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Whether weather plays a part in the transmissibility of the novel Coronavirus Disease-19 (COVID-19) is still not
established. We tested the hypothesis that meteorological factors (air temperature, relative humidity, air pres-
sure, wind speed and rainfall) are independently associated with transmissibility of COVID-19 quantified using
the basic reproduction rate (R0). We used publicly available datasets on daily COVID-19 case counts (total n =
108,308), three-hourlymeteorological data and community mobility data over a three-month period. Estimated
R0 varied between 1.15 and 1.28. Mean daily air temperature (inversely), wind speed (positively) and country-
wide lockdown (inversely) were significantly associated with time dependent R0, but the contribution of coun-
trywide lockdown to variability in R0was over three times stronger as compared to that of temperature andwind
speed combined. Thus, abating temperatures and easing lockdownmay concur with increased transmissibility of
COVID-19 in India.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

As the novel Coronavirus Disease-19 (COVID-19) continues to
devastate the world, there remains a myriad of unknowns about its
ntonio, TX, USA.
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pathogenesis, population dynamics, epidemiology, prevention and
treatment. Since its introduction into the global susceptible population
SARS-CoV-2, the causative agent of COVID-19, has presented several co-
nundrums. It was initially believed that like many other viruses, SARS-
CoV-2 may also be responsive to the environmental influences posed
by climatic and meteorological factors (Adhikari and Yin, 2020; Briz-
Redon and Serrano-Aroca, 2020; Qi et al., 2020; Tosepu et al., 2020).
However, current understanding of the potential role of weather on
the spread of SARS-CoV-2 is far from clear.
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The COVID-19 outbreaks have been generally more severe in the
countries located in themid-latitudes where the temperature is consid-
erably low in contrast to the tropical countries. Several studies around
the world have attempted to specifically establish a relationship be-
tween COVID- 19 transmission and various meteorological factors
(Brassley et al., 2020; Prata et al., 2020; Vantarakis et al., 2020). For ex-
ample, a study conducted in New York, United States of America, found
that mean temperature, minimum temperature and air quality were
significantly associated with COVID-19 (Prata et al., 2020). Similarly,
others have (Shi et al., 2020) reported a statistically significant correla-
tion between daily temperature and daily count of COVID-19 cases in
China and suggested that temperatures above 8–10 °C would lead to a
decline in the number of infected cases. In a parallel investigation
(Prata et al., 2020), it was concluded that a rise in 1 °C temperature
would result in a 5% decrease in the number of daily confirmed
COVID-19 cases in Brazil. There have been very few investigations
(Das and Chatterjee, 2020; Gupta and Pradhan, 2020; Singh and
Agarwal, 2020) from India in this regard – a countrywith second largest
population size after China. These studies from India have generally
indicated a potential role of weather conditions in the spread of
COVID-19.

On the other end of the spectrum, a recent study (Yao et al., 2020)
concluded that there is no association of COVID-19 transmission with
temperature or ultraviolet (UV) radiation in Chinese cities. Indeed, an
elegant, evidence-based review (Brassley et al., 2020) summarized the
existing evidence in this regard and observed that a) cold and dry con-
ditionsmay facilitate the spread of the novel coronavirus (SARS-CoV-2)
b) much of the emerging data for SARS-CoV-2 has yet to be peer-
reviewed and is thus needed; and c) relying on weather changes
alone to slow the transmission of COVID-19 are unlikely to be sufficient.
Considering these recommendations, the variability in the observed as-
sociations and a relative lack of such studies from India, we conducted
this investigation on a nationwide sample of geographical locations
across India. The primary goal was to test the putative association of
geo-meteorological characteristics with COVID-19 transmission and to
test its independence from other socio-behavioral interventions like
lockdowns and social mobility.

2. Materials and methods

2.1. Data sources

We selected a total of 46 geographical locations across India. For
each selected location (either a city, union territory or district), we col-
lected data for a three-month period (March 1, 2020 through May 31,
2020). Following data items were collected for each study location:
daily number of confirmed COVID-19 cases, meteorological data, demo-
graphic data and geographic data. The meteorological data included 3-
hourly recordings of air temperature, relative humidity, air pressure,
wind speed and rainfall. The demographic data included the 2011 cen-
sus population and the geographical data included area and elevation.
The area and population records were combined to estimate the popu-
lation density. Lastly, temporal data on the lockdown implementation
phases and the mobility of the population (estimated anonymously
from the cellphone use data) was collected to study the potential tem-
poral concurrence with COVID-19 transmission.

All data used in this study are publicly available and are completely
anonymized. The study was approved by the Institutional Ethics Com-
mittee of Government Medical College, Nagpur, India. Following were
the sources of data: number of daily COVID-19 cases – https://api.
covid19india.org/; meteorological data –https://www.tutiempo.net/
and https://www.worldweatheronline.com/; 2011 census data –
https://censusindia.gov.in/2011-common/censusdata2011.html; and
geographical data – combination of census data and search on
Wikipedia® (https://en.wikipedia.org/wiki/Wikipedia). Lastly, the tem-
poral mobility data was downloaded from the publicly available
2

repository: https://www.google.com/covid19/mobility/. These data re-
ported percent change from baseline mobility on visits to the following
five destinations - retail and recreation, grocery and pharmacy, parks,
transit stations and workplaces.

2.2. Quantification of COVID-19 transmissibility

Using the daily case count data, we estimated the basic reproduction
rate (R0) in two different ways. First, we estimated the average R0 over
the entire duration of 92 days period of data collection. For this, we used
two methods – the exponential growth (EG) and the maximum likeli-
hood (ML). Second, we estimated the daily R0 in a time-dependent
(TD) fashion. All estimates of R0 require a knowledge of serial interval,
the time difference between onset of symptoms in an infector and an
infectee. We assumed a gamma distributed serial interval with a mean
of 3.96 days and a standard deviation of 4.75 days (Du et al., 2020).
We used the R package R0 (Obadia et al., 2012) to derive all the esti-
mates of R0. Finally, we considered the possibility of biased estimates
of R0 owing to the relative lack of testing facilities, especially during
the initial period of the epidemic. For this, we used the algorithmic
method (Lachmann et al., 2020) that considers South Korea as the refer-
ence country and estimates the degree of undertesting by combining
demographic and vital statistics data. Using this method, we derived
the possible undertesting on each study day.

2.3. Statistical analysis

Our analyses used estimates of R0 as the dependent variable and the
geo-meteorological and socio-behavioral characteristics as the explana-
tory variables. To compare groupwise means we used the Mann-
WhitneyU test or Kruskal-Wallis test as appropriate. Significance of het-
erogeneity across study locations was statistically tested using the Q
test. Time series data were smoothed using a five-day sliding window.
Further, to make the different time series (each meteorological charac-
teristic) comparable, we converted them to a series of z-scores. To test
the temporal concurrence, we used the cross-correlation between two
time series (Pearson's correlation). To test the association of time series
variables with estimated time dependent R0, we usedmultivariable, or-
dinary least squares regression. Starting with the full model, we con-
ducted stepwise, backward elimination regression modeling with a
probability retention criterion of 0.05. Lastly, to quantify the relative
contribution of each covariate with time dependent R0, we estimated
the proportional reduction in error (PRE) using an established approach
(Judd et al., 2009). PRE was estimated as reduction in the residual sum
of squares by including a covariate in the full model. Statistical analyses
were conducted using the Stata 14.2 statistical package (Stata Corp, Col-
lege Station, TX). Type 1 error rate of 0.05 was used for hypothesis
testing.

3. Results

3.1. Representativeness of the study locations

We included 46 locations across India that contained 32 cities, 12
districts and 2 union territories. Fig. 1 shows the geographical spread
of these locations and the geographic and demographic details for
these locations are provided in Table 1. The study locations varied
widely in terms of the area (range 12.59–15,641 km2), elevation
(range 1–3505 m above sea level) and population density (range 10 to
35,439/km2). The selected locations are distributed across India and
represent majority of the states/union territories of India. Meteorologi-
cal data was available on all the selected study locations.

The cumulative number of COVID-19 confirmed cases (till and in-
cluding May 31, 2020) reported from these locations also varied widely
(1 to 37,666). The 46 selected locations together accounted for a total of
108,308 confirmed COVID-19 cases. From entire India the number of

https://api.covid19india.org/
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https://www.tutiempo.net/
https://www.worldweatheronline.com/
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Fig. 1.Geographical spread, COVID-19 case counts and population density of the study locations. Selected locations are shown as bubbles, the size ofwhich is proportional to log of COVID-
19 case counts. The color of the bubble indicates quartile of population density based on the cutoffsmentioned in Supplementary Table 1 – first quartile, blue; second quartile, green, third
quartile orange and fourth quartile, red.
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cumulative COVID-19 cases till May 31, 2020 were 182,140. Thus, our
selected geographic locations accounted for ~60% of all India COVID-
19 cases till May 31, 2020. The top 5 contributing locations to the overall
cumulative COVID-19 case counts were Mumbai (37666), Delhi
(18058), Chennai (12040), Ahmedabad (11919) and Pune (7459) as
shown in Supplementary Fig. 1.

3.2. Average estimated R0 for COVID-19

We first estimated the R0 based on case counts reported for the
entire country as well as only for the locations included in this
study. For each of these datasets, we estimated the R0 in two ways
– first based on the actual reported case counts and second by inflat-
ing the case counts to account for the potential undertesting on each
day. The results of these analyses are shown in Fig. 2 and referred to
as unadjusted (actual case counts, blue bars) and adjusted (for po-
tential undertesting, purple bars). Our average estimates of R0

using different methods of estimation and with or without adjusting
for undertesting ranged from 1.18 to 1.27 for India and 1.15 to 1.28
for the selected study locations. All the estimates and their 95% con-
fidence intervals (error bars in Fig. 2) were significantly above unity.
Thus, the average estimates of R0 were significantly greater than one,
confirming the existence of the epidemic; the average R0 estimates
were only moderately above unity; the average R0 estimates were
3

minimally influenced by potential undertesting; and that the study
locations yielded average R0 estimates consistent with those for the
whole country thereby indirectly reaffirming the representativeness
of the selected study locations.

We also examined the heterogeneity of the average R0 estimates
across the study locations. For these analyses, we restricted the loca-
tions which showed at least seven consecutive days with a contiguous
segment of non-zero cases. Total of 35 locations were eligible based
on this criterion. The average R0 estimates derived using theMLmethod
[point estimates and confidence intervals (CI)] for these 35 locations are
shown in Table 1. There was a significant heterogeneity in the average
R0 estimates (Q = 224.28, degrees of freedom = 34, p = 6.9 × 10−30)
with estimates ranging from 1.98 for Dehradun to 0.89 for Kolkata.
The average R0 estimates for the top five contributing locations were:
Mumbai 1.16 (95% CI 1.14–1.18); Delhi 1.25 (95% CI 1.23–1.28); Chen-
nai 1.20 (95% CI 1.17–1.23); Ahmedabad 1.10 (95% CI 1.07–1.13) and
Pune 1.22 (95% CI 1.18–1.26).

We examined the potential association of geographical characteris-
ticswith the estimated R0. For thiswe conducted amultivariable regres-
sion model which included population density (a composite variable
that includes information on population and area), elevation, latitude
and longitude (to test for any cline effect). The results of these analyses
are shown in Table 2. These results showed that none of the correlates
was significantly associated with the estimated R0.

Image of Fig. 1


Table 1
Geographical characteristics of and COVID-19 transmission in selected locations across India.

Location Adm unit Population 2011 Latitude Longitude Area
(km2)

Elevation
(m)

Population density
(×1000/km2)

PDQa COVID-19 cases (n) Average R0 (95% CI)b

Agra City 1,585,704 27.1767 78.0081 87.00 170.98 18.23 4 881 1.04 (0.95–1.14)
Ahmedabad District 7,214,225 23.0225 72.5714 8106.70 53.03 0.89 1 11,919 1.10 (1.07–1.13)
Aizawl City 293,416 23.4338 92.4304 455.84 1131.97 0.64 1 1 Unestimablec

Bengaluru District 9,621,551 12.9716 77.5946 2196.32 920.45 4.38 2 260 1.17 (0.88–1.46)
Bhopal City 1,798,218 23.2599 77.4126 285.88 526.97 6.29 3 1478 1.10 (1.02–1.18)
Chandigarh UT 1,055,450 30.7333 76.7794 113.96 320.94 9.26 3 241 1.09 (0.90–1.29)
Chennai District 7,088,000 13.0827 80.2707 426.06 6.10 16.64 4 12,040 1.20 (1.17–1.23)
Coimbatore City 1,601,438 11.0168 76.9558 246.75 410.85 6.49 3 167 Unestimable
Dehradun City 578,420 30.3165 78.0322 259.00 447.12 2.23 2 204 1.98 (1.55–2.42)
Delhi UT 16,787,941 28.7041 77.1025 1484.07 224.02 11.31 4 18,058 1.25 (1.23–1.28)
Dimapur City 254,674 25.9091 93.7266 121.73 145.08 2.09 2 26 Unestimable
Gomati District 429,237 23.5167 91.6372 1522.79 24.08 0.28 1 49 Unestimable
Guntur District 743,354 16.3067 80.4365 159.47 32.92 4.66 2 558 1.11 (0.97–1.25)
Hyderabad City 6,809,970 17.385 78.4867 624.19 541.91 10.91 4 1630 1.30 (1.20–1.41)
Imphal City 268,243 24.817 93.9368 556.85 786.04 0.48 1 20 Unestimable
Indore City 1,994,397 22.7168 75.8577 518.00 548.61 3.85 2 3467 1.09 (1.03–1.14)
Jaipur City 3,046,189 26.9124 75.7873 466.20 430.97 6.53 3 1937 1.05 (0.98–1.11)
Jajapur District 37,458 20.8341 86.3326 2887.85 331.00 0.01 1 146 1.15 (0.83–1.47)
Jalandhar City 873,725 31.326 75.5762 110.00 227.98 7.94 3 254 1.38 (1.07–1.69)
Jammu City 502,197 32.73 74.87 26.65 350.50 18.84 4 132 1.46 (1.02–1.89)
Jodhpur City 1,056,191 26.2389 73.0243 214.48 231.03 4.92 3 1434 1.09 (1.01–1.17)
Jorhat City 153,889 26.75 94.22 12.59 116.12 12.23 4 31 Unestimable
Kannur District 2,523,003 11.8689 75.3555 2965.55 0.91 0.85 1 198 1.38 (1.78–1.97)
Kanpur City 2,767,348 26.4499 80.3319 403.70 125.88 6.85 3 377 0.98 (0.83–1.12)
Kasargod District 1,307,375 12.4996 74.9869 1991.71 18.90 0.66 1 287 1.32 (0.98–1.67)
Kolkata City 4,496,694 22.5726 88.3639 205.00 9.14 21.94 4 1952 0.89 (0.83–0.96)
Kurnool City 457,633 15.8281 78.0373 69.52 274.00 6.58 3 715 1.07 (0.96–1.19)
Leh City 30,870 34.1526 77.5771 45.12 3505.03 0.68 1 32 Unestimable
Lucknow City 2,817,105 26.8467 80.9462 349.65 123.13 8.06 3 424 1.19 (0.95–1.43)
Malappuram City 101,386 11.051 76.0711 33.62 101.80 3.02 2 102 1.53 (1.01–2.05)
Meerut City 1,524,908 28.9845 77.7064 183.89 224.63 8.29 3 501 1.18 (1.02–1.33)
Mumbai City 12,478,447 19.076 72.8777 603.47 14.02 20.68 4 37,666 1.16 (1.14–1.18)
Mysuru City 920,550 12.2958 76.6394 155.71 762.88 5.91 3 129 Unestimable
Nagpur City 2,405,665 21.1458 79.0882 227.35 310.88 10.58 4 573 1.14 (1.00–1.28)
Noida City 637,232 28.5355 77.391 202.02 213.35 3.15 2 487 1.23 (1.05–1.40)
Nuh District 1,089,263 25.5941 85.1376 1859.62 199.02 0.59 1 70 Unestimable
Patna City 1,695,000 25.5941 85.1376 98.42 53.03 17.22 4 268 1.12 (0.92–1.32)
Pune District 9,429,408 18.5204 73.8567 15,641.01 560.80 0.60 1 7459 1.22 (1.18–1.26)
Raipur City 1,010,087 21.2514 81.6296 173.53 298.08 5.82 3 13 Unestimable
Ranchi City 1,073,440 23.3441 85.3096 652.03 651.02 1.65 2 148 1.06 (0.79–1.33)
Sangli City 502,793 16.8524 74.5815 118.80 548.92 10.96126 2 97 1.19 (0.81–1.56)
SAS Nagar District 994,628 30.7046 76.7179 1098.16 316.06 2.345821 1 112 1.30 (1.20–1.41)
Siwan City 135,066 26.22 84.36 69.41 71.93 5.039776 2 73 1.07 (0.62–2.11)
Surat City 4,467,797 21.1702 72.8311 326.52 13.11 35.43902 4 1569 1.12 (1.04–1.20)
Una District 521,173 17.6868 83.2185 1541.05 369.09 0.875921 1 22 Unestimable
Vishakapatnam City 2,035,922 17.6868 83.2185 697.95 45.11 7.555002 2 101 1.27 (0.86–1.67)

a Quartile of population density.
b Estimated using the maximum likelihood method.
c Contiguous epidemic period <7 days.
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3.3. Temporal changes in R0 estimates

Next, we considered the variability in R0 estimates over the duration
of the study for all locations together. Fig. 3 shows that the R0 estimates
were initially high but undulated widely and gradually converged to-
wards the overall estimates shown in Fig. 2 with narrow confidence
bands later. Thus, the time dependent R0 estimates showed consider-
able variation across study time.

We examined the association of the time-dependent R0 estimates
with two socio-behavioral characteristics – implementation of a
countrywide lockdown and the extent of social distancing as
reflected by the cellphone mobility data. When contrasted against
the various phases of countrywide lockdown in India (grey shaded
regions in Fig. 3), we found that themedian R0 estimates consistently
reduced as lockdown was imposed. Before the lockdown began
(March 1 through March 24, 2020) the median R0 was 1.54 and this
estimate decreased to 1.40 (March 25–April 14, 2020), 1.21 (April
15–May 3, 2020), 1.16 (May 4–May 17, 2020) and 1.10 (May 18,
2020 onwards) during the lockdown phases 1 through 4, respec-
tively (Kruskal-Wallis p < 0.0001).
4

The cellphone-based community mobility data also revealed consis-
tent and interesting patterns. As shown in Supplementary Fig. 2, the
overall trends in community mobility for all five destinations showed
a dramatic decrease around the beginning of phase 1 lockdown,
remained very low during phase 1 lockdown and then gradually in-
creased as the lockdown progressed. The 5-day rolling z-scores for the
average mobility based on these five parameters is shown in Fig. 3
(green curve). This curve showed a dramatic reduction in mobility
just prior to and during the first two phases of the lockdown. The
curve showed an increasing trend in phases 2 and 4 of the lockdown.

3.4. Association of time dependent R0 estimates with meteorological data

The time trends for air temperature, relative humidity, air pressure,
wind speed and rainfall are shown in Fig. 4A. Over the duration of the
study, air temperature and wind speed steadily increased; relative hu-
midity and air pressure gradually decreased while rainfall remained
steady. As a first step of the association analyses, we estimated the
cross-correlation between each meteorological variables and the R0 es-
timates. Fig. 4B shows the cross-correlograms for lags ranging from−10



Fig. 3. Time dependent R0 and socio-behavioral interventions. Red line and pink bands
indicate the time dependent R0 and 95% confidence intervals, respectively, for each day
during the study. These align to the left axis (colored red). The green curve shows the 5-
day rolling average z-score for cellphone-based mobility data and aligns to the right axis
(colored green). Shaded boxes in the background indicate different phases of the
countrywide lockdown in India.

Fig. 2. Average estimated R0 for COVID-19. Bars show the average R0 estimates and error
bars indicate the 95% confidence intervals. Average R0 estimates were derived using
three methods: ML, maximum likelihood; EG, exponential growth; and TD, time
dependent. Each estimate was also derived without adjustment (unadjusted, blue bars)
and adjusted for potential undertesting (adjusted, purple bars).
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to 10 days. We found that higher temperature, wind speed and rainfall
were correlated inversely while relative humidity and air pressurewere
correlated positively with time dependent R0 estimates. The best cross-
correlation was observed for temperature and humidity on the same
day (−0.73 and 0.63, respectively), wind speed on previous day
(−0.40), rainfall preceding by 4 days (−0.29) and air pressure preced-
ing by 6 days (0.54). Together these results indicated that concurrent or
immediately preceding values of meteorological variables are signifi-
cantly correlated with time dependent R0 estimates.
3.5. Multivariable association of meteorological and socio-behavioral pre-
dictors with time dependent R0

We then examined whether the meteorological and socio-
behavioral covariates were independently associated with time depen-
dent R0 estimates. The full regressionmodel used time dependent R0 es-
timates as the dependent variable and following 14 covariates as
explanatory variables: five z-scores for the meteorological covariates,
five z-scores for community mobility data and four phases of lockdown
(each used as a dichotomous variable). The results of these analyses are
shown in Table 3. In the full model, we observed that the lockdown
phases 3 (only marginally) and 4 and wind speed were the only covar-
iates that were statistically significantly associatedwith R0 estimates. In
this context, the mobility data (which was highly correlated with the
lockdown phases) did not retain statistical significance. However, con-
sidering the potential for interactions among covariates and the possi-
bility of an underpowered full model (14 covariates observed on
92 days), we conducted stepwise regression modeling with a probabil-
ity retention criterion of 0.05. The results of the final model (Table 3)
showed that air temperature z-score, wind speed z-score and lockdown
Table 2
Association of geographical characteristics with estimated R0. The full model used inverse
variance weighting to account for variability in R0 estimates.

Covariate β 95% CI P

Population density 0.0017 −0.0025–0.0060 0.408
Elevation 0.0001 −0.0001–0.0003 0.232
Latitude −0.0002 −0.0066–0.0062 0.944
Longitude −0.0034 −0.0115–0.0046 0.392

β, regression coefficient; CI, confidence interval; p, significance value.

Fig. 4.Meteorological determinants of COVID-19 transmissibility. (A) Time trends for each
of the five, color-coded meteorological variables. For each variable, the data were first z-
transformed and then subjected to a 5-day moving average. (B) Cross-correlograms for
correlation of each meteorological variable with estimated time dependent R0. All cross-
correlograms were assessed between lags of −10 to 10 days. Most significant
correlation for each variable is indicated as a number alongside the lag at which it was
observed. Rel, relative.
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Table 3
Multivariable association of meteorological and socio-behavioral covariates with time de-
pendent R0 estimates (all study locations, March 1–May 31, 2020).

Covariate β 95% CI p

Full model
Temperature z-score −0.10 −0.24–0.05 0.190
Relative humidity z-score −0.04 −0.16–0.09 0.539
Air pressure z-score −0.06 −0.18–0.06 0.322
Wind speed z-score 0.06 0.00–0.11 0.036
Rainfall z-score 0.02 −0.03–0.07 0.471
Retail/recreation z-score 0.54 −0.30–1.37 0.204
Grocery/pharmacy z-score 0.17 −0.08–0.41 0.184
Parks z-score −0.26 −0.91–0.39 0.426
Transit station z-score −0.48 −1.18–0.23 0.180
Workplaces z-score 0.04 −0.19–0.28 0.724
Lockdown phase 1 −0.01 −0.27–0.25 0.936
Lockdown phase 2 −0.23 −0.61–0.16 0.247
Lockdown phase 3 −0.41 −0.87–0.05 0.079
Lockdown phase 4 −0.61 −1.14 to −0.08 0.024
Intercept 1.56 1.30–1.81 <0.001

Final model
Temperature z-score −0.08 −0.13 to −0.03 0.005
Wind speed z-score 0.08 0.03–0.12 0.003
Lockdown phase 2 −0.22 −0.34 to −0.09 0.001
Lockdown phase 3 −0.32 −0.45 to −0.19 <0.001
Lockdown phase 4 −0.47 −0.63 to −0.30 <0.001
Intercept 1.51 1.44–1.58 <0.001

β, regression coefficient; CI, confidence interval; p, significance value.
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phases 2–4 were retained in the final model. This model fitted the data
well with an adjusted R2 of 0.56 (Supplementary Fig. 3).

From the point of public health relevance, we then quantified the
contribution of each variable retained in the final model to the overall
variance of time dependent R0. The PRE estimates for the variables
retained in the final model were as follows: air temperature: 9.1%,
wind speed: 9.9%, lockdown phase 2: 12.2%, lockdown phase 3: 22.5%
and lockdown phase 4: 27.0%. These results indicate that while the me-
teorological factors of air temperature andwind speedwere statistically
significant predictors of COVID-19 transmissibility, their contribution to
dampening the R0 estimate was 3–4 times weaker as compared to the
countrywide lockdown phases 2–4.

4. Discussion

Using nationally representative data from India over a three-
month period, our study made three cardinal observations. First,
the average basic reproduction rate (R0) of COVID-19 infection in
the period from March 1 through May 31, 2020 ranged from 1.15 to
1.28 even after accounting for the potential undertesting. Second,
the COVID-19 transmissibility was significantly associated with
daily average air temperature (inversely), daily average wind
speed (positively) and the countrywide intervention of lockdown
(inversely). Third, the contribution of lockdown to the variability in
time dependent R0 was three times more than the contribution of
air temperature andwind speed combined.We did not observe a sta-
tistically significant association of any geographic characteristic with
R0. Together, these results suggest that in India while the meteoro-
logical determinants of COVID-19 were independently associated
with the transmissibility, their contribution was outweighed by
that of the countrywide lockdown.

Even though statistically significantly greater than unity, our esti-
mate of R0 was low. This estimate is comparable to the value of 1.32
reported by others (Du et al., 2020). However, the low value of R0

should be interpreted with caution. First, there has been a debate
about the length of serial interval with values ranging from as low
as 3 days to as high as 9 days.(Du et al., 2020; Ganyani et al., 2020;
Moradi and Eshrati, 2020; Nishiura et al., 2020; Zhang et al., 2020)
We used the serial interval of ~4 days which is on the lower side of
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the reported range and could have partly contributed to the low R0

observed in this study. Second, the major part of the study period in-
cluded lockdown and reducedmobility and therefore the R0 estimate
may represent a muted transmissibility owing to interventions in
place. Third, the low R0 estimate does not indicate lack of viral infec-
tiousness or any other viral characteristic but only implies the extent
of potential spread of the disease (Delamater et al., 2019). Fourth, the
epidemic of COVID-19 is still ongoing and our estimate of R0 only
captures the initial, ascending limb of the epidemic curve. Therefore,
this R0 estimate does not fully capture the population dynamics of
COVID-19. Fifth, our estimate of R0 is a conglomerate of the varying
estimates across the study locations as shown in Table 1. The vari-
ability in R0 across study locations indicates that the location-
specific epidemic curves were not aligned to the same starting
point in time and therefore our R0 estimate should not be used as a
generalizable estimate of COVID-19 transmissibility. The reason for
estimating R0 in the study was to investigate the potential influence
of geo-meteorological factors on transmissibility.

Several researchers around theworld have demonstrated an inverse
relationship between air temperature and number of COVID-19 cases
(Demongeot et al., 2020; Guo et al., 2020; Harmooshi et al., 2020;
Jahangiri et al., 2020; Malki et al., 2020; Pramanik et al., 2020; Ran
et al., 2020; Ren et al., 2020; Seligmann et al., 2020a; Steiger et al.,
2020). Our results are in agreement with the general understanding
that higher ambient temperature can inversely influence COVID-19
transmissibility (Guo et al., 2020; Jahangiri et al., 2020). Our study dura-
tion marks a period of increasing temperature in the Indian peninsula
and our results indicate that, in general, high ambient temperatures
were associated with lower R0 estimates such that one standard devia-
tion increase in air temperature was associated with a 0.08 lower R0

(Table 3, final model). It has been shown that increased air temperature
is associated with surface inactivation and reduced transmissibility of
the coronavirus (Biryukov et al., 2020; Ren et al., 2020). An elegant re-
view (Shakil et al., 2020) has noted that most of the studies on the asso-
ciation of air temperature with COVID-19 transmission have emerged
from areaswhere temperatures are not high and thereforemore studies
from high-temperature areas are needed. Our study therefore furthers
the published literature on the association of air temperature and
COVID-19 transmission.

On the other hand, we observed that a unit standard deviation in-
crease in wind speed was associated with a 0.08 higher R0 (Table 3,
final model). The current evidence for the potential role of wind speed
in COVID-19 spread is conflicting with studies reporting positive
(Sahin, 2020), null (Bashir et al., 2020; Su et al., 2020; Zoran et al.,
2020) and negative (Adhikari and Yin, 2020; Ahmadi et al., 2020) asso-
ciationwith COVID-19 transmissibility. Our observation of a positive as-
sociation of COVID-19 transmissibility with wind speed is in line with
the growing idea that the SARS-CoV-2 virus may be airborne.
(Carraturo et al., 2020; Wilson et al., 2020) Of note, incidence of
COVID-19 has been shown to be associated with air pollution
(Adhikari and Yin, 2020; Faridi et al., 2020; Sharma and Balyan, 2020)
– a factor that is significantly influenced by wind speed (Zhang, 2019).
Arguably, aerosol concentration can be reduced by high wind speeds,
diluting the potential dose of infection and thus reducing the transmis-
sibility (Eslami and Jalili, 2020). On the other hand, moderate wind
speed combined with high number of susceptible individuals can lead
to an effective dispersion of the aerosols and may lead to a positive as-
sociation between wind speed and COVID-19 transmissibility (Sahin,
2020). Our study cannot directly answer these interesting hypotheses,
which should be tested in future studies. Knowledge of the biophysical
aspects of observed ecological associations is mechanistically important
and should be the focus of future studies.

Nonetheless, a head-to-head comparison indicated that the lock-
down period was associated with three times stronger contribution to
the variability in R0 as compared to that of air temperature and wind
speed combined. From the perspective of public health action, this
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observation supports the role of proactive interventions to de-escalate
the transmissibility of COVID-19. Conceivably, as the air temperature
wanes and the lockdown eases, more cases of COVID-19 can be
expected.

There is both a logical and biological support to expect a positive
correlation between population density and COVID-19 transmission
(Amoo et al., 2020; Jahangiri et al., 2020; Liu, 2020; Rashed et al.,
2020; Rocklov and Sjodin, 2020; Tammes, 2020). Our study failed
to show an association between population density and COVID-19
transmissibility in a regression framework. There could be several
explanations that partly account for the observed lack of association
between population density and COVID-19 transmission. First, the
geographical locations represented a more global than focal popula-
tion density whichwill be immediate concern in COVID-19 transmis-
sion. Second, the duration of epidemic was not the same across all
the locations studied – locations in the lowest quartile of population
density had an average observed duration of only 11 days while
those in the highest quartile of population density had an average
of 6 weeks of epidemic experience. A direct comparison of transmis-
sibility across gradients of population density can therefore be con-
founded. Third, travel history – a major determinant of COVID-19
transmission (Cruz et al., 2020; Nussbaumer-Streit et al., 2020) –
was not included in this study. Conceivably, travel is more frequent
to the metropolitan areas with high population density and there-
fore the epidemic will be slower to take off in low density locations.
Together, these possibilities make it difficult to tease apart the po-
tential role of population density in our study.

Our results should be interpreted in the light of some limitations.
First, thiswas a retrospective analysis that combined data fromdifferent
sources. The data are collected at the level of geographic locations and
not at the level of individual patient. For example, person-to-person
transmissibility of COVID-19 in an infector-infectee scenariowas not in-
vestigated in this study. Therefore, all the estimates and associations
should only be considered as general patterns rather than definitive ev-
idence. Second, akin to any observational study, unmeasured confound-
ing can be expected to be operational. Third, it may appear surprising
that the cross-correlations in time series analyses (Fig. 4B) for air tem-
perature, relative humidity and wind speed that highest values were
on (or very close to) the day of time-dependent R0. It should be noted
that the cross-correlation shown in Fig. 4B are for 5-day smoothed
weather parameters. Still, our study generates the hypothesis that
while the case counts in response to environmental fluctuations may
take time to be altered, it is possible that the influence on transmissibil-
ity (R0) is more immediate. Future studies need to specifically address
this hypothesis.

We would like to stress that the observations made in this study
relate to the initial spread of COVID-19 in India. As the epidemic en-
ters subsequent phases, these observations and patterns can change.
Such change of observed associations has been reported with regard
to association with air temperature (Seligmann et al., 2020a), alti-
tude (Seligmann et al., 2020b) and population density (Seligmann
et al., 2020a). For example, based on data from 124 countries in the
early phase and 28 countries in the second phase of COVID-19 epi-
demic, it was reported that COVID-19 transmission decreased with
air temperature in the early phase but an inverse trend was observed
during the second phase (Seligmann et al., 2020a). This observation
has been attributed to the mutant and better-adapted viruses that
sprang the second wave of COVID-19 transmission. The observations
we report in this study refer to the initial phase and are consistent
with the early phase observations despite these potential limitations
our study demonstrated interesting and important patterns of asso-
ciation of geo-meteorological factors in COVID-19 spread. To control
a pandemic of the current magnitude, all scientific evidence from a
holistic standpoint is needed. To that end, our study provides clues
into the ecological aspects of COVID-19 during the initial months in
India.
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