograms for genes below a statistical significance threshold (Q-value <0.05) and as individual points for genes above the statistical
significance threshold. Individual points are blue if a PRE can be found within any annotated 3′-UTR for that gene and red otherwise. The dashed
line represents the statistical significance threshold and the dotted line represents no change in RNA stability under PUM knockdown. Below each
volcano plot is a marginal density plot for the RNA stability split into two categories within the specified GO term: Genes with a PRE in any an-
notated 3′-UTR (blue) and genes with no PRE in any annotated 3′-UTR (red). Medians for each distribution are shown as dashed lines in the ap-
propriate color. The black dotted line represents no change in RNA stability, as in the volcano plot above. A star represents a statistically significant
(P<0.05) difference in the medians as tested by a two-sided permutation test of shuffled group labels (n=1000). (C ) As in B, but for selected GO
terms whose members are overrepresented in the RNAs that are destabilized under PUM knockdown, as labeled in blue in A.
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FIGURE 6. Predicting PUM-mediated effect on decay using both sequence-based and experimental features. (A) Motifs used to calculate fea-
tures formachine learning. Shapes indicate the type of feature calculated, whereas colors indicate themotif used to calculate those features. Total
count is a simple count of motifs; match score refers to a numerical value indicating how well a sequence matches a motif; clustering indicates
motif proximity to additional instances of the same motif; location indicates features associated with a single motif’s location on the 3′-UTR.
Shapes filled in with the appropriate color are used to label features throughout the rest of the figure. (B) Variable importance plot displaying
the top 20 most important features, as determined by training a conditional random forest classifier on PUM decay data (see Materials and
Methods for details including information on feature names). Violin plots represent density from10 separate down-samplings of themajority class,
each with fivefold cross-validation. An AUC-based variable importance measure is used as described in Janitza et al. (2013). (C ) Calculation of the
redundancy in information between the top 20 most important variables, as determined in A. Redundancy is calculated in the information-the-
oretic sense (seeMaterials andMethods for details) where 1 is completely redundant information and 0 is no redundancy in information between
the two variables. (D) Cross-validation of conditional random forest classifier performance. Each boxplot represents a separate down-sample of
the majority, no PUM-mediated effect class. Values for each boxplot represent the performance metric as calculated for each of fivefolds using a
classification cutoff of 0.5. (E) Performance of conditional random forestmodels. Blue boxplots represent values from separate down-samplings of
the majority, no PUM-mediated effect class used to train the model on the Bru-seq and BruChase-seq data set. Red boxplots indicate values from
testing each model on the Bohn et al. (2018) steady-state RNA-seq data set. Metrics were calculated using a classification cutoff of 0.5. (F )
Precision recall curves using themodels in E. Each line represents one of 10 conditional random forest models trained on separate down-sampled
sets of the entire Bru-seq and BruChase-seq data set and tested on the steady-state RNA-seq data set.

Principles of RNA control by human PUM proteins

www.rnajournal.org 1693



classes in the forest when the predictor of interest is per-
muted. By permuting the feature of interest andmeasuring
the change in AUC of the ROC curve, one can measure the
importance of that variable in predictive performance.
Typically, values of the AUC of a ROC curve span from
0.5 to 1.0 where 1.0 indicates perfect classification perfor-
mance and 0.5 indicates random guessing of class distinc-
tions. Since the AUC-based variable importance measure
is calculated using the change in AUC when the predictor
is permuted, the expected values aremuch smaller and fall
between 0.0 and 0.06 in simulated cases with 65 predic-
tors and variable numbers of observations from n=100
to n=1000 (Janitza et al. 2013). Higher values indicate a
larger drop in performance when that variable is permut-
ed; thus, the variables can be ranked based on their unique
contribution to the model, with higher values indicating a
more important individual contribution.

Figure 6B displays the top 20 variables ranked according
to their average AUC-based variable performance across
all 50 models (10 sets of down-sampled models with five-
fold cross-validation each). Count-based metrics enumer-
ating the total number of PREs within the 3′-UTR appear
to be themost important variable for predicting aPUM-me-
diated effect on stability in the Bru-seq and BruChase-seq
data. In addition, local AU content and PRE clustering ap-
pear to be substantial contributors to themodels. To a less-
er extent, the number of miRNA sites around a PRE, the
location of the PRE in the 3′-UTR, and the “Bound” status
of the 3′-UTR also appear to contribute meaningfully to
our models. It is possible that each of these variables con-
tain largely the same information (i.e., whetheror not the3′-
UTR has a PRE in it). To rule out the possibility that each fea-
turewas simply differentiatingbetweengeneswith a PRE in
their 3′-UTR from genes without a PRE, separate models
were trained for each motif definition using only genes
that have at least one PRE in their 3′-UTR. Each of these
models alsodisplayed substantial contributions forAUcon-
tent, clustering, and total count in predicting PUM-mediat-
ed regulation of RNA stability (Supplemental Fig. S4A–D,
left panel) suggesting that each of these features contrib-
utes meaningful information to the model.

Due to the high similarity of the PRE definitions, we ex-
plored how much redundant information is contained be-
tween each of the top 20 contributing features. To
measure redundancy, we use an information theoretic def-
inition based on discretization of each feature (see
Materials and Methods for details). Figure 6C displays
the redundancy between the top 20 features as a hierarchi-
cally clustered heatmap, where a value of 1.0 indicates that
the features contain exactly the same information and a
value of 0.0 indicates that the features share no informa-
tion. As anticipated, features that are defined around the
same motif definition or feature-type tend to share infor-
mation; however, there are differences in information con-
tent between the motif definitions and feature types,

indicating that there is information to be gained outside
of a simple PRE count.

To assess the performance of our conditional random
forest models we considered several performance mea-
sures including summary metrics (accuracy, F1 measure,
Matthews correlation coefficient [MCC], area under the
curve of a precision-recall curve [AUC PRC], and AUC
ROC), and metrics more focused on performance for pos-
itive or negative cases (negative predictive value [NPV],
precision, recall, specificity). We considered each of these
metrics for all 50 models (10 down-sampled data sets with
fivefold cross-validation each) at a classification probability
cutoff of 0.5. The full range of values obtained are dis-
played in Figure 6D. It is evident that themodels are robust
to both down-sampling and cross-validation and the per-
formance hovers ∼0.75 for each metric (and 0.5 for
MCC), indicating balanced performance in predicting
both positive and negative classes. These results are ro-
bust even in the case wherewe only use one PRE definition
and only consider genes that contain a PRE in their 3′-UTR
(Supplemental Fig. S4A–D).

To determine the predictive efficacy of our models, we
tested their performance both on the training data using
fivefold cross-validation, and on the RNA-seq-based differ-
ential expression analysis of PUM regulation by Bohn et al.
(2018), which was not used to train the models (Fig. 6E).
To observe the overall performance of the models, we dis-
play precision-recall curves on both the Bru-seq and
BruChase-seq data on which the model was trained and
the RNA-seq data for each of the 10 different down-sam-
pled models (Fig. 6F). The baseline is defined separately
for each data set as the overall class balance between
the positive and negative class. A perfect model tends to-
ward the upper right of the graph, and a poor model fol-
lows the dotted baseline for that data set. Despite the
differences in technique and biological implications be-
tween RNA-seq (whichmeasures equilibrium levels of tran-
scripts) and Bru-seq and BruChase-seq (which track
transcript stability) in determining PUM-mediated gene
regulation, we find that the models trained on Bru-seq
and BruChase-seq perform well in predicting PUM-medi-
ated regulation in the RNA-seq data. Similar performance
was achieved considering a single definition for a PRE and
only considering genes that have a least one PRE in their
3′-UTR (Supplemental Fig. S4A–D). This analysis demon-
strated a clear functional association and predictive utility
for PUM motifs (i.e., match scores and count of PREs) as
well as contextual features around PREs including the loca-
tion, neighboring AU content, clustering of PREs, and
overlap with predicted miRNA sites.

DISCUSSION

Through the combination of genome-wide measurements
of RNA stability, RNA-binding specificity, and mining of
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sequence information, we established several general
rules of PUM-mediated gene regulation in human cells.
This knowledge will facilitate future efforts to discover
PUM1 and PUM2 regulatory networks, biological func-
tions, and roles in pathogenesis.

Human PUM proteins control gene expression by
modulating RNA stability

Previous studies established that PUM1 and PUM2 control
the levels of several PRE-containing transcripts (Morris
et al. 2008; Van Etten et al. 2012; Bohn et al. 2018), but
do not show whether the transcriptome-scale effects are
due to changes in synthesis or degradation of those
mRNAs. Through the use of metabolic labeling to track
the effects of PUM1/2 knockdown on RNA stability and na-
scent RNA abundance, we found that reducing the expres-
sion of PUM1 and PUM2 has a widespread effect on the
mRNA stability of many transcripts in HEK293 cells, but
does not appear to perturb nascent RNA abundance in
any significant way. As expected, the number of genes
that are stabilized under PUM knockdown is much higher
than the number of genes that were destabilized, provid-
ing strong, transcriptome-wide in vivo evidence for
PUM’s proposed role in reducing the expression levels of
target genes through the recruitment of the CCR4–NOT
deadenylase complex and subsequent destabilization of
the transcript (Van Etten et al. 2012; Goldstrohm et al.
2018).

PUM1 and PUM2 have shared sequence preferences

Several prior in vitro studies explored the binding specific-
ity of either PUM1 (Dominguez et al. 2018) or PUM2
(Jarmoskaite et al. 2019) separately using different ap-
proaches; we performed a direct comparison of the spec-
ificities and affinities of the RNA-binding domains of
human PUM1 and PUM2, and ofDrosophila Pumilio, using
the SEQRS approach (Lou et al. 2017) in all cases. SEQRS is
advantageous by virtue of the high diversity library of ran-
dom 20-mers and multiple rounds of selection, and thus
provides a comprehensive, unbiased, and directly compa-
rable view of the binding affinity landscapes of the human
PUM proteins. We find a strong preference for the
UGUANAUA motif for PUM1 and, somewhat surprisingly,
a weaker preference for this motif for PUM2. When consid-
ering the enrichment of all possible 8-mers, PUM1 and
PUM2 preferences are highly correlated.
The PUM1 and PUM2 PRE motifs defined in our SEQRS

analysis exhibit strong similarity to the sequences derived
from RNAs that were associated with full-length PUMs im-
munoprecipitated from cells (Galgano et al. 2008; Morris
et al. 2008; Hafner et al. 2010). Combining our results
and those of prior studies, with past biochemical and struc-
tural analyses (Zamore et al. 1997, 1999; Wang et al. 2002;

Cheong and Hall 2006; Lu and Hall 2011; Dominguez et al.
2018; Jarmoskaite et al. 2019), PUM specificity is now
among the most precisely defined of any RNA-binding
protein.

Human Pumilio proteins directly regulate genes
involved in signaling pathways through large-scale
transcript destabilization

Upon consideration of the classes of genes for which tran-
scripts are stabilized under PUM knockdown, we find that
many GO terms with evidence for direct repression by
PUMs revolve around regulating signaling pathways medi-
ated by proteins including kinases (GO:0018105) and
GEFs (GO:0005085). The role of mammalian Pumilio pro-
teins in modulating signaling through controlling mRNA
levels has been established, particularly in developmental
contexts (e.g., Wickens et al. 2002; Fox et al. 2005;
Galgano et al. 2008; Morris et al. 2008; Chen et al. 2012;
Zhang et al. 2017; Bohn et al. 2018; Goldstrohm et al.
2018). Our genome-wide profiling of the effects of PUM
knockdown further showed that, for the vast majority of af-
fected pathways, regulation occurs mainly through direct
destabilization of target transcripts by PUM, whereas sec-
ondary effects on transcription are generally weak or non-
existent. We thus find that PUM tends to target many
transcripts in parallel, and affects many components in a
given pathway directly rather than relying on intermediate
effects of a few regulatory hubs (as is often seen, for exam-
ple, in transcriptional regulatory networks; Yu and Gerstein
2006; Song et al. 2016).
In many ways, posttranscriptional regulation of proteins

involved in signaling cascades is an ideal way to rapidly
modulate those pathways. In contrast to the delay in
time between the control of mRNA synthesis and the re-
sulting protein production involved in regulating a gene
at the transcriptional level, posttranscriptional regulation
allows for a rapid dampening of expression levels directly
where protein synthesis is occurring (and subsequent
ramp-up when PUM repression is removed) (Ross 1995).
Furthermore, gene regulation in the cytosol allows for
the possibility of localized control of expression (Hobert
2008). In fact, temporal and localized control of gene ex-
pression—important for proper development of the fly
embryo—was exactly how Pumilio was initially discovered
(Lehmann and Nüsslein-Volhard 1987). Given the emerg-
ing role for human PUM proteins in neuronal development
and function (for review, see Goldstrohm et al. 2018) and
the need for localized control of gene expression in neuro-
nal tissue (Korsak et al. 2016), it is conceivable that PUM
proteins could be heavily involved in RNA polarity within
the neuron as has been observed in C. elegans olfactory
neurons (Kaye et al. 2009), and in other contexts where
spatially heterogeneous protein expression is required.
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Mechanism of PUM-mediated activation remains
elusive

The mechanism for the rarer case of PUM-mediated stabi-
lization remains unclear. Previously reported measure-
ments using reporter assays of PUM-activated transcripts
showed a dependence on the presence of a PRE in the
3′-UTR (Bohn et al. 2018). Furthermore, direct binding of
PUM1 or PUM2 to PREs present in the FOXP1 3′-UTR was
reported to promote expression of the FOXP1 protein, an
important regulator of the cell cycle in hematopoietic
stemcells (Naudinet al. 2017). Theseobservations support-
ed a model wherein PUMs bind and stabilize a subset of
PRE-containingmRNAs. Inour analysisof transcript stability
upon PUM knockdown, the evidence and number of
examples for PUM binding and stabilizing of mRNAs was
insufficient to draw general conclusions (Fig. 4C,D). An al-
ternative hypothesis is that the destabilization of the tran-
scripts in the absence of PUM is the result of indirect
effects. Such effects could be mediated through another
regulatory factor that PUM directly regulates or competes
with for RNA binding. Consistent with this possibility, we
observedmultiple examples of pathways for which thema-
jority of targets destabilized by PUM knockdown had no
PREs (see Fig. 5). Collectively, it seems likely that the PUM-
mediatedactivationofgenes representsacombinationofdi-
rect and indirect targets. General rules for predicting PUM-
mediatedactivation remainelusive,andmechanistic insights
into activation of key targets will require further study.

General principles for an ideal PUM target site

We identified anoptimal set of determinants that allowpre-
diction of PUM binding and transcript destabilization. A
simple count of PREs in the 3′-UTR is the best single predic-
tor for PUM activity, with varying performance for different
motif representations. The sequence context of the PRE is
also important for predicting PUM activity on any particular
target. In particular, high AU content immediately sur-
rounding the PRE appears to enhance its efficacy, as does
a locationnear the 3′ endof the 3′-UTR. A similar correlative
relationship was proposed by Jiang et al. (2013) based on
sequence analysis. Here we demonstrate the importance
of those properties for PUM-mediated target degradation.
In our data, clustering of PREs becomes apparent as an ad-
ditional contributor to PUM-mediated destabilization. In
addition, we find that a count of predicted miRNA sites
near PREs helps predict PUM effect, with a higher number
of miRNA sites near a PRE indicating a larger stabilization
under PUM knockdown (Supplemental Fig. S3A). This rela-
tionship is supported by previous studies that reported
proximity of PREs to miRNA sites (Galgano et al. 2008;
Miles et al. 2012; Jiang et al. 2013; Sternburg et al.
2018). Theoretically, PUM could act to block or enhance
miRNA function throughdirect interactionswith themiRNA

machinery or through local rearrangements of RNA sec-
ondary structure, with examples reported for both scenari-
os (Miles et al. 2012; Sternburg et al. 2018).

Several other features hypothesized to play roles either
in PUM-mediated regulation in particular, or mRNA decay
in general, proved to be uninformative when applied to
our data set. Secondary structure is predicted to affect
many RBPs (Dominguez et al. 2018) and PUM is thought
to change secondary structure upon binding (Kedde
et al. 2010). We found that in silico predictions of RNA sec-
ondary structure around PREs were not predictive of PUM
function (Supplemental Fig. S3C). In fact, regression mod-
els considering PRE count and structure performed worse
when structural information was added (data not shown).
Similarly, modifications of RNA nucleobases within PREs
could limit recognition of mRNAs by PUM. However, using
transcriptome-wide mapping data for m6A (Linder et al.
2015), we find limited to no overlap between m6A sites
and PREs (data not shown). We also examined codon op-
timality, which is a determinant of mRNA decay in human
cells (Forrest et al. 2018; Hanson and Coller 2018; Wu et
al. 2019). We find that mRNAs undergoing PUM-mediated
decay in our data set have a lower fraction of optimal co-
dons on average than those that are not affected by
PUMs (Supplemental Fig. S3B), suggesting that lower co-
don optimality might prime PUM target mRNAs for degra-
dation. However, the fraction of optimal codons did not
rank in the top 20 most important features in our machine
learning models of PUM-mediated decay (Fig. 6). Thus,
any interaction between PUM regulation and codon opti-
mality appears to be minimal.

By combining high-throughput functional data with stat-
istical modeling, we have identified several contextual fea-
tures around PREs that have improved our understanding
of PUM-mediated gene regulation and increased our abil-
ity to predict PUM targets. However, there is still room for
improvement. Recent successes in Pumilio target predic-
tion in Drosophila have come from characterizing RNA-
binding partners of DmPum (Weidmann et al. 2016;
Arvola et al. 2017). As summarized by Goldstrohm et al.
(2018) multiple RBPs associate with mammalian PUMs
and could modulate RNA-binding in vivo. Systematic in-
corporation of the effects of PUMbinding partners will like-
ly further improve our ability to predict targets of PUM-
mediated decay. Likewise, recent studies have shown
that RNA structural probing experiments used in tandem
with in silico folding algorithms vastly improve biological
predictions based on structural information (Mustoe et al.
2018). Incorporation of in vivo RNA structure data may en-
hance models of PUM-mediated regulation.

While we are able to draw the conclusions described
above based on whole-transcriptome stability data, our in-
ferences are necessarily correlative, and do not directly
show a causative relationship between any particular fea-
ture and PUM-mediated decay. Importantly, the range of
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features identified here is informative across the entire
transcriptome, and (as we have shown) constitute a set of
independently informative features for determining the
presence and magnitude of PUM-mediated transcript
destabilization. Thus, the identified features must either
be causally linked to target destabilization, or must some-
how be tightly correlated across the transcriptome with
some other underlying feature that in fact controls tran-
script stability. The biological plausibility, and consistency
of our feature sets with prior targeted experiments,
strongly argues that the factors that we have identified in-
deed constitute an important set of transcript features
modulating PUM efficacy. Future experiments on artificial
PRE contexts will permit testing of the extent to which
PREs are tunable based on the features from our models.

MATERIALS AND METHODS

Experimental methodology

SEQRS protein purification

Methods are reproduced here from Weidmann et al. (2016).
Recombinant Halo-tag PUM1 RBD (aa 828-1176) and Halo-tag
PUM2 RBD (aa 705–1050) were expressed from plasmid
pFN18A (Promega) in KRX E. coli cells (Promega) in 2×YT media
with 25 µg/mL kanamycin and 2 mMMgSO4 at 37°C to OD600 of
0.7–0.9, at which point protein expression was induced with 0.1%
(w/v) rhamnose for 3 h. These PUM RBD expression constructs
were originally described in Van Etten et al. (2012). Cell pellets
were washed with 50 mM Tris-HCl, pH 8.0, 10% (w/v) sucrose
and pelleted again. Pellets were suspended in 25 mL of 50 mM
Tris-HCl pH 8.0, 0.5 mM EDTA, 2 mM MgCl2, 150 mM NaCl,
1 mM DTT, 0.05% (v/v) Igepal CA-630, 1 mM PMSF, 10 µg/mL
aprotinin, 10 µg/mL pepstatin, and 10 µg/mL leupeptin. To lyse
cells, lysozyme was added to a final concentration of 0.5 mg/mL
and cells were incubated at 4°C for 30 min with gentle rocking.
MgCl2 was increased to 7 mM and DNase I (Roche) was added
to 10 µg/mL, followed by incubation for 20 min. Lysates were
cleared at 50,000g for 30 min at 4°C. Halotag-containing proteins
were purified using Magnetic Halolink Resin (Promega) at 4°C.
Beads were washed three times with 50 mM Tris-HCl (pH 8.0,
0.5 mM EDTA, 2 mM MgCl2, 1 M NaCl, 1 mM DTT, 0.5% [v/v]
Igepal CA-630) and three times with elution buffer (50 mM Tris-
HCl, pH 7.6, 150 mM NaCl, 1 mM DTT, 20% [v/v] glycerol).

To confirm protein expression, beads were resuspended in elu-
tion buffer with 30 U of AcTEV protease (Invitrogen), cleavage
proceeded for 24 h at 4°C, and beads were removed by centrifu-
gation through a micro-spin column (Bio-Rad). Concentration of
eluted protein was measured by Bradford assay, followed by coo-
massie stained SDS-PAGE analysis.

SEQRS was conducted on PUM1 PUM-HD and PUM2 PUM-HD
as described in Campbell et al. (2014) withminormodifications in-
cluding the use of Magnetic Halolink beads (Promega). The PUM
test proteins remained covalently bound via amino-terminal
Halotag to the beads.

The initial RNA library was transcribed from 1 µg of input
dsDNA using the AmpliScribe T7-Flash Transcription Kit

(Epicentre). An amount of 200 ng of DNase treated RNA library
was added to 100 nM of Halo-tagged proteins immobilized
ontomagnetic resin (Promega). The volume of each binding reac-
tion was 100 µL in SEQRS buffer containing 200 ng yeast tRNA
competitor and 0.1 units of RNase inhibitor (Promega). The sam-
ples were incubated for 30 min at 22°C prior to magnetic capture
of the protein–RNA complex. The binding reaction was aspirated
and the beads were washed four times with 200 µL of ice cold
SEQRS buffer. After the final wash step, resin was suspended in
elution buffer (1 mM Tris pH 8.0) containing 10 pmol of the re-
verse transcription primer. Samples were heated to 65°C for 10
min and then cooled on ice. A 5 µL aliquot of the sample was add-
ed to a 10 µL ImProm-II reverse transcription reaction (Promega).
The ssDNA product was used as a template for 25 cycles of PCR
using a 50 µL GoTaq reaction (Promega).

Bru-seq and BruChase-seq experimental procedure

Bru-seq and BruChase-seq were conducted as described in
Paulsen et al. (2014) in HEK293 cells grown in the presence of
siPUM1/2 or siNTC. RNAi conditions and siRNA sequences
were previously described by Bohn et al. (2018) and include treat-
ment with siRNAs for 48 h to allow for PUM depletion prior to BrU
labeling. Four replicates were gathered for each time point and
siRNA condition, resulting in 16 total samples. Resulting cDNA li-
braries were sequenced using an Illumina HiSeq 2000 via the
University of Michigan Sequencing Core.

Bru-seq and BruChase-seq computational analysis

Rather than determine full decay rate constants for each tran-
script, which would have required the use of additional time
points throughout the chase period of our experiment, we chose
to determine relative changes in RNA stability using just two time
points. The measurements obtained from these experiments can-
not be interpreted on an absolute scale, but the rank order of
stability measurements within the experiment is preserved, allow-
ing us to determine the relative effects of PUM knockdown be-
tween any two genes (Wolfe et al. 2018) and require careful
statistical analysis described below.

Modeling PUM-mediated RNA decay

Sequencing reads were aligned to the human genome (hg19) and
processed according to Paulsen et al. (2014) up to obtaining read
counts for exons and introns for each gene and sample. Our ex-
perimental design resulted in four different replicates of siNTC
(WT) and siPUM1/2 (PUMKD) conditions with two different time
points each: t0hr and t6hr. For the t0hr time points, read counts
from both exons and introns were pooled for each gene. For
the t6hr time points, only read counts from exons were used.
Read abundance was modeled using DESeq2 (Love et al. 2014).
As described in Love et al. (2014), DESeq2 models read count
abundance K for gene i in sample j using the generalized linear
model described below:

Kij � NB(mij, ai ),

where αi is a gene-specific dispersion parameter for gene i and μij
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is defined by the following:

mij = sjqij.

Here, sj is a sample-specific size factor used to put read count
abundances on the same scale between samples. Finally, qi,j is
defined according to our design matrix:

log2(qi,j ) = b0 + bcc + bt t + btc tc + br r,

where c is an indicator variable that is 0 when the sample is in con-
dition WT and 1 when the sample is in condition PUMKD.
Likewise, t is an indicator variable that is 0 when sample is in
the 0 h time point and 1 when the sample is in the 6 h time point.
Finally, βrr is a series of three indicator variables and coefficients
for each replicate to take into account batch effects; replicate 1
is taken as the baseline replicate. Since the interaction term cap-
tures changes in RNA abundance over time in the siPUM condi-
tion that differ from the siNTC condition, we interpret the βtc
term to represent changes in RNA stability resulting specifically
from the PUM KD condition. Similarly, since the condition term
captures changes between the conditions at the 0 h time, we in-
terpret the βc term to represent changes in nascent RNA abun-
dance between the two conditions.Throughout the text, unless
otherwise noted, we report βtc normalized by the reported stan-
dard error for the coefficient, which amounts to the Wald statistic
computed for that term by DESeq2. Thus, the Wald statistic for
the interaction term is denoted as “RNA stability in PUM KD”
throughout the text and is a unitless quantity.

Analysis of transcriptional versus stability effects

To test for significant changes in transcription or stability, the
Wald test statistic for the appropriate term—βc for transcription
and βtc for stability—was calculated as described above. The
Wald statistic was compared to a zero-centered normal distribu-
tion and a two-tailed P-value was calculated using statistical pro-
gramming language R’s pnorm function (n.b. this is virtually
equivalent to the P-values calculated by the DEseq2 package
for contrast [Love et al. 2014]). To test for a statistically significant
lack of change in transcription or stability, theWald statistic for the
appropriate termwas compared to a normal distribution centered
at the nearest boundary of a region of practical equivalence
(ROPE) and a two-tailed P-value was calculated using R’s pnorm
function. The ROPE was defined as log2(1/1.75)− log2(1.75) and
was chosen to be within the range of fold expression change of
a RnLuc reporter gene with between one and three PREs in its
minimal 3′-UTR (Bohn et al. 2018). Each P-value was FDR-correct-
ed using the Benjamini–Hochberg procedure (Benjamini and
Hochberg 1995) and, for each term, the smaller of the two FDR-
corrected P-values was reported. In order for a gene to be classi-
fied in the EFFECT class the following conditions had to bemet: (i)
its change in stabilityQ-value had to be smaller than its no change
in stabilityQ-value; (ii) its change in stabilityQ-value had to pass a
cutoff of 0.05 for statistical significance; and (iii) the original log2

fold-change value had to be outside the defined ROPE. In con-
trast, in order for a gene to be classified in the NOEFFECT class
the following conditions had to be met: (i) it was not classified
as an EFFECT gene; (ii) its no change in stability Q-value had to
be smaller than its change in stability Q-value; (iii) its no change
in stability Q-value had to pass a cutoff of 0.05 for statistical sig-

nificance; and (iv) the original log2 fold-change value had to be
within the defined ROPE. Genes not passing the criteria for either
the EFFECT or NOEFFECT groups are those for which we lack suf-
ficient information to make any strong statement on the effects of
PUM knockdown.

SEQRS computational analysis

Each raw sequencing read from the SEQRS experiments has the
following expected structure:

NNNNNN-CTGATCCTACCATCCGTGCT-NNNNNNNN
NNNNNNNNNNNN-CACAGCTTCGTACCGAGCGG-GATC
GGAAGA-XXXXXX-ATCTCGTA

where X represents a known barcode sequence used to split the
reads from a multiplexed experiment and N represents a random
variable base. The in vitro transcription reaction uses the above
sequence as a template resulting in RNA with sequence starting
from the 3′ end of the CACAGCTTCGTACCGAGCGG down-
stream from the 20-mer and going in the opposite direction.
Thus, the RNA molecules in the SEQRS experiments are the re-
verse complement of the following:

CTGATCCTACCATCCGTGCT-NNNNNNNNNNNNNNN
NNNNN-CACAGCTTCGTACCGAGCGG

Raw sequencing reads were split by barcode, allowing for up to
two pairwise mismatches on both the upstream and downstream
adapter sequences. The 20-mer variable regions and constant
flanking adapter sequences of each read were reverse comple-
mented and broken into all possible 8-mer sequences using a
sliding window, and raw counts for all possible 8-mer abundances
for each sequencing round for each protein were calculated using
custom python scripts. For 8-mers that overlapped the constant
flanking adapter sequences, only 8-mers that had at least one
base in the variable region were considered.

To determine position-weight matrices that best represented
selection by the protein of interest for that round, we followed
the approach of Jolma et al. (2013) in the analysis of DNA-binding
proteins using SELEX.Briefly, a seed sequence is determined from
the most abundant N-mer within that round. From this seed se-
quence, theabundanceof eachbaseat agivenpositionwas tallied
when all other positions match the seed sequence. The PWM fre-
quencies were determined by dividing each column of the result-
ing count matrix by its column sum. For all PWMs determined by
this method we used a UGUAAAUA seed sequence. Unlike
Jolma et al. (2013), wedo not include the correction for nonspecif-
ic carryover of nucleic acid from the previous cycle as the assump-
tion that no more than 25% of 8-mers would be expected to be
boundmaynot hold for RNA-bindingproteins due to their promis-
cuous binding (Dominguez et al. 2018). Instead, we accounted for
the bias of the initial sequencing pool by calculating a PWM for
the initial pool using the UGUAAAUA seed sequence.We then di-
vided the position frequency matrix of each PWMby the initial se-
quencingpool’sposition frequencymatrix. Finally,wedetermined
the bias-corrected frequency matrix by dividing each column of
the matrix by its column sum.

In order to compare 8-mer selection between rounds or pro-
teins, the enrichment of a particular 8-mer was calculated with
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the following equation:

E = log2

cs,i∑Ns
i=1 cs,i
cb,i∑Nb
i=1 cb,i

⎛
⎜⎜⎝

⎞
⎟⎟⎠,

where cs,i represents the count for 8-mer i in sample s, and cb,i rep-
resents the count for 8-mer i in the blank round where the input
sequences were sampled. The DmPum data and corresponding
blank sample were accessed from Weidmann et al. (2016) and
only the first five rounds were considered.

GO term analysis and iPAGE

GO term analysis was performed using the integrative pathway
analysis of the gene expression (iPAGE) software package
(Goodarzi et al. 2009). Genes were discretized by the interaction
term Wald test statistic into five equally populated bins and
iPAGE was run with default settings.

Determination of matching PREs

The full set of 3′-UTRs for hg19 genome was downloaded using
the TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.
Hsapiens.UCSC.hg19, and GenomicFeatures R packages.
Matches to a given PWM across all 3′-UTRs were determined us-
ing the FIMO package with a uniform background using default
cutoffs for reporting matches (Bailey et al. 2009). For PRE-centric
figures, such as the heatmaps and violin plots in Figure 3 and
Supplemental Figure S3, each unique 3′-UTR isoform is matched
to its corresponding “RNA stability in PUM KD” value by gene
name, and each feature’s value is reported as the given summary
statistic over a given 3′-UTR isoform for that feature, as described
in the section below (i.e., for AU content, the value reported is the
maximum AU content around any given PRE within that 3′-UTR
isoform).

For de novo discovery of informative motifs in our Bru-seq and
BruChase-seq data set, we applied the finding informative regu-
latory elements (FIRE) software (Elemento et al. 2007) with default
settings to each unique 3′-UTR isoform matched to its “RNA
stability in PUM KD” value and discretized into 10 equally popu-
lated bins.

To calculate the location and AU content of PREs in randomly
generated sets of the 3′-UTRs, a third-order Markov model was
trained on the annotated set of unique 3′-UTR isoforms from the
hg19 genome. One thousand randomly simulated sets of 3′-
UTRs—each with the same length as the annotated set of 3′-
UTRs—was then generated using custom python scripts. For
each of the thousand simulated sets of 3′-UTRs, the fifth round
SEQRS PUM1 (Fig. 2A) was used to search for matches using
FIMO as described above. Here each individual PRE was consid-
ered in thecalculationof the kernel densityplots shown inFigure3.

To determine the PAR-CLIP read coverage at identified PRE
sites in the set of known unique 3′-UTR isoforms, raw reads
were downloaded from SRA with accession numbers
SRR048967 and SRR048968. Raw fastq files were processed
with trimmomatic (Bolger et al. 2014) and cutadapt (Martin
2011) to remove low quality reads and illumina adapters.
Processed reads were aligned to the hg19 genome using the

STAR aligner with default parameters (Dobin et al. 2013). Read
coverage and T to C mutations were determined for reads within
20 bp of each PRE in each unique 3′-UTR isoform for both EFFECT
and NOEFFECT genes, individually, using custom python scripts.
Coverage over all PREs was aligned and the bottom and top 5%of
read coverage at each position was removed from the average
calculation. Error bars were determined by bootstrapping, with
stratified sampling with replacement read coverage from individ-
ual PREs in each group separately.

Determination of PRE clustering

To determine whether the PREs cluster together more than would
be expected by chance, we determined the ratio of the observed
frequency of PUM sites within all possible 100 bp windows of 3′-
UTRswith a least one PRE in them to a Poissonmodel with the rate
parameter, λ, set to the average count of PREs within all 100 bp
windows. 95% confidence intervals were determined by boot-
strapping the observed distribution of PRE counts within all
windows.

Predicting PUM-mediated regulation using
conditional random forest models

In order to predict the PUM-mediated regulation on a given tran-
script, we used conditional random forest models as implemented
by the cforest function from the party R package (Hothorn et al.
2006a; Strobl et al. 2007, 2008). Binary classification models
were trained using default settings with no parameter tuning on
the Bru-seq EFFECT and NOEFFECT classes and a permutation-
based AUC variable importance metric was calculated for each in-
dividual model (Janitza et al. 2013). Due to the large class imbal-
ance, 10 separate data sets were generated from the full data
set, where the majority NOEFFECT class was randomly down-sam-
pled to match the EFFECT class. Within each of the 10 data sets,
fivefold cross-validation was performed to assess performance
and detect overtraining. Final models were generated using the
10 down-sampled data sets without cross-validation and perfor-
mance was tested on the RNA-seq data set from Bohn et al.
(2018). Precision-recall plots were calculated using the PRROC
package based on themethodology of Davis and Goadrich (2006).

Calculation of features associated with a PWM

For each of the features described, the values were first calculated
individually for each unique 3′-UTR isoform. Values for each iso-
form were combined by taking the mean of the value for that fea-
ture and the isoform weighted by the number of isoforms that
shared that unique 3′-UTR in the full set of annotated 3′-UTRs in
the hg19 genome. For features ending in “fimo_best_bygene_-
max_fimo”, the maximum FIMO match score for each unique
3′-UTR isoform for that PWMwas calculated by setting the P-value
cutoff threshold in FIMO to 1.1, thereby allowing FIMO to consid-
er every possible match for a given sequence. The maximum
match score for each sequence was reported for each unique
3′-UTR isoform. For features ending in “fimo_best_bygene_to-
tal_num”, the total number of matching sites for a given unique
3′-UTR isoform was calculated as described above in the
“Determination of matching PREs” section. For each sequence,
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the geometric average of FIMO scores for eachmatching PREwas
calculated and reported in the “fimo_bygene_geom_avg_score”.
The maximum match score, geometric average match score, and
total match number were calculated for the SEQRS PUM1 round 5
PWM, SEQRS PUM2 round 5 PWM (Hafner et al. 2010) PUM2
PWM, and each of the PWMs for human RBPs found in the
CISBP-RNA database (Ray et al. 2013).

For PREs, the shortest distance to the 3′-UTR for any given PRE
is converted to normalized coordinates (i.e., 0.0 is the 5

′
end and

1.0 is the 3′ end) and reported in the “fimo_best_bygene_dist_3”.
For “fimo_bygene_at_content” the largest percentage AT con-
tent in a 100 bp window surrounding any PRE within a given se-
quence was reported. Similarly for “fimo_bygene_max_cluster”,
the maximum number of full PRE sites within a sliding window
of 100 bp was calculated. For both of these features, windows
were truncated at the 3′ and 5′ ends of the sequence.

Predicted miRNA sites were determined using default predic-
tions (conserved sites of conserved miRNA families) from
TargetScan release 7.2 (Agarwal et al. 2015). Overlaps with
PREs were calculated by counting miRNA sites within a 100 bp
window surrounding each PRE. For 3′-UTRs with more than one
PRE, the PRE with the maximum number of overlapping miRNA
sites was considered.

Calculation of in silico base-pairing probabilities for PREs

For each identified PRE, the probability of the given PRE being
base-paired within predicted secondary structure was calculated
using RNAfold (Lorenz et al. 2011) by calculating the ensemble
free energy of an unconstrained sequence Fu of 50 bp flanking
each side of a given PRE and the ensemble free energy of a con-
strained sequence where no base within the PRE is allowed to
form a base pair Fc. The probability of the PRE being constrained
from base-pairing can be calculated using:

Pc = exp
(Fu − Fc )

RT

( )
,

where T is the temperature (set to physiological temperature,
310.15 K), and R is the gas constant (set to 0.00198 kcal K−1

mol−1). Thus the probability of any given PRE being unpaired is
Pc.Wedefine two features associatedwith Pc for each PRE in a giv-
en 3′-UTR isoform. “_avgprob_unpaired” is the average Pc of all
the PREs within a given 3′-UTR and “_maxprob_unpaired” is the
maximum Pc of all the PREs within a given 3′-UTR. Values for
each isoform were combined into gene level estimates, as de-
scribed above.

Calculation of information redundancy between features

In order to calculate the information redundancy between fea-
tures, each feature was discretized into 10 equally populated
bins. The redundancy between feature 1 (F1) and feature 2 (F2)
was calculated with the following equation:

R = 2× I(F1; F2)
(H(F1)+ H(F2))

,

where H is the entropy of a given vector X of discrete values, as
defined below:

H(X ) = −
∑
x[X

P(x)log2(P(x)),

and the mutual information I(X;Y ) of vectors X and Y of discrete
values is defined as:

I(X ; Y ) =
∑
x[X

∑
y[Y

P(x, y)log
P(x, y)
P(x)P(y)

( )
.

Determination of EFFECT and NOEFFECT classes
for RNA-seq data

RNA-seq data was obtained from Bohn et al. (2018) and a gene
was only considered if the FPKM for both the PUM1/2 knockdown
condition and the siNTC condition were greater than five. Genes
that passed this cutoff and that were considered to have statisti-
cally significant differential expression in the original analysis
were considered EFFECT genes. Genes that passed the cutoff
and were not considered to have statistically significant differen-
tial expression were considered NOEFFECT genes.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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