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Abstract
Brain structural networks have been shown to consistently organize in functionally meaningful architectures covering the
entire brain. However, to what extent brain structural architectures match the intrinsic functional networks in different
functional domains remains under explored. In this study, based on independent component analysis, we revealed 45 pairs
of structural-functional (S-F) component maps, distributing across nine functional domains, in both a discovery cohort
(n = 6005) and a replication cohort (UK Biobank, n = 9214), providing a well-match multimodal spatial map template for
public use. Further network module analysis suggested that unimodal cortical areas (e.g., somatomotor and visual
networks) indicate higher S-F coherence, while heteromodal association cortices, especially the frontoparietal network
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(FPN), exhibit more S-F divergence. Collectively, these results suggest that the expanding and maturing brain association
cortex demonstrates a higher degree of changes compared with unimodal cortex, which may lead to higher interindividual
variability and lower S-F coherence.

Key words: intrinsic brain networks, independent component analysis (ICA), structure-function coherence, unimodal
cortex, heteromodal association cortex

Introduction
Human brain is a complex network of neurons that link
physical neural structure to multiple human functions (Power
et al. 2010). Multiple computational studies have suggested
that the underlying anatomical architecture of cerebral cortex
shapes resting state functional connectivity on multiple time
scales (Misic et al. 2016). Recent evidences have suggested that
functional architectures are topographically corresponds to
equivalent structural patterns in particular networks (Greicius
et al. 2009; Honey et al. 2009). Various multimodal fusion studies
also revealed that impaired structure topography is correlated
with functional damages in mental disease (Gao et al. 2018;
Luo et al. 2019). However, when comparing the relationship
between anatomic structure and functional connectivity, limited
studies have used gray matter (GM) volume. For example, Seeley
et al. (2009) demonstrated that GM architectures derived at
group level partly resembled the intrinsic functional networks.
The biological meaning of this structural covariance remains
controversial, though it appears to reflect developmental coor-
dination or synchronized maturation between areas of the brain
(Alexander-Bloch et al. 2013). On the other hand, several studies
suggested that the structural covariance networks reflect shared
recruitment or common neurodevelopmental effects within
functionally coactive regions (Zielinski et al. 2010; Clos et al.
2014). Moreover, Geng et al. (2017) revealed that the distributed
structural covariance in adults may result from synchronized
current and earlier maturation in regions that co-activate
serving for some specific functional processing. Therefore,
exploring where GM covariance corresponds to the functional
network would aid in the understanding of human connectome.
In addition, several recent studies have investigated how
structure-function coupling is distributed across different
domains, that is, unimodal cortex and heteromodal association
cortex on hundreds of subjects from various perspectives
(Paquola et al. 2019; Vázquez-Rodríguez et al. 2019; Baum
et al. 2020). However, such work lacks a multimodal structure-
function spatial template, which provided information of how
structural spatial maps correspond to functional spatial maps
in each network. Identification of patterns in a larger dataset
(15 000+ participants) with more components can reveal a
finer and more common degree of details, providing a stable
structure-function correspondence template that may be of use
to the broader neuroimaging community.

To this end, we have used a discovery dataset of 7104 func-
tional magnetic resonance imaging (fMRI) scans (within 6005
structural MRI scans were matched for the same subjects) col-
lected at the University of New Mexico (UNM) and the University
of Colorado Boulder (UC Boulder), and a replication dataset
of 9214 participants from UK Biobank. As shown in Figure 1,
first, 100 “source-based morphometry networks” with spatially
distinct regions were identified based on independent compo-
nent analysis (ICA) on the structural data, providing informa-
tion about localization of GM variation and their covariation
among individuals (Xu et al. 2009). Similar job was done for

the 7104 resting-state fMRI scans, which identified 100 intrinsic
functional networks with common temporal features, providing
robust measures of the intrinsic functional activity of the brain
(Abrol et al. 2017; Xu et al. 2017). These GM and fMRI components
were subsequently parcellated into nine brain network mod-
ules. Spatial coherences were measured between the effective
GM networks and intrinsic functional connectivity networks by
spatial correlation. Second, segmentation and spatial correla-
tion on the GM of replication data were conducted, to verify
the reproducibility of the identified structural-functional (S-F)
paired components. Third, the replicated S-F component pairs
were further compared across different domains. Interestingly,
the unimodal cortical areas (e.g., somatomotor and visual net-
works) indicate higher S-F coherence in both discovery and
replication data, while those made from heteromodal associa-
tion cortices, for example, frontoparietal network (FPN), exhibit
more S-F divergence. To the best of our knowledge, this is the
first study to assess differences of structure-function coher-
ence across different function domains on the currently largest
dataset.

Materials and Methods
Data Acquisition and Preprocessing

Discovery Data
All 6101 structural scans and 7500 resting state functional scans
were collected from anonymized subjects with informed con-
sent at the UNM and the UC Boulder. Data from the UC Boulder
site were collected using a 3T Siemens TIM Trio MRI scanner
with 12 channel radio frequency coils, while data from the
UNM site were acquired using the same type of 3T Siemens
TIM Trio MRI scanner and a 1.5T Avanto MRI scanner. All the
data were previously collected, anonymized, and had informed
consent received from subjects including both healthy controls
and patients. As it is a deidentified convenience dataset, we do
not have access to the health and identifier information. We
have confirmed that the brain images do not have any obvious
pathology or atrophy. The fMRI data were used in a previous
study that evaluated replicability in time-varying functional
connectivity patterns (Abrol et al. 2017). The sMRI data were used
in a previous study which measured age-related structural vari-
ations across the adult lifespan. The details of data acquisition
and preprocessing are as bellows.

T1-weighted structural images were acquired with a five-
echo MPRAGE sequence with TE = 1.64, 3.5, 5.36, 7.22, and
9.08 ms, TI = 1.2 s, TR = 2.53 s, number of excitations = 1, flip
angle = 7◦, field of view = 256 mm, slice thickness = 1 mm,
and resolution = 256 × 256. The structural images were then
preprocessed using voxel-based morphometry (VBM) based on
the SPM12 old segmentation, including: 1) spatial registration to
a reference brain; 2) tissue classification into GM, white matter
and cerebrospinal fluid (CSF); 3) bias correction of intensity
nonuniformities; 4) spatial normalization to the standard
Montreal Neurological Institute (MNI) space using nonlinear
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Figure 1. Schematic of preprocessing and analyses pipelines. (A) Structural data and functional data were preprocessed through an automated pipeline and then
decomposed using spatial ICA. We then compared the correspondence between structural and functional components using PC and MI. (B) A replication dataset from
UK Biobank, consisting of 9214 subjects, was preprocessed to validate the identified S-F pairs. We again applied ICA to decompose the structural replication data and

measured the spatial correspondence between components in the discovery dataset and components in the replication dataset. (C) If structural components in one
matched structural-structural pair between discovery and replication cohorts both show high correlation with the same functional component, then the S-F pair in
the discovery dataset was regarded as replicated. (D) We further sorted the matched pairs into nine networks and compared S-F coherence across networks.

transformation; and 5) modulated by scaling with the amount of
volume changes. The modulated GM data, representing the GM
volumes, were resliced to 2 mm × 2 mm × 2 mm and smoothed
with a 10-mm Gaussian model (Silver et al. 2011; Luo et al. 2020).
Furthermore, we followed our previous paper (Chen et al. 2014)
to investigate the correlations between individual GM images
and the average image across all subjects, to exclude those
exhibiting correlations 4 standard deviation (SD) less than the
mean correlation. For our data, the mean correlation is 0.9166,
with a SD of 0.0538. Thus, scans with a correlation less than
0.7 were removed, leaving behind a total number of 6005 scans
for the subsequent correspondence analysis. The demographic
information of the 6005 subjects was shown in Figure 2.

T2-weighted functional images were acquired using a
gradient-echo EPI sequence with TE = 29 ms, TR = 2 or 1.3 s, slice
thickness = 3.5 mm, flip angle = 75◦, field of view = 240 mm,
slice gap = 1.05 mm, voxel size = 3.75 mm × 3.75 mm × 4.55 mm,
and matrix size = 64 × 64. The scans had variable length with
the minimum scan length being 150 TRs; however, only the
first 150 time-points of all scans were studied. The data
preprocessing pipeline included discard of the first three images
for the magnetization equilibrium, realignment using INRIalign,
timing correction with the middle slice as reference, spatial
normalization into the MNI space, reslicing to 3 × 3 × 3 mm, and
smoothing with a 10 mm Gaussian model (Silver et al. 2011). To
further evaluate the motion of the data, we computed the mean
frame-wise displacements (FDs) for each subject (Power et al.
2012; Yan et al. 2013). The histogram of head motion was shown
as Figure S1. Among all 6005 subjects, 88% scans were identified
with mean FD less than 0.5. More details were provided in

our previous study (Abrol et al. 2017). After preprocessing,
7104 functional scans were remained for the subsequent
analysis, of which 6005 scans have corresponding structural
images.

Replication Data
The UK Biobank is a large-scale prospective study of over 500 000
individuals from across the UK, with a major aim being to
characterize subjects before disease onset. Participants were 40–
69 years of age at baseline recruitments. Here, we used the
sMRI data from the February 2017 release of ∼10 000 participants
(Alfaro-Almagro et al. 2018). VBM-related processing was per-
formed with FMRIB Software Library v10.0. A study-specific tem-
plate was created using an average T1-weighted image (provided
by the UK Biobank) from 5000 subjects. To generate the template,
brain extraction and tissue segmentation were performed on the
average T1-weighted image. The GM image from the segmenta-
tion was then registered to the avg152T1_gray template available
in FSL. Segmented GM images from each subject, available as
part of the UK Biobank imaging data release, were nonlinearly
registered to the study-specific template. Each registered GM
image was also multiplied by the Jacobian of the warp field as
a compensation (or “modulation”) for the contraction/enlarge-
ment due to the nonlinear component of the transformation.
The resulting GM image was then smoothed with a 6-mm Gaus-
sian kernel. The smoothed GM was then correlated with the
mean of all scans to remove scans with a correlation less than
0.7, resulting in a total number of 9214 subjects for the analysis.
The demographic information of the replication data was shown
in Figure 2.
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Figure 2. Demographic information of both datasets (A) and the distribution of age in the discovery data (B) and the replication data (C). Note: ∗the gender information
of seven subjects is missing. #the distribution of age in the discovery data and replication data are presented in B and C.

Group ICA on rsfMRI Data

ICA decomposition on the fMRI data was conducted in our
previous study (Abrol et al. 2017) using Group ICA based on
the GIFT toolbox (Calhoun et al. 2001; Cetin et al. 2016), with a
model order of 100 components (Fig. 1A). The spatial maps and
time courses of the components were examined to select phys-
iologically nonartifactual and previously established functional
networks, as reported in Allen et al. (2011)) and Du et al. (2015).
Following this, 61 components were selected, which had local
peak activations lying in GM, with time-courses dominated by
low-frequency fluctuations, and exhibited high spatial overlap
with the established rsfMRI networks.

Source-Based Morphometry

The segmented GM images were decomposed using spatial ICA
through the GIFT toolbox (Xu et al. 2009; Cota Navin Gupta and
Calhoun 2017), which linearly decomposed the GM matrix into a
mixing matrix that represents the relative weight of each subject
for every component, and the source matrix representing the
maximally spatially independent GM regions. We chose a model
order of 100 components to match the numbers of components
used in the fMRI analysis (Fig. 1A). All 100 structural components
were visually inspected by three experts. We excluded structural
components that had significant spatial overlaps with ventri-
cles, white matter, large vasculature, and the brainstem, or com-
ponents located at the boundaries between these regions and
GM. For the purpose of spatial correlation, the GM components
were resliced to 3 mm × 3 mm × 3 mm to match the dimensions
of the functional components.

We then defined nine domains/networks based on Yeo et al.’s
seven-network template (Yeo et al. 2011), with two extended
networks including the cerebellar and subcortical networks. The
nine networks are: visual network (VIS), somatomotor network
(SM), dorsal attention network (DA), ventral attention network
(VA), subcortical network (SUB), limbic network (LIMBIC), FPN,
default mode network (DMN), and cerebellar network (CB). All
the effective GM and fMRI components were further grouped
into the nine networks based on which network/domain the
peak region belongs to.

Spatial Cross-Correlation between Structural
and Functional Components

To assess both linear and nonlinear spatial correspondence, we
calculated spatial correlation between the selected structural

and functional spatial maps using Pearson correlation (PC) and
mutual information (MI). Given two random variables x and y,
their PC can be defined in terms of their covariance cov(x, y),
SD of x and y as equation (1), and their MI (Fig. 1C, computed
using the mutualinfo package in MATLAB) is defined in terms
of their probabilistic density functions p(x), p(y), and p(x, y) as
equation (2)

ρx,y = cov
(
x, y

)
σxσy

(1)

I
(
x; y

) =
∫ ∫

p
(
x, y

)
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(
y
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Note that before computing the correspondence, the ICA-
decomposed spatial maps have been converted to Z-scores and
thresholded at |Z| > 2.

Replication using the UK Biobank Data

In order to validate the matched S-F component pairs, we used
spatial ICA to decompose the replication data with the same
model order of 100 components (Fig. 1B). The same inclusion
criteria of component selection in the discovery dataset were
applied to select good components in the replication dataset. We
then computed the spatial correlation between GM components
in the replication dataset and fMRI components in the discovery
dataset, as well as GM components in the discovery dataset
(Fig. 1C). If structural components in one matched structural–
structural pair between discovery and replication cohorts
both show high correlation with the same fMRI component,
then the S-F pair in the discovery cohort was regarded as
replicated.

Comparison between Different Network Modules

We subsequently counted the numbers of matched S-F pairs
in each network module using the discovery dataset and
the replicated percentage in each network module using the
replication dataset. We then added up the values of PC and
MI in both cohorts for each S-F pair and sorted them into
a decreased order to explore which network module would
present more S-F correspondence and which module indicate
more S-F divergence (Fig. 1D). Moreover, we examined the S-F
correspondence of different network modules using PC or MI
separately.
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Figure 3. The numbers of matched pairs in the discovery data and the replicated percentages in the replication data. The S-F correspondence in visual (15 pairs), default
model network (13 pairs), and cerebellar (11 pairs) networks is higher, whereas the correspondence in ventral_attention (5 pairs), dorsal_attention (5 pairs), and limbic
networks (2 pairs) is relatively low. Moreover, replicated results indicate that the visual (73.33%) and DMN (69.23%) are highly replicated, while the FPN (28.57%) is not
well replicated.

Results

Structural Architectures Match Intrinsic Functional
Networks

In the discovery dataset, 71 structural GM components (Fig. S2)
and 61 fMRI components (Fig. S3) were retained for analysis
after removing artifactual components through visual inspec-
tions by three professors. Out of the 71 GM versus 61 fMRI
components comparisons, 44 (62%) structural components were
matched with 47 (77.05%) functional components passing the
predetermined PC coefficient threshold of |r| > 0.25 and an MI
threshold of MI > 0.2 (Fig. S4). We followed Smith et al. (Smith
et al. 2009) to select |r| > 0.25 as threshold for PC, which corre-
sponds to a significance level of P < 1e−12, passing Bonferroni
correlation P = 0.05/71/61). For MI, we computed the distribution
of MI between structural and functional ICs as shown in Fig. S5
and then selected the top 2% (MI = 0.2) S-F pairs as signifi-
cantly matched pairs. Moreover, there is a need for automated
approaches to select the threshold in the future. As more than
one functional component matched per structural component,
as well as one functional component sometimes matched with
several structural components, these matched components in
discovery dataset together formed 70 S-F pairs. After sorting the
matched S-F pairs into nine domains/networks, we computed
the numbers of matched S-F pairs in each brain network of the
discovery dataset (Fig. 3). The numbers of matched S-F pairs
were higher in the VIS (15 pairs), DMN (13 pairs), and CB (11
pairs), but relatively lower in VA (5 pairs), DA (5 pairs), and LIMBIC
(2 pairs).

About 95 structural components in the replication data
were selected as nonartifactual components after ICA decom-
position. In the comparison of 95 structural components
(replication dataset) and 61 functional components (dis-
covery dataset), 66 (69.47%) structural components were

matched with 49 (80.33%) functional components (Fig. S6).
Meanwhile, 57 (60%) structural components in the replication
dataset were matched with 50 (70.42%) structural components
of discovery dataset (Fig. S7). If one matched structural–
structural pair between discovery and replication cohorts
showed high correlation with the same fMRI component, then
the S-F pair in the discovery cohort was regarded as replicated.
In total, 45 (64.28%) out of the 70 matched S-F pairs in the
discovery dataset were replicated in the UK Biobank data. We
set the same thresholds (|r| > 0.25 and MI > 0.2) as the discovery
dataset to select the significant corresponding component pairs.
The replicated percentages in each of networks are presented
in Figure 3, which indicates that the VIS (73.33%) and DMN
(69.23%) are highly replicated, while the FPN (28.57%) is not
well replicated. The spatial maps of these matched 45 S-F pairs
in discovery dataset and replication dataset are separately
depicted in Figure 4A and 4B. The corresponding values are
displayed in Figures S8–S11. To assess the significance of the
spatial cross-correlations between the structural and functional
independent components (ICs) among voxels, we randomly
shuffled the structural IC across voxels and rerunning the
correlation analysis with the functional IC 10 000 times as did
in Sui et al. (2018) for each of the 45 identified S-F pairs. Then,
we compared the strength of our observed correlations to this
empirically generated null distribution. All the 45 S-F pairs
quantified the probability P < 0.001 of obtaining the observed
correlations between structural and functional ICs by chance.
In addition, we also generated 1000 rotational permutations
for the structural ICs using the framework proposed by
Alexander-Bloch et al. (2018) to test the significance of spatial
autocorrelation among voxels. As shown in Figure S12, none of
the 45 S-F pairs presented a probability P > 0.05 of obtaining the
observed correlations between structural and functional ICs by
chance.
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Figure 4. S-F correspondence in the discovery dataset (A) and replication dataset (B).

Furthermore, we computed the overlap between different
structural ICs or functional ICs. About 94.05% of pair-wise
structural ICs presented an overlap less than 0.1, and 92.29% of
pair-wise function ICs exhibited an overlap less than 0.1
(Figure S13). Among all the 45 structure-function pairs, we
separately computed the percentage of the matched structural
or functional components of the whole brain. The results
indicated that all the matched structural components covered

87.49% of the whole brain, while the functional components
occupied 74.32%. For each network, we first added up all the
matched structural ICs and all the corresponding functional
ICs separately. Then, we counted overlapped dices between
structural and functional ICs for each network and calculated
the overlap percentages. As shown in Figure S14, the uni-
modal cortical areas (e.g., somatomotor and visual networks)
still exhibited higher spatial dice-overlap (>70%) compared
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with heteromodal association cortices (<60%), except for
the DMN.

Somatomotor Network

A large component, s-IC 12, spanning the supplementary motor
areas, and bilateral pre- and post-central gyri are correlated
with four rsfMRI components (Fig. S8A). The rs-IC 72, with peaks
at the precentral gyri, presents the highest correspondence of
PC and MI to the structural component for both discovery and
replication dataset. The other three rsfMRI components are rs-
IC49 and rs-IC52, centered at the paracentral lobule, and rs-
IC99, which represents the bilateral postcentral gyri. A second
structural component, s-IC19, which is also quite large and
contains voxels spanning much of the supplementary motor
area, is correlated to rs-IC36 and rs-IC13, with peaks at aspects
of the supplementary motor area.

Visual Network

Notably, the visual network includes the largest numbers of S-F
pairs, which is also observed in the replication dataset (Fig. 3).
Structural component s-IC16, which largely centers at the cal-
carine gyrus, presents the second highest correspondence to
functional component rs-IC25 in all matched S-F pairs and repli-
cated in rep-sIC60 (Fig. S8B). The functional components rs-IC63
and rs-IC 96, centered at the calcarine gyrus, are also correlated
with s-IC16. The other smaller structural component s-IC13 with
peaks at calcarine gyrus and lingual gyrus is correlated with rs-
IC25, as well as rs-IC17 and replicated in rep-sIC38. Components
s-IC95 and s-IC96 comprised of a component pair, with peaks at
right and left calcarine region, respectively, which are correlated
with rs-56, rs-IC3, and rs-IC63. Another correlated region is
the lingual gyrus, where component s-IC66 is associated with
rs-IC 17 and replicated in rep-sIC66. The third region with a
replicated S-F correspondence in the visual network is middle
occipital gyrus. Structural components s-IC 79 is correlated with
functional component rs-IC76, with peaks at the bilateral middle
occipital gyrus.

Default Mode Network

The DMN also shows a high S-F correspondence (Fig. S9C). Com-
ponent s-IC31, primarily comprised of the middle cingulate
gyrus, is highly correlated with rs-IC 67 and rs-IC46. Component
s-IC7, which contains voxels residing in the precuneus area,
is correlated with three functional components. In order of
correspondence magnitude, they are rs-IC34, rs-IC46, and rs-
IC30, which presents aspects of precuneus and middle cingulate
gyrus. Structural components, s-IC45 and s-IC52, are symmet-
rical components, which are respectively composed of right
middle temporal gyrus and left middle temporal gyrus. They
are correlated with a symmetrical pair rs-IC57 and rs-IC75,
which are also replicated in a symmetrical pair rep-sIC25 and
rep-sIC18. More interesting, structural components, s-IC40 and
s-IC91, containing voxels in different subdivisions of anterior
cingulate cortex, are correlated with two components rs-IC39
and rs-IC90 and replicated in rep-sIC 85 and rep-sIC 15, centered
on the same subdivisions of anterior cingulate cortex.

Cerebellar Network

Components s-IC53 and s-IC46, respectively, represent left and
right cerebellum, which are correlated with rs-IC26 and rs-IC40,

peaking at left and right cerebellum, respectively, and replicated
in nine components (Fig. S10D). Component s-IC36, primarily
composed of vermis, is correlated with rsfMRI component rs-
IC8 and replicated in rep-sIC1 and rep-sIC48, centered on ver-
mis, a narrow midline zone in cerebellum. Structural compo-
nents s-IC10 and s-IC11 are correlated with rs-IC26, replicated
in rep-sIC53 and rep-sIC4, primarily comprised of bilateral cere-
bellum. Results from previous studies have found that higher
scores on vocabulary, reading, working memory, and set-shifting
were associated with increased GM in the posterior cerebellum
(Moore et al. 2017), which is an example of how structural
abnormalities directly relate to functional processing.

Subcortical Network

Subcortical structure s-IC3, comprising the putamen and parts
of caudate, presents high S-F correspondence with functional
component rs-IC33 in discovery dataset (Fig. S10E). The other
subcortical component s-IC17, composed of bilateral caudate,
is correlated with the same rsfMRI component, primarily com-
prising the bilateral putamen and caudate. The putamen and
caudate contain the same types of neurons and circuits, which
together form the dorsal striatum. The dorsal striatum plays
an important role in the motor and reward systems, which
receives inputs from cortical regions and then serves as the
primary input to the rest of basal ganglia (Ferre et al. 2010).
Thus, the putamen and caudate are likely to be decomposed in
one functional component by ICA because of the similar brain
function. However, as a white matter tract in the dorsal striatum
structurally separates the caudate nucleus and the putamen
(Ferre et al. 2010), the putamen and caudate are more likely to be
decomposed into two components by ICA for the structural data.

Limbic Network

Only component s-IC23, primarily composed of the hippocam-
pus, has been revealed to be correlated to rs-IC44 and repli-
cated in rep-sIC 77 (Fig. S10F), primarily associated with memory
function (van Strien et al. 2009). While S-F coherence of para-
hippocampus was also observed in the discovery data as shown
in Figure S4-1, the pair was not well replicated.

Dorsal_attention Network

Component s-IC67, which also largely covers the precuneus, is
correlated to rs-IC30 and rs-IC35, replicated in five components
(Fig. S11G). Two structural components s-IC 25 and s-IC27 are
revealed to be correlated with the same functional component
rs-IC76, which comprised of both parts of middle occipital gyrus
and inferior parietal gyrus. Different from component s-IC79 and
s-IC95, which also comprised of middle occipital but belongs
to the visual network, s-IC25 and s-IC27 are more close to the
inferior parietal gyrus, sorted to the dorsal attention network.
Inferior parietal gyrus is associated with bottom-up attention
(Igelstrom and Graziano 2017).

Ventral_attention Network

Structural component s-IC 30, centered at the supramarginal
gyrus, is correlated with rs-IC 29 and replicated in rep-sIC73,
which represents the aspects of the supramarginal gyrus
(Fig. S11H). Several studies have reported the supramarginal
gyrus in interoceptive attention/awareness tasks (Kashkouli
Nejad et al. 2015). The other symmetrical components s-IC56
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Figure 5. Comparison of S-F coherence across nine domains. (A) The sum of PC and MI in both discovery dataset and replication dataset of each component. The darker
gray to white bars, respectively, represent PC values in the discovery dataset, PC values in the replication dataset, MI values in the discovery dataset, and MI values

in the replication dataset. The blue bar indicates the sum of PC and MI in the discovery dataset, while the orange bar shows the sum of PC and MI in the replication
dataset. (B) The S-F correspondence in the discovery and replication dataset measured only by PC. The dark green bar represents PC values in the discovery data, and
the light green color indicates PC values in the replication data. (C) The S-F correspondence in the discovery and replication dataset measured only by MI. The dark
blue bar represents MI values in the discovery data, and the light blue bar indicates MI values in the replication data.

and s-IC76 are correlated with rs-IC31 and rs-IC94, respectively,
and replicated in rep-sIC24 and rep-sIC68, primarily composed
of the insula.

Frontoparietal Network

The FPN yielded the lowest degree of S-F correspondence,
and the effects observed in the discovery sample were largely
unreplicated (Fig. 3). Only component s-IC18, peaking in the
superior frontal gyrus, is correlated to rs-IC 89 and rs-IC 85, and
weakly replicates in rep-sIC 21, which represents activations
over similar regions (Fig. S11I).

Unimodel Cortex Exhibited Better S-F Correspondence
than Hetermodel Cortex Except DMN

Figure 5A depicts the values of PC and MI of each repli-
cated S-F pair in both datasets. Results show that com-
ponents from SM and VIS present the highest S-F cor-
respondence when adding up values from both metrics
(PC and MI) and both cohorts, followed by DMN, LIMBIC, and CB.
In contrast, the values in VA, DA, and FPN are relatively lower
than other networks, indicating more divergence between brain
structure and function. Furthermore, we computed the S-
F correspondence using PC or MI separately. As shown in
Figure 5B and 5C, either using PC or MI, the correspondences
consistently show that the SM, VIS, and DMN yield higher S-F
correspondences, while components in the DA and FPNs show
more divergence between structure and function.

Discussion
In this study, we demonstrate that human structural archi-
tectures match intrinsic functional networks across the entire
brain. With an ICA decomposition on GM volumes and sponta-
neous fluctuations of discovery data (6000+ scans), the struc-
tural components found are largely correspond to functional
networks (62% matched 77.05%). Thus, what we are seeing is
the functional covariations in resting state BOLD signal, at the
level of group networks across thousands of individuals, which
correlates in some cases with the structural correlations. To
aid the robustness of the identified pairs, we replicated the S-
F coherence in another independent dataset (UK Biobank 9000+
subjects). While 64.28% pairs are validated, the replicated per-
centage in each domain network is not identical. For example,
replicated percentage in the FPN was 28.57%, implying that
individual difference was large in this area. This was consistent
with previous studies, which states that the FPN has emerged
as the most distinctive fingerprinting feature for identifying
individuals (Finn et al. 2015). In total, 45 S-F component pairs
with high spatial consistency in both discovery and replication
cohorts were identified, which were divided into nine major
networks, providing a stable S-F correspondence template that
may be of use to the larger neuroimaing community.

The replicated S-F pairs and their correspondence values
suggested that the unimodal cortical areas (especially the SM
and VIS networks) show higher S-F correspondence, while
heteromodal association cortical areas, especially the FPN,
exhibit more divergence between intrinsic functional and
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structural networks. Consistent with this, Margulies et al.
(2016) also reported that hetermodal regions standed at one
extreme of a principal gradient hierarchy compared to primary
sensory and motor regions, which allows them to process
transmodal information that is unrelated to immediate sensory
input. Unimodal cerebral cortex (Mendoza 2011) (somatomotor
network and visual network), especially the precentral gyrus,
supplementary motor area, and primary visual cortex (calcarine
area, V1), exhibited higher S-F correpondence than other
areas in both the discovery and replication datasets. The
precentral gyrus and supplementary motor area are primarily
associated with motor function (Graziano et al. 2002; Nachev
et al. 2008). Visual area V1 receives sensory inputs from the
thalamus and plays an important role in the extraction of
early visual features (Mechelli et al. 2000). The somatomotor
and visual regions have also been revealed to present the least
individual differences in functional variability (Mueller et al.
2013). However, the heteromodal association cortex (Green 2004),
except the DMN, shows relatively low S-F correspondence (DA,
VA, and FPN). The FPN presents the least S-F correspondence
compared with the other networks. It has been previously
demonstrated that the regions presenting the most prominent
intersubject variability are also the regions showing the most
rapid expansion during human brain evolution (Mueller et al.
2013), as well as greatest postnatal enlargement and a low
maturation rate (Hill et al. 2010). Wang et al. suggested that a
greatly expanded and slowly maturing association cortex can
provide a higher degree of freedom, both in physical space and
time, for influences of environmental factors, potentially giving
rise to interindividual variability (Wang and Liu 2014), leading
to weak S-F correspondences in these areas. In contrast, the
unimodal regions mature early in life with a low expansion rate
and are more stable to the environmental factors. This may
be why regions in this network are more highly structurally
and functionally correlated, with more spatially contiguous
components. Future studies might consider incorporating
hypotheses about these differences or develop more systematic
categorization approaches.

The spatial consistence in DMN is interesting; for exam-
ple, the precuneus is split into two structural subregions (s-
IC7 and s-IC67), which respectively correspond to two func-
tional subregions (rs-IC34 and rs-IC30). The two subregions are
consistent with previous subdivisions of the precuneus, which
represent different functions: components s-IC7 and rs-IC34 are
the posterior precuneus, which shows strong functional connec-
tivity with visual-related areas, such as the cuneus (Margulies
et al. 2009); components s-IC67 and rs-IC30 are the anterior
precuneus, which exhibits strong functional connectivity with
sensorimotor-related regions. Meanwhile, the other similar case
is anterior cingulate cortex, where components s-IC40 and s-
IC91 are correlated with two different anterior cingulate cortex
in functional data (rs-IC39 and rs-IC90), consisting with pre-
vious subdivision of the anterior cingulate cortex (Bush et al.
2000). Component s-IC40 is the dorsal part of the anterior cin-
gulate cortex, which is connected with the prefrontal cortex
and parietal cortex, participating in cognitive control (Shenhav
et al. 2016). In contrast, component s-IC91 is the ventral part of
the anterior cingulate cortex, involving in generating emotional
responses (Etkin et al. 2011). Besides, structural components, s-
IC45 and s-IC52, are symmetrical components, which are respec-
tively composed of right middle temporal gyrus and left middle
temporal gyrus, correlated with symmetrical pair rs-IC57 and
rs-IC75, and replicated in a symmetrical pair (rep-sIC25 and

rep-sIC18). As shown in the Brainnetome Atlas (https://atlas.
brainnetome.org/bnatlas.html), which yields functional charac-
terization of subregions based on the BrainMap database using
forward and reverse inferences (Fan et al. 2016), the left middle
temporal gyrus is primarily related to cognition, language, and
syntax, while the right middle temporal gyrus is involved in
action and observation.

Despite the strengths of the current study, it still has some
limitations. The first limitation is of course methodological: the
structural images were generally collected at a much finer res-
olution (1-mm isotropic, generally) than the functional images
(>3 mm on a side), and the functional imaging is susceptible to
signal drop-out in inferior areas or near the tissue border. We
attempted to address this by reslicing the structural images to
match the functional and restricting the analysis to the areas of
GM, where signal in both modalities was robust. The second lim-
itation is the lack of careful assessment of health status for the
individuals included in discovery dataset. However, our results
were further replicated in a large independent dataset with
only healthy subjects. We believe that the results may be more
driven by the common characteristics on S-F correspondence.
The third issue is that the MRI scanners and imaging protocols
were not identical across the discovery and replication cohorts.
However, since one important aim of this study is to identify
a stable S-F template (i.e., a set of components with higher S-
F correspondence), the replicated results in data with different
scanners and imaging protocols provide a more generalizable
result.
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