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Abstract
Several brain disorders exhibit sex differences in onset, presentation, and prevalence. Increased understanding of the
neurobiology of sex-based differences in variability across the lifespan can provide insight into both disease vulnerability
and resilience. In n = 3069 participants, from 8 to 95 years of age, we found widespread greater variability in males
compared with females in cortical surface area and global and subcortical volumes for discrete brain regions. In contrast,
variance in cortical thickness was similar for males and females. These findings were supported by multivariate analysis
accounting for structural covariance, and present and stable across the lifespan. Additionally, we examined variability
among brain regions by sex. We found significant age-by-sex interactions across neuroimaging metrics, whereby in very
early life males had reduced among-region variability compared with females, while in very late life this was reversed.
Overall, our findings of greater regional variability, but less among-region variability in males in early life may aid our
understanding of sex-based risk for neurodevelopmental disorders. In contrast, our findings in late life may provide a
potential sex-based risk mechanism for dementia.
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Introduction

Sex differences in onset, presentation, and prevalence are com-
mon in many brain disorders (American Psychiatric Association
2013), which may include autism spectrum disorders (ASDs,
Baio et al. 2018), schizophrenia (Abel et al. 2010; Mendrek and
Mancini-Marïe 2016), depression (Hasin et al. 2018; Lim et al.

2018), and Alzheimer’s dementia (AD, Podcasy and Epperson
2016). A better understanding of sex-related differences in
healthy brain architecture at different phases of the lifespan
may help identify risk factors and protective mechanisms for
brain disorders.

To date, studies comparing the brain in males and females
have focused primarily on identifying average differences
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between groups (e.g., DeLacoste-Utamsing and Holloway 1982;
Cosgrove et al. 2007; Kaczkurkin et al. 2018). Findings from such
studies have often generated controversy (Weis et al. 1989; Fine
2013) and frequently fail to fully address the complexity of the
topic (Rippon et al. 2014). For instance, when taking group-
averages, males tend to have larger total brain volume (TBV)
than females; however, the majority of regional differences
reported can be attributed to the difference in TBV (Leonard
et al. 2008; Ritchie et al. 2018). Focusing on group differences
between the sexes underplays the considerable heterogeneity
and overlap between and among the sexes (Rippon et al. 2014).

Recent studies have shown sex-based variability in select
populations, after accounting for TBV (Ritchie et al. 2018;
Wierenga et al. 2018, 2019). These findings at opposing ends
of the lifespan (older adults and youth) are of particular conse-
quence when considering the differences in prevalence between
the sexes in certain brain disorders (e.g., neurodevelopmental
disorders), and the timing of their onset and course (Baio et al.
2018). However, brain disorders are increasingly understood as
ones where relationships between brain regions are disrupted.
Examining relationships among regions (Bassett and Sporns
2017) has illuminated our understanding of brain organization
across the lifespan and in brain disorders (Bassett and Bullmore
2009; Vértes and Bullmore 2015; Pichet Binette et al. 2020).
However, among-region variability in males and females is not
yet known. The most recent of these is particularly, noteworthy,
given and they find that AD is characterized by higher gray
matter volume and among-region heterogeneity (Pichet Binette
et al. 2020). AD is also more prevalent in women (Podcasy and
Epperson 2016), leading us to hypothesize that there is increased
among-region variability in (aging) females that may relate to
an increased risk for AD.

Here, we analyze data in over 3000 participants from three
large, high-quality, open-source datasets to provide the first
investigation (to our knowledge) of structural variability across
the lifespan. Notably these datasets are independent of the
datasets used previously to investigate brain structure vari-
ability (Ritchie et al. 2018; Wierenga et al. 2018, 2019). Collec-
tively, these datasets cover periods of rapid reorganization and
development in the brain from childhood through adolescence
(Philadelphia Neurodevelopmental Cohort [PNC]; Satterthwaite
et al. 2016), a relatively stable period during young adulthood fol-
lowing completion of the majority of developmental processes
(Crews et al. 2007; Petanjek et al. 2011; the Human Connectome
Project [HCP]; Van Essen et al. 2012), and the re-emergence of
dynamic change that occurs in late life (Scahill et al. 2003) as
part of the aging process (Open Access Series of Imaging Studies
[OASIS-3]; Marcus et al. 2007, 2010; LaMontagne et al. 2018).

Our first aim was to examine sex-based variability by region
and measurement type (surface area, cortical thickness, and
subcortical volume). Based on recent literature (Ritchie et al.
2018; Wierenga et al. 2018, 2019), we hypothesized that greater
variability would be present in surface area and volume mea-
sures in males compared with females. Our second aim was to
investigate sex-based variability in relationships among brain
regions, that is, the overall pattern of relationships between all
regions within an individual. We hypothesized that such vari-
ability would be age dependent and align with differential risk
for complex brain disorders at either end of the lifespan, con-
sistent with age-dependent network reorganization (Gong et al.
2009; Chen et al. 2011; Wu et al. 2012; Pichet Binette et al. 2020),
and altered relationships among structures in these disorders.

Materials and Methods
Datasets

Details of T1-weighted magnetic resonance imaging (MRI) acqui-
sition, inclusion/exclusion criteria, and quality assessment can
be found in references (Marcus et al. 2007, 2010; Van Essen et al.
2012; Satterthwaite et al. 2016; LaMontagne et al. 2018) and
Supplementary Material (see Supplementary Material, Table S1
for basic demographics).

Child and Youth—PNC

Data for participants (n = 1601, aged 8–23) were included from
the publicly available PNC dataset (Satterthwaite et al. 2016). Fol-
lowing exclusion and quality assessment, n = 1347 individuals
were included for analysis. On average females were slightly
older than their male counterparts (Kruskal–Wallis = 6.88,
P = 0.01).

Young Adult—HCP
The HCP Young Adult S1200 (age 22–37) data were used (Van
Essen et al. 2012). High-quality processed data were available
for n = 1113 subjects. Females were older than males on average
(Kruskal–Wallis = 73.46, P < 0.0001).

Late-Life—OASIS-3
Data from cognitively normal aging adults (n = 609, 43–95 years)
from the OASIS-3 database were used (Marcus et al. 2007, 2010;
LaMontagne et al. 2018). OASIS-3 is a longitudinal dataset; how-
ever, only data from one time point was included per partici-
pant. In each case, the earliest acquisition of good quality data
was included. Males were slightly older than females (Kruskal–
Wallis = 7.51, P = 0.006).

Data Processing

FreeSurfer was used to segment subcortical structures and
generate tessellated, smoothed gray white, and pial surfaces
from the T1-weighted data (Dale et al. 1999; Fischl et al. 1999a,
1999b; Fischl and Dale 2000). PNC data were processed in-house
with FreeSurfer (v6.0). Metrics were then extracted from regions
of the Desikan–Killiany parcellation (Desikan et al. 2006), which
includes 34 cortical (surface area and cortical thickness) and
seven subcortical regions (volume) per hemisphere. Global
volume regions considered were TBV, cerebral and cerebellar
gray and white matter. Similar summary metrics were directly
available for download for the HCP and OASIS-3 datasets. HCP
and OASIS-3 data were processed with FreeSurfer version 5.2
(enhanced version) (Glasser et al. 2013) and 5.3, respectively.

Statistical analysis

Analyses and graph generation were completed in the R statis-
tical environment (v3.4.3) (R Core Team 2013).

Variance Ratio Across Measures and Regions
We regressed the variance associated with age from our mea-
sures leaving residuals that were then used for analyses. We
applied a generalized additive model (GAM, mgcv package) to
allow age to be modeled nonlinearly, avoiding the assumption
of a linear, quadratic or cubic association between age and
the metrics. Residuals were then Z-scored to provide measures
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of a similar magnitude for comparison. To compare variance
between males and females, a variance ratio (VR) was generated
with an F test (var.test). Next, to investigate the role of TBV in
sex differences, we conducted similar variance tests on Z-scored
residuals from GAM models where TBV (linear) in addition to age
(smooth) were regressed out. A linear term for TBV was deemed
appropriate based on de Jong et al. (2017).

Mahalanobis Distance
To refine our analyses, we grouped our metrics (corrected for
age and Z-scored) by type; global volumes (n = 4), subcortical vol-
umes (n = 14), surface area (n = 68), and cortical thickness (n = 68)
and calculated Mahalanobis distance for each subject to their
group average. For each metric type, all measures of that type
were included per subject. Mahalanobis distance was calculated
as the distance from each subject to their group centroid—a mul-
tidimensional center point representing the “average” male and
“average” female set of metrics—while also accounting for the
covariance of metrics. To account for the correlation structure,
we utilized a covariance matrix computed over the full sample
including both males and females. Thus a higher group average
Mahalanobis distance would indicate a greater dispersion of the
data in a group relative to its centroid. This was tested with a
Welch two sample t-test.

Cosine Angle Dissimilarity
For the second aim, we considered the relationship of regions
among each other within a subject, and the dissimilarity of
these profiles across participants within one sex compared with
the other. Similar to the Mahalanobis distance, analysis metrics
were grouped by type (metrics corrected for age and Z-scored).
We characterized the unique pattern of metrics, a structural
profile, for each individual as a direction vector in multivariate
space. Two individuals with similar structural profiles would
have similar angles from the origin in multivariate space. Using
cosine angle, we calculated the similarity between each individ-
ual and their group centroid, per metric type. A centroid was
calculated by minimizing the total sum of geodesic distances
from the centroid to every other point on a unit sphere using
an iterative algorithm generalized to n-dimensional spheres
(Buss and Fillmore 2001; Zhelezov 2017). Differences in angular
deviation (cosine angle) between the sexes were tested with a
t-test. Supplementary Material, Fig. S1 provides a simplified 3D
example of the two multivariate approaches.

Age
Additionally to test the influence of age, we regenerated Maha-
lanobis distances and cosine angles from the data in which the
age effect was not regressed out (data still Z-scored). We binned
data according to age. Within each bin, Mahalanobis distance
and cosine angle were calculated between each subject and their
sex’s centroid, per metric type. Binning the data ensured that the
age distribution or differences in the age distributions between
males and females did not influence findings. To ensure ade-
quate numbers were present in each bin, the OASIS-3 sample
was limited to 55–80 years. Linear models with type 2 F-tests
were then used to examine the age-by-sex bin interaction.

False discovery rate correction was implemented to account
for multiple testing (q < 0.05) within each analysis (i.e., univari-
ate global analyses were corrected for n = 5, subcortical analysis
for n = 14, surface area and cortical thickness analyses for n = 68;

multivariate analyses were corrected by 4, for the number of
metric types).

Results
VR Across Measures and Regions

Volume
Across all three datasets, we found significant VR differences
by sex in global (TBV [VR 1.20–1.38, q < 0.09], cerebral gray [VR
1.18–1.32, q < 0.09] and white matter [VR 1.25–1.45, q < 0.05]) and
subcortical brain volumes (see Supplementary Material, Table
S2 for details), with males exhibiting greater variance compared
with females across most regions, while there were no regions
in which females were significantly greater than males. Some
differences were not consistent across datasets, see Supple-
mentary Material, Table S2; Figs 1 and 2 (top row). For instance,
VRs were not significantly different by sex in hippocampus and
nucleus accumbens volumes in the PNC dataset, although we
did find significance in the HCP (left hippocampus and bilateral
nucleus accumbens) and OASIS-3 (bilateral hippocampus and
nucleus accumbens) datasets (males > females). Putamen and
pallidum volumes did show significant variance differences by
sex in the PNC and OASIS-3 datasets (males > females), while
there were no significant differences in the HCP data.

Surface Area
Males demonstrated significantly greater variance in surface
area compared with females across all datasets across the great
majority of cortical regions (Fig. 2, middle 2 rows; PNC: 52/68
regions [VR 1.17–1.56, q < 0.05]; HCP: 59/68 regions [VR 1.19–2.14,
q < 0.05]; OASIS-3: 44/68 regions [VR 1.29–2.40, q < 0.05]). There
were no regions in which female variance was significantly
higher than male.

Cortical Thickness
Variance in cortical thickness was similar between males and
females across all datasets (Fig. 2, bottom 2 rows). However, por-
tions of the left cingulate gyrus showed higher variance in males
compared with females in the HCP dataset (VR = 1.44, q = 0.001)
and the OASIS-3 dataset (VR = 1.59, q = 0.004). Additionally the
left pars opercularis was significantly more variable in males
compared with females in the HCP dataset (VR = 1.32, q = 0.04).

Across all metric types a comparable pattern of results was
seen following correction for TBV (see Supplementary Material,
Tables S2–S4).

Mahalanobis Distance

Males demonstrated greater Mahalanobis distance in global vol-
ume (F = 5.42–43.26, q < 0.05), subcortical volume (F = 11.63–
46.63, q < 0.001), and surface area (F = 43.89–229.86, q < 0.001)
compared with females across all datasets (see Supplementary
Material, Table S3; Fig. 3). There were no significant sex differ-
ences in cortical thickness (q > 0.1). In each dataset, surface area
showed the largest sex effect, followed by subcortical volumes
and then global volumes (see Supplementary Material, Table S3).
Analyses with age showed a significant age-by-sex interaction in
surface area of the OASIS-3 sample (F = 7.18, q < 0.001), whereby
male Mahalanobis distance is greater over the majority of the
age distribution, but within the oldest age bin (75–80 years)
females have greater Mahalanobis distance. No other age-by-
sex interactions were found (q > 0.05). Significant associations
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Figure 1. Sex differences on global volume. Global brain volume measures from three independent datasets are shown. (A) The Philadelphia Neurodevelopmental
Cohort (PNC). (B) The Human Connectome Project (HCP). (C) The Open Access Series of Imaging Studies (OASIS-3). “Raw” data represent volumes corrected for age
(following regression of age from the model). Corresponding “corrected” figures show volume data corrected for total brain volume (TBV) as well as age. Mean and

standard deviation of the data are represented by the horizontal and vertical lines, respectively. Significance markers relate to the comparison of variances between
groups (variance ratio [VR] analysis); ∗q < 0.05, ∗∗q < 0.01, ∗∗∗q < 0.001, t—trend (q < 0.1). See Supplementary Material, Table S2 for full statistical results. GM—gray
matter, WM—white matter.

between Mahalanobis distance and age were found across cor-
tical metrics in the OASIS-3 sample; surface area (F = 16.23,
q < 0.001) and cortical thickness (F = 14.88, q < 0.001). Cortical
thickness Mahalanobis distance followed a nonlinear course
first slightly increasing with age before declining in later years.
In surface area, the younger–old participants (55–60) had a lower
Mahalanobis distance, which then increased in later years.

Cosine Angle Dissimilarity

Volume
Cosine angle was significantly higher in females compared
with males in the PNC dataset for global volume (F = 6.83,
q = 0.03). There was a significant effect of age in both the PNC
(F = 4.84, q = 0.01) and HCP samples (F = 6.14, q = 0.007). There
was also an age-by-sex interaction with global volume cosine
angle in the OASIS-3 dataset (F = 13.18, q < 0.001), such that
male cosine angle was higher than female in the latest-life

group within this sample (Fig. 4; see Supplementary Material,
Table S3).

No main effects of sex were present in cosine analysis of
subcortical volume (q > 0.1). There were significant effects of
age (F = 6.38–9.88, q < 0.01) and age-by-sex interactions (F = 3.64–
10.94, q < 0.05) in each sample. Specifically, females had a greater
cosine angle in their early life, but males had a greater cosine
angle in their later life.

Surface Area
There were no significant effects of sex on surface area (q > 0.1).
There was a significant effect of age (F = 6.30, q = 0.006) and an
age-by-sex interaction (F = 7.88, q < 0.001) in the PNC dataset,
where females displayed a greater cosine angle in their early life
(<10 years) while at older ages males and females were similar.
In OASIS-3, a similar age-by-sex interaction occurred (F = 7.33,
q < 0.001), where males had a greater cosine angle compared
with females in older groups of this late-life dataset.
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Figure 2. Sex differences in variance. VR results are mapped onto subcortical structures (top row) or cortical surface (middle and bottom panels) for three independent

datasets. (A) The PNC. (B) The HCP. (C) The OASIS-3. VRs were generated with F-tests comparing metrics of subcortical volume, cortical surface area and cortical
thickness between males and females. Only VR’s that met statistical significance are plotted (q < 0.05). VR > 1 (green–yellow–orange) indicates males > females. There
were no regions where females had greater variance than males (VR < 1). “Raw” figures show results from analyses that used metrics corrected for age (following

regression of age from the model). Corresponding “corrected” figures show results from analyses that used metrics corrected for TBV as well as age. Note: nucleus
accumbens is not included in the figure but does show significant differences in variability between males and females (males higher) in the HCP and OASIS-3 sample
(see Supplementary Material, Table S2). L—left, R—right.

Cortical Thickness
In the PNC dataset, cosine angle was greater in males compared
with females (F = 9.16, q = 0.008). In the HCP sample, it was
greater in females compared with males (F = 6.61, q = 0.02). Age
was significantly associated with cortical thickness cosine angle
across all datasets (F = 21.38–55.92, q < 0.001). In all samples,
an inverted-U shape profile with age was seen with cosine
angle first increasing with age before declining. No age-by-
sex interactions were present in the cortical thickness analysis
(q < 0.07).

Discussion
Across three large datasets and >3000 MRI scans, we exam-
ined brain structural variability in global and subcortical vol-
umes, surface area, and cortical thickness. Using both univari-
ate and multivariate approaches, we found that males con-
sistently demonstrate greater variability in global and subcor-
tical volumes, and most notably surface area compared with
females across the lifespan. Our cosine angle analyses demon-
strated sex-based variability in how brain regions relate to each
other unveiling sex, age, and metric specific findings. When
taken together, our results inform sex-based risk and protective
mechanisms for neurodevelopmental and neurodegenerative
disorders.

We first built on previous findings (Ritchie et al. 2018;
Wierenga et al. 2018, 2019) by using a lifespan (8–95 years)
approach across three datasets to show that males are more
variable than females in subcortical volume and cortical surface
area, a pattern which starts early and is sustained through

late life. Additionally, as in Ritchie et al. 2018, we show that
these variability differences are independent of variability
in TBV. We then used a different approach, Mahalanobis
distance, to confirm our findings for each brain phenotype.
Using Mahalanobis distance allowed us to quantify the total
magnitude of each individual’s dissimilarity to their group
average without assuming independence of regions to each
other. We speculate that the age-by-sex interactions with
surface area in the aging population may relate to the rate
of atrophy differing between the sexes. It has been reported
previously that the rate of volume loss is higher in males
compared with females (Resnick et al. 2003; Raz et al. 2004;
Carne et al. 2006). Unlike surface area, we found similar regional
variability of cortical thickness in both sexes across the lifespan.
This is consistent with previous adult data (Ritchie et al. 2018).
Findings from a former developmental study is also mostly
consistent with the current study, however, the former study did
indicate a small number of regions with either greater (n = 5)
or smaller (n = 4) variability in males compared with females
(Wierenga et al. 2019). These few regions with divergent findings
may relate to methodological differences. Independent genetic
factors drive cortical thickness and surface area development
(Panizzon et al. 2009; Grasby et al. 2020; Hofer et al. 2019),
and these properties of brain structure demonstrate divergent
developmental trajectories (Raznahan et al. 2011). Additionally,
surface area developmental trajectories have been found to
be sexually dimorphic, while trajectories of cortical thickness
are similar for males and females (Raznahan et al. 2011).
Cortical thickness is also thought to vary more in relation to
environmental effects than surface area (Hofer et al. 2019).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa123#supplementary-data


Sex Differences in Variability of Brain Structure Forde et al. 5425

Figure 3. Mahalanobis distance. Mahalanobis distance plotted by age for subjects from three independent datasets. (A) The PNC. (B) The HCP. (C) The OASIS-3.
Mahalanobis distance was calculated for each subject in relation to their group (male or female) average. Metrics included in each analysis were grouped by type; global

volumes (n = 4), subcortical volumes (n = 14), surface area (n = 68) and cortical thickness (n = 68). S—sex, A—age, AxS—age-by-sex interaction, ∗q < 0.05, ∗∗q < 0.01,
∗∗∗q < 0.001.

Although we focus on brain structure, the theory of greater
male variability is thought to originate from Darwin (1875).
This theory is supported by evidence across phenotypes (Lehre
et al. 2009; Reinhold and Engqvist 2013) and species. For
instance, a recent meta-analysis showed that male rodents
are frequently more variable than their female counterparts
across an array of behavioral, morphological, physiological, and
molecular traits (Prendergast et al. 2014). Hill (2017) posits a
selectivity bias resulting in greater male variability while others
have suggested greater variability is a consequence of the sex
chromosomes architecture, where the heterogametic (i.e., XY
in human males) structure leads to higher variability (Reinhold

and Engqvist 2013). More precisely, the binomial sampling of
the X-chromosomes that occurs in the homogametic sex (i.e.,
XX in human females) results in averaging of genetic effects
across the two X-chromosomes. This averaging, in principle,
reduces variability within the homogametic population of any
trait that is influenced by X-chromosome genes. This hypothesis
(sex-chromosome hypothesis) was supported by work on
body size across various species showing higher variability
in the heterogametic sex (male or female [i.e., birds and
butterflies]) (Reinhold and Engqvist 2013). The presence of two X
chromosomes in humans may play a protective role and create
a blueprint for slightly less variability in females compared
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Figure 4. Cosine angle dissimilarity. Cosine angles are plotted by age bin for subjects from three independent datasets. (A) The PNC. (B) The HCP. (C) The OASIS-3.

Cosine angle was calculated for each subject to their group (male or female) centroid within each age bin separately on the surface of an n-dimensional sphere.
Metrics included in each analysis were grouped by type; global volumes (n = 4), subcortical volumes (n = 14), surface area (n = 68) and cortical thickness (n = 68). S—sex,
A—age, AxS—age-by-sex interaction, ∗q < 0.05, ∗∗q < 0.01, ∗∗∗q < 0.001.

with males. Recent work on sex-chromosome aneuploidy show
sex-chromosomes influence both brain structure and gene-
expression (Mankiw et al. 2017; Nadig et al. 2018; Raznahan et al.
2018); however, further work is required to relate the current
findings with these previous works (see Supplementary Material
for further discussion on the genetics and developmental
processes that may relate to our results).

Although not identified by genome-wide association studies
(Grasby et al. 2020; Hofer et al. 2019), there is one X-chromosome
gene that can influence cortical surface area; methyl-CpG bind-
ing protein 2 (MeCP2). Mutation of this gene, which is located
at Xq28, is best known as the cause of Rett syndrome, which

almost exclusively affects females (Urdinguio et al. 2009). In
line with the theory of the protective X-chromosome, males
with similar mutations suffer severe neonatal encephalopathy,
which is normally lethal within the first year of life (Villard
2007). However, not all MeCp2 variations have such severe con-
sequences. A common variant, rs2239464, has been shown in
two independent datasets to be associated with reduced cortical
surface area in males only (Joyner et al. 2009). The effect was
not seen in females, proposed to be due to the presence of a
second copy of the gene protecting them (Joyner et al. 2009).
MeCP2 is a gene expression regulator (activator or repressor) of
thousands of other genes (Chahrour et al. 2008) and potentially
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a key player influencing sex differences in surface area variabil-
ity shown here. Furthermore, animal work has shown interac-
tions between sex hormones, MeCP2 and epigenetic regulation
(Romano et al. 2016); however, further research is required to
fully elucidate these.

In the context of neurodevelopmental disorders, there
appears to be consensus around the concept of “windows of
vulnerability,” whereby finite periods of time during develop-
ment are highly sensitive to perturbation by environmental
factors, as opposed to similar environmental effects at other
periods of development having little effect. It is theorized
that the female population is less variable and therefore less
vulnerable (on average) to environmental insult during these
key developmental windows. For instance, ASD—which is more
prevalent in males (Baio et al. 2018)—is associated with early
brain overgrowth (Courchesne 2004; Schumann et al. 2010),
indexed by excessive gray and white matter volume widely
across the brain. Notably the study by Schumann and colleagues
showed more pronounced and more widespread overgrowth
in females with ASD compared with males (Schumann et al.
2010). This can be interpreted as females with ASD requiring
a greater environmental or genetic insult (indexed by the
brain morphology) than males to result in a similar clinical
phenotype. Our findings of greater male variability in cortical
surface area support this idea. Further research will help with
linking the genetic and developmental processes that underlie
both higher variability in males and aberrant mechanisms
in ASD. Similarly, other neurodevelopmental disorders, such
as, Tourette’s disorder (Hirschtritt et al. 2015), attention-
deficit/hyperactivity disorder (Grevens et al. 2018), and psychosis
(Leung and Chue 2000; Aleman et al. 2003), each have a higher
prevalence in males compared with females, as well as sex
differences in onset and presentation—whereby males are more
severely affected. Again this is in line with the current findings
of higher variability in brain structure in males compared
with females. On the other hand, the prevalence of anxious
misery is higher in females compared with males. This may
relate to different developmental processes that occur later
during adolescence (Kaczkurkin et al. 2016). As mentioned,
further work will be required to determine the precise link
between population-based variability differences and aberrant
developmental processes that relate to neurodevelopmental
disorders.

Our novel approach of investigating variability between
regions using cosine angle analyses revealed differences in
brain structure by sex that we do not believe has been previously
reported. We observed significant age-by-sex interactions across
all three datasets in the variability of structural profiles of
subcortical volumes. Additionally, age-by-sex interactions were
found during development and during later life in surface
area. These interactions in children and youth may relate to
differential rates of development (and regional differentiation),
which are “slower” in males compared with females (Sussman
et al. 2016). This aligns with previous reports of sexually
dimorphic trajectories of development, at least for surface area
(Raznahan et al. 2011), and the notion that different regions
are under semi-independent genetic control (Grasby et al. 2020;
Seidlitz et al. 2018; Hofer et al. 2019; Strike et al. 2019). In the
latest life groups of older adults (OASIS-3), variability in the
relationship among regions (in global volume and surface area)
was greater in males than females. We can speculate that our
findings relate to a consistent pattern of atrophy across the
female population drawing them closer to their group mean.

In contrast, findings in males could be due to atrophy occurring
in more variable regions or more variable age of onset of
atrophy across the population resulting in increased variability
in structural profiles with increasing age (global volume and
surface area). It is possible that greater variability among
regions may be a protective mechanism against brain disorders,
consistent with the finding of greater variability in early life in
girls compared with boys, and in late life in males compared
with females. This divergent relationship between the sexes
with age in surface area, global and subcortical volumes might
act to increase vulnerability for brain disorders in late life such
as dementia (Resnick et al. 2003), where the prevalence of AD
(Podcasy and Epperson 2016) is increased in females compared
with males. Recent work by Pichet Binette and colleagues (Pichet
Binette et al. 2020) suggests AD is characterized by increased
among-region variability. We postulated that increased among-
region variability may be higher in females relating to their
increased risk for AD; however, our results did not support our
hypothesis, possibly due to the inclusion of only cognitively
normal individuals in the current study. The former study
additionally showed that people with mild cognitive impairment
do not show increased among-region variability compared
with healthy controls, potentially implying that such variability
may emerge in later phases of AD, rather than serve as a risk
factor.

Significant age effects were present in cortical thickness
cosine angle across all datasets. Network approaches—using
either structural covariance (gray matter volume and cortical
thickness) or diffusion MRI—have shown significant age-related
changes in network architecture (Gong et al. 2009; Chen et al.
2011; Wu et al. 2012), characterized by network reorganization
in aging. A separate study of structural covariance of cortical
thickness highlighted the similarity in network architecture
between males and females in terms of small-world organiza-
tion, efficiency and node vulnerability where no sex differences
were seen (Lv et al. 2010). These studies are in line with the
current finding of an association between cortical thickness
cosine angle and age, where cosine angle may reflect variability
in the occurrence of these organizational changes across the
population or the increased effect of environmental influences
on cortical thickness.

This study has multiple major strengths, including the use of
large high-quality datasets spanning from childhood to old age
and multiple complementary advanced statistical approaches.
Moreover, this allowed the replication of findings across samples
and across methods providing strong evidence that they are gen-
eralizable. However, there are also some limitations to consider.
There was an age difference between males and females in all
three datasets. All analyses were repeated with age matched
groups to ensure this was not skewing findings (see Supplemen-
tary Material). The Desikan-Killiany atlas is somewhat limited
in regional specificity but was chosen to minimize the num-
ber of tests required and to make analyses comparable with
previous studies. Additionally, each dataset was processed with
a different version of FreeSurfer and on a different platform,
both of which can influence metrics (Gronenschild et al. 2012).
However, considering the consistency of results across datasets
we do not expect that this greatly influenced our results. By
using the publicly available outputs for the HCP and OASIS data,
we aimed to enhance reproducibility of our analyses. Finally, all
data included in the current study were cross-sectional. It would
be advantageous in future to utilize longitudinal data across the
lifespan.
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In conclusion, we demonstrated that males are more variable
compared with females in individual brain regions with regard
to surface area and volume measures. However, this increased
variability in males does not extend to how brain regions relate
to each other. Structural profile analyses highlighted a differ-
ent aspect of variability demonstrating that the relationships
between regions vary in a sex, age, and metric specific fashion.
Our results—coupled with pre-print results from the ENIGMA
consortium (Wierenga et al. 2020)—support the importance of
future work investigating the association between sex differ-
ences in variability of brain structure and genetic factors.
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Supplementary material is available at Cerebral Cortex online.
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