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Abstract
The salience network (SN) plays a critical role in cognitive control and adaptive human behaviors, but its
electrophysiological foundations and millisecond timescale dynamic temporal properties are poorly understood. Here, we
use invasive intracranial EEG (iEEG) from multiple cohorts to investigate the neurophysiological underpinnings of the SN
and identify dynamic temporal properties that distinguish it from the default mode network (DMN) and dorsolateral
frontal–parietal network (FPN), two other large-scale brain networks that play important roles in human cognition. iEEG
analysis of network interactions revealed that the anterior insula and anterior cingulate cortex, which together anchor the
SN, had stronger intranetwork interactions with each other than cross-network interactions with the DMN and FPN.
Analysis of directionality of information flow between the SN, DMN, and FPN revealed causal outflow hubs in the SN
consistent with its role in fast temporal switching of network interactions. Analysis of regional iEEG temporal fluctuations
revealed faster temporal dynamics and higher entropy of neural activity within the SN, compared to the DMN and FPN.
Critically, these results were replicated across multiple cohorts. Our findings provide new insights into the
neurophysiological basis of the SN, and more broadly, foundational mechanisms underlying the large-scale functional
organization of the human brain.
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Introduction

The salience network (SN) is a large-scale brain network which
plays an important role in cognitive control and adaptive behav-
iors (Menon and Uddin 2010). Noninvasive human functional
magnetic resonance imaging (fMRI) studies have demonstrated

SN involvement in detection and attentional capture of goal-
relevant stimuli and facilitating efficient access to other large-
scale brain networks across a wide range of cognitive tasks
(Dosenbach et al. 2006, 2008; Sridharan et al. 2008; Menon and
Uddin 2010; Cai et al. 2014). SN dysfunction is prominent in
many psychiatric and neurological disorders, and lesions to the
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anterior insula (AI) and anterior cingulate cortex (ACC) signif-
icantly impair cognitive function (Jilka et al. 2014; Sha et al.
2019). Despite its critical role in cognitive function and dysfunc-
tion (Menon 2011; Uddin 2015), the electrophysiological foun-
dations of the SN and its dynamic temporal properties are
poorly understood. This problem is confounded by the inherent
difficulties of obtaining high-quality intracranial EEG (iEEG) data
from multiple brain regions, and the even greater challenge
of obtaining independent cohorts of iEEG data for examining
reproducibility of findings (Parvizi and Kastner 2018). Here we
address these challenges and investigate the neurophysiological
underpinnings of the SN, identify dynamic temporal properties
that distinguish it from other key networks involved in human
cognition, and demonstrate, for the first time, replicability of
findings across multiple cohorts and data acquisition sites.

The human brain is organized into distinct yet dynamically
interacting large-scale functional networks (Bressler and Menon
2010; Power et al. 2011). Human fMRI studies have demonstrated
that the SN has a functional organization that is distinct from
the medial default mode network (DMN) and lateral frontal–
parietal network (FPN), two other large-scale brain networks that
play an important role in external stimulus-related cognition
and monitoring internal mental processes (Menon 2011; Power
et al. 2011). The intrinsic connectivity of these networks displays
close correspondence with task-related coactivation patterns,
and this correspondence has allowed intrinsic and task-related
connectivity associated with these networks to be demarcated
and studied under a common framework (Sridharan et al. 2008;
Supekar and Menon 2012). Crucially, the AI and ACC nodes of
the SN are among the most commonly activated brain regions
in all of human fMRI-based neuroimaging research, and joint
analysis of multiple tasks further reveal reliable activations
in the AI and ACC across most cognitive domains, suggesting
that they form a “core” task-set system (Dosenbach et al. 2006,
2008; Ouyang et al. 2008). While the SN has been extensively
investigated using fMRI, its electrophysiological underpinnings,
millisecond timescale dynamic temporal properties, and the
intrinsic dynamical temporal properties that distinguish the SN
from the DMN and FPN are not known as fMRI does not have the
requisite temporal resolution.

Functional connectivity analysis of fMRI time series data
using model-free approaches such as independent components
analysis and model-based approaches such as seed-based anal-
yses has demonstrated spatial segregation of these networks
into anatomically distinct brain regions (Menon 2015a, 2015b).
The AI and ACC nodes of the SN are distinct from the posterior
cingulate cortex and precuneus (PCC/precuneus) nodes of the
DMN and the middle frontal gyrus (MFG) and supramarginal
gyrus (SMG) nodes of the FPN. Further, unlike the SN and FPN,
the DMN is typically deactivated during behaviorally demand-
ing tasks, and it plays a more distinct role in internal mental
processes (Greicius et al. 2008; Dastjerdi et al. 2011). Despite
significant progress in the characterization of the SN and its
internetwork connectivity, based on the analysis of blood oxy-
genation level-dependent (BOLD) fMRI signals, the electrophys-
iological foundations remain unknown. In particular, the low
temporal resolution of fMRI has precluded elucidation of the
dynamic temporal properties and nonlinear dynamics underly-
ing intra-SN and its cross-network interactions. iEEG recordings
with adequate sampling of electrodes from multiple distinct
brain regions of interest have the potential to address this gap
(Miller et al. 2009; Dastjerdi et al. 2011; Watrous et al. 2013; Kucyi
et al. 2018).

To thoroughly characterize the electrophysiological proper-
ties of the SN and demonstrate a neural basis for its distinctive-
ness from the DMN and FPN, we leveraged two independent iEEG
datasets: 1) the Montreal Neurological Institute (MNI) (Frauscher
et al. 2018) which contains recordings from 106 patients and 2)
University of Pennsylvania Restoring Active Memory (UPENN-
RAM) (Jacobs et al. 2016) containing recordings from 102 patients
who underwent treatment for intractable epilepsy. In both the
MNI and UPENN-RAM cohorts, we examined resting-state iEEG
from patients with electrode placements in the AI and ACC
spanning the SN, as well as electrodes spanning the DMN and
FPN. The MNI cohort served as our primary cohort, while the
UPENN-RAM cohort served as our replication cohort. Crucially,
the extensive sampling of electrode placements in these two
cohorts provided a unique opportunity not only to investigate
dynamic interactions between multiple brain regions but also to
determine the reproducibility of our findings.

Given the highly nonlinear nature of neural dynamics (Free-
man 2000), we probed SN integrity and temporal dynamics using
both conventional linear and novel nonlinear measures under
the assumption that the later can better capture temporal fea-
tures of interregional interactions than linear measures alone
(Pereda et al. 2005). Furthermore, neural dynamics are highly
variable, intermittent, and nonstationary processes (Menon et al.
1996) that are again best captured by nonlinear analytic pro-
cedures. We first determined whether intranetwork interac-
tions of iEEG signals within the SN are distinct from its cross-
network interactions with the DMN and FPN. We hypothesized
that intranetwork temporal correlation between the AI and ACC
nodes of the SN would be stronger than their cross-network
interactions with electrodes in the DMN and FPN, thereby reveal-
ing distinctive electrophysiological signatures of SN integrity.

Second, we examined directionality of information flow
between the SN, DMN, and FPN as regions whose activities
are not instantaneously synchronized may interact via time-
delayed causal influences. Noninvasive studies using fMRI
have suggested that the SN has strong causal influences on
other brain networks and is thought to play an important
role in switching between the DMN and FPN (Sridharan et al.
2008). Surprisingly, higher causal influences of the AI node
of the SN on multiple brain areas have also been reported in
resting-state fMRI (Deshpande et al. 2011). However, it is unclear
whether these results are an artifact of regional variations
in hemodynamic response in BOLD signals or whether they
truly reflect an underlying neuronal process. To address this
challenge, we used phase transfer entropy (PTE) (Lobier et al.
2014) and tested the hypothesis that the AI and ACC nodes of
the SN would act as causal outflow hubs in their interactions
with the DMN and FPN.

Third, we examined the linear and nonlinear dynamic prop-
erties of electrophysiological activity within the AI and ACC
nodes of the SN and contrasted them to DMN and FPN nodes.
We estimated decorrelation times, which capture the interval in
which past “memory” in the time series is lost. We hypothesized
shorter decorrelation times in the AI and ACC underlying greater
temporal flexibility of the SN in comparison to the DMN and
FPN. We then used sample entropy to probe the nonlinear neu-
ronal dynamics of regional iEEG activity (Richman and Moorman
2000) and predicted that SN iEEG signals would show faster
temporal dynamics consistent with its hypothesized role in
network switching dynamics (Sridharan et al. 2008). Finally, we
demonstrate that the unique neurophysiological properties of
the SN and its intranetwork and cross-network dynamic inter-
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actions with the DMN and FPN are replicable across multiple
cohorts.

Materials and Methods
MNI iEEG Cohort

iEEG data from 106 patients shared by Gotman and colleagues
at the Montreal Neurological Institute (MNI) were used as the
primary cohort (Frauscher et al. 2018). iEEG recordings were
downloaded from the MNI iEEG atlas website (MNI Open iEEG
Atlas—Document Repository. URL: http://mni-open-ieegatlas.re
search.mcgill.ca). iEEG data were acquired from patients under-
going clinical evaluation for epilepsy surgery at the Montreal
Neurological Institute (MNI) and associated hospitals Centre
Hospitalier de l’Université de Montréal (CHUM) and Grenoble-
Alpes University Hospital (CHUGA). All experimental procedures
were acquired with informed consent with ethical guidelines
and protocols administered by the MNI (Frauscher et al. 2018).
Details of all the recordings sessions and data preprocessing
procedures are described by Gotman and colleagues (Frauscher
et al. 2018). Briefly, the MNI atlas consists of 60-s curated artifact-
free iEEG data acquired in an “eyes closed” resting wakefulness
state using standardized experimental conditions. Data were
acquired during seizure free periods with electrodes located in
the gray matter of the brain and outside the seizure onset zone.
Peri-implantation CT/MRI images containing electrode locations
were linearly registered to preimplantation MRI images for each
patient, and these preimplantation MRI images were subse-
quently nonlinearly registered to the ICBM152 2009c nonlinear
symmetric brain atlas to visualize the electrodes in stereotaxic
space (Frauscher et al. 2018). The anatomical brain atlas was
created with an unbiased method using data from 20 normal
subjects and consisted of 132 gray matter labels (66 per hemi-
sphere). Finally, each bipolar channel was represented by the
volume of a cylinder of length equal to the distance between its
two electrode contacts with 10-mm diameter, and the localiza-
tion of each channel was determined to be the segmented region
at which the majority of its volume was located.

iEEG signals were first band-pass filtered at 0.5–80 Hz and
then downsampled to 200 Hz if the original sampling rate was
higher (original sampling rates were 200, 256, 512, 1000, 1024, and
2000 Hz), line noise at 50 or 60 Hz (whichever was applicable) was
removed, and time series from each electrode was Z-normalized
by removing mean and scaling by the standard deviation. For
filtering, including in the ultralow-delta frequency band (<4 Hz),
we used a fourth-order two-way zero phase lag Butterworth
filter throughout the analysis.

UPENN-RAM iEEG Cohort

iEEG recordings from 102 patients shared by Kahana and
colleagues at the University of Pennsylvania (UPENN) (obtained
from the UPENN-RAM public data release under release ID
“Release_20171012,” released on 12 October 2017) were used
as the replication cohort (Jacobs et al. 2016). iEEG recordings
were downloaded from a UPENN-RAM consortium hosted data
sharing archive (UPENN-RAM. RAM—Computational Memory
Lab. URL: http://memory.psych.upenn.edu/RAM). Prior to data
collection, research protocols and ethical guidelines were
approved by the Institutional Review Board at the participating
hospitals, and informed consent was obtained from the
participants and guardians (Jacobs et al. 2016). Details of all

the recordings sessions and data preprocessing procedures
are described by Kahana and colleagues (Jacobs et al. 2016).
Briefly, iEEG recordings were obtained using subdural grids
and strips (contacts placed 10 mm apart) or depth electrodes
(contacts spaced 5–10 mm apart) using recording systems at
each clinical site. iEEG systems included DeltaMed XlTek (Natus),
Grass Telefactor, and Nihon-Kohden EEG systems. Electrodes
located in brain lesions or those which corresponded to seizure
onset zones or had significant interictal spikings or had broken
leads were excluded from analysis. Resting-state data were
extracted from patients performing multiple trials of a “free
recall” experiment, where they were first presented with a list
of words and later asked to recall as many as possible from
the original list. We analyzed recordings during the intertrial
intervals when subjects were given no explicit cognitive task
thus presumably emulating “explicit resting-state” connectivity,
similar to previous iEEG studies (Miller et al. 2009; Yanagisawa
et al. 2012; Horak et al. 2017; Norman et al. 2017). Specifically, we
extracted 10-s iEEG recordings (epochs) prior to the beginning
of each trial. To reduce boundary and carry over effects, we
discarded 3 s each of iEEG data from the beginning and end of
each epoch, resulting in multiple 4-s epochs (Betzel et al. 2019).
Data from each epoch was analyzed separately, and specific
linear and nonlinear measures were averaged across trials. Even
though each trial was ∼4 s in duration, we had multiple trials
for each subject. The average number of trials across all subjects
was ∼22. Hence, for each subject, we had ∼88 s of recordings,
which is in the order of the recordings from the MNI cohort
(∼60 s). These values are also typical based on previous iEEG
studies (Miller et al. 2009; Yanagisawa et al. 2012; Horak et al.
2017; Norman et al. 2017).

Anatomical localization of electrode placement was accom-
plished by coregistering the postoperative computed CTs with
the postoperative MRIs using FSL (FMRIB (Functional MRI of
the Brain) Software Library), BET (Brain Extraction Tool), and
FLIRT (FMRIB Linear Image Registration Tool) software packages.
Preoperative MRIs were used when postoperative MRIs were
not available. The resulting contact locations were mapped to
MNI space using an indirect stereotactic technique and OsiriX
Imaging Software DICOM viewer package. We used the Harvard–
Oxford atlas (Frazier et al. 2005; Desikan et al. 2006; Goldstein
et al. 2007) for mapping electrodes to ACC, PCC, precuneus, MFG,
and SMG. We used the Deen atlas (Deen et al. 2011) to demarcate
the AI.

iEEG signals were sampled at 1000 Hz. Signals recorded at
individual electrodes were converted to a bipolar montage by
computing the difference in signal between adjacent electrode
pairs on each strip, grid, and depth electrode, and the resulting
bipolar signals were treated as new virtual electrodes originat-
ing from the midpoint between each contact pair. Line noise
(60 Hz) and its harmonics were removed from the bipolar signals,
and finally each bipolar signal was Z-normalized by removing
mean and scaling by the standard deviation. Similar to MNI
analysis, for filtering, including in the ultralow-delta frequency
band (<4 Hz), we used a fourth-order two-way zero phase lag
Butterworth filter throughout the analysis.

Participant and Electrode Identification in the MNI and
UPENN-RAM Cohorts

We first used the primary cohort (MNI) to identify electrodes
in the AI and ACC nodes of the SN, PCC/precuneus nodes of
the DMN, and MFG and SMG nodes of the FPN. We identified
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Figure 1. Salience network, default mode network and frontoparietal network iEEG recording sites in the primary (MNI) and replication (UPENN-RAM) cohorts.
(a) MNI Cohort: iEEG recording sites in the salience network (SN), default mode network (DMN), and frontoparietal network (FPN). Electrodes in the anterior insula (AI,
red), anterior cingulate cortex (ACC, blue) nodes of the SN, posterior cingulate cortex (PCC)/precuneus nodes of the DMN (green), and middle frontal gyrus (MFG, cyan)

and supramarginal gyrus (SMG, brown) nodes of the FPN. (b) UPENN-RAM Cohort: iEEG recording sites. Analysis of iEEG data was first performed on the MNI cohort
and replicability examined using the UPENN-RAM cohort.

electrode pairs in which there were at least five patients with
electrodes implanted in two brain networks of interest (e.g., SN
and DMN). Given our focus on the SN, we identified participants
who had electrode pairs AI–ACC and SN–X, where X represents
electrodes in the PCC/precuneus which constitute the posterior
medial node of the DMN and the MFG and SMG nodes
which constitute the FPN (Fig. 1a, Supplementary Tables 1, 2a
and 3a; see also Supplementary Table 4a for participant
demographics). The same procedures were used to iden-
tify participants and electrode pairs in the UPENN-RAM
cohort, which was used as the replication dataset in our
study (Fig. 1b, Supplementary Tables 2b and 3b; see also
Supplementary Table 4b for participant demographics). Similar
to the MNI cohort, we identified electrode pairs in which
there were at least five patients with electrodes implanted in
two brain networks of interest (e.g., SN and DMN), the only
exception being the AI–ACC which had four patients with
electrodes in both regions. In both cohorts, electrodes from
left and right hemispheres of each brain region (e.g., SN) were
pooled to increase the number of electrode pairs across which
all subsequent analyses were performed.

iEEG Analysis: Linear and Nonlinear Measures

Correlation Analysis
Pearson correlation coefficient r between pairwise ROIs were
computed as

r =
∑n

i=1
(
xi − x

) (
yi − y

)
√∑n

i=1
(
xi − x

)2
√∑n

i=1
(
yi − y

)2
, (1)

where n is the number of time samples, {xi} and {yi} are the
time series of the two ROIs of interest, and x = 1

n
∑n

i=1 xi and
y = 1

n
∑n

i=1 yi are the sample means of time series {xi} and {yi},
respectively.

PTE and Causal Analysis
A brain region has a causal influence on a target if knowing the
past of both signals improves the ability to predict the target’s
future in comparison to knowing only the target’s past (Granger
1969; Marinazzo et al. 2008). PTE is a nonlinear measure of the
directionality of information flow between time series (Lobier
et al. 2014). In contrast, Granger causality analysis (Barnett and
Seth 2014) can estimate the directionality of only linear inter-
actions. Moreover, PTE is also computationally less expensive
than transfer entropy (TE) (Lobier et al. 2014). Given two time
series {xi} and {yi}, where i = 1, 2, . . . , M, instantaneous phases
were first extracted using the Hilbert transform. Let {xp

i } and
{yp

i }, where i = 1, 2, . . . , M, denote the corresponding phase time
series. If the uncertainty of the target signal {yp

i } at delay τ is
quantified using Shannon entropy, then the PTE from driver
signal {xp

i } to target signal {yp
i } can be given by

PTEx→y =
∑

i

p
(
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i+τ
, yp

i , xp
i
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log

⎛
⎝ p

(
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i+τ
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i , xp
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p

(
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i

)
⎞
⎠ , (2)

where the probabilities can be calculated by building histograms
of occurrences of singles, pairs, or triplets of instantaneous

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data


Multicohort Replication of Nonlinear Dynamics of the Salience Network Das and Menon 5313

phase estimates from the phase time series (Hillebrand et al.
2016). For our analysis, the number of bins in the histograms was
set as 3.49 × STD × M−1/3, and delay τ was set as 2M/M±, where
STD is average standard deviation of the phase time series {xp

i }
and {yp

i } and M± is the number of times the phase changes sign
across time and channels (Hillebrand et al. 2016). Note that PTE
is robust against the choice of the delay τ and the number of bins
for forming the histograms and variations in these parameters
do not change the results much (Hillebrand et al. 2016). For PTE
estimation, we used the broadband signal (0.5–80 Hz) rather than
filtering the signal in the delta band, since causality estimation
is very sensitive to filtering (see Barnett and Seth 2011 for a
detailed discussion on this).

Net causal outflow was calculated as the difference between
the total outgoing information and total incoming information,
that is, net causal outflow = PTE(out) − PTE(in). In both cohorts,
for calculation of PTE(out) and PTE(in) for SN electrodes,
electrodes in the DMN and FPN were considered, that is,
PTE(out) was calculated as the net PTE from SN electrodes to
the DMN and FPN electrodes, and PTE(in) was calculated as
the net PTE from the DMN and FPN electrodes to SN electrodes.
Similarly, SN and FPN electrodes were considered for calculation
of net causal outflow of the DMN electrodes. For calculating
net causal outflow of FPN, the SN and DMN electrodes were
considered.

Decorrelation Time Analysis
For linear dependency, the first zero crossing of the autocorrela-
tion function (Theiler 1986) of the time series of an electrode was
considered as its memory. Nonlinear memory was estimated as
the first local minimum of the mutual information (MI) function
of the electrode time-series recordings (Fraser and Swinney
1986).

Multiscale Sample Entropy (MSE) Analysis
Multiscale sample entropy (MSE) is used to characterize the
“complexity” of a time series by analyzing its nonlinear features
(Richman and Moorman 2000). Given a time series {xi}, where
i = 1, 2, . . . , M, we first construct consecutive coarse-grained

time series {y(ξ)
j } with scale factor ξ. To do this, we divide time

series {xi} into nonoverlapping windows of length ξ and then
average the data points inside each window as

y(ξ)

j = 1
ξ

jξ∑
i=(j−1)ξ+1

xi, 1 ≤ j ≤ M/ξ. (3)

Note that for scale 1, time series {y(1)
j } is the same as the

original time series and the length of each coarse-grained time
series is equal to the length of the original time series divided
by the scale factor ξ. Small ξ represents short-range temporal
scale, and larger ξ values represent longer temporal scales. We
next calculate the sample entropy for each coarse-grained time

series. Given coarse-grained time series {y(ξ)
j }, where 1 ≤ j ≤ M/ξ,

we first construct the time-delay embedding given by u(ξ,m)
j =

(y(ξ)
j , y(ξ)

j+τ
, . . . , y(ξ)

j+(m−1)τ), where 1 ≤ j ≤ M/ξ − m τ, m is the
embedding dimension, and τ is the embedding delay. We next

count the number of instances Pi for which d[u(ξ,m)
i , u(ξ,m)

j ] ≤
r, j �= i, where d[u(ξ,m)

i , u(ξ,m)
j ] is the distance between any two

embedding vectors u(ξ,m)
i and u(ξ,m)

j using the maximum norm

and r is the threshold. We then calculate the probability that any
two embedding vectors are similar in dimension m as

B(ξ,m)(r) = 1
(M/ξ − m τ) (M/ξ − m τ − 1)

M/ξ−m τ∑
i=1

Pi. (4)

Similarly, we construct the time-delay embedding for dimen-

sion m + 1 given by u(ξ,m+1)
j = (y(ξ)

j , y(ξ)
j+τ

, . . . , y(ξ)
j+mτ

), where 1 ≤
j ≤ M/ξ − m τ . We count the number of instances Qi for which

d[u(ξ,m+1)
i , u(ξ,m+1)

j ] ≤ r, j �= i and then calculate the probability
that any two embedding vectors are similar in dimension m + 1
as

B(ξ,m+1)(r) = 1
(M/ξ − m τ) (M/ξ − m τ − 1)

M/ξ−m τ∑
i=1

Qi. (5)

For a given threshold r, sample entropy is calculated as the
negative of the natural logarithm of the conditional probability
that two embedding vectors close to each other in dimension m
will also be close to each other when the dimension is increased
by one as

SE = − ln

[
B(ξ,m+1)(r)
B(ξ,m)(r)

]
(6)

Values of m, τ , and r were taken to be 2, 1, and 0.2 times the
standard deviation of the time series for our analysis, respec-
tively, as suggested by Pincus (2001). For both cohorts, the values
of ξ were taken to be 1–5. Higher values of ξ were not considered
since the estimation of sample entropy might be unreliable (Lu
et al. 2015).

Results
With the goal of presenting and highlighting reproducible
results, only results replicated in both the MNI and UPENN-RAM
cohorts are reported and discussed.

We first identified all electrode pairs in the MNI iEEG
(Frauscher et al. 2018) dataset which contained data from at
least five participants (Fig. 1a, Supplementary Tables 1, 2a and
3a). Given our focus on the SN, we first examined iEEG data
from participants who had electrode pairs AI–ACC in the SN
and pairs SN–DMN and SN–FPN which reflect SN interactions
with the DMN and FPN, respectively (Fig. 1a). There was
insufficient coverage of electrode pairs spanning the SN and the
ventromedial prefrontal cortex region of the DMN, so analyses
of DMN electrodes were based on the PCC/precuneus. Analyses
of the FPN electrodes were based on MFG and SMG regions. iEEG
data analyses were first performed on the primary MNI cohort,
and the same procedures were repeated in the replication
UPENN-RAM cohort (Fig. 1b, Supplementary Tables 2b and
3b) (Jacobs et al. 2016). Demographic information for the
participants of the MNI and UPENN-RAM iEEG datasets are
shown in Supplementary Table 4a,b, respectively. Given the
low-frequency nature of the fMRI signal and previous reports,
based on simultaneous multisite electrophysiological and fMRI
recordings in animal models which have demonstrated a
strong correlation between synchronized ultralow-delta (<4 Hz)
oscillations and resting-state fMRI signals (Lu et al. 2007; Chan
et al. 2015; Jaime et al. 2019), we focused our analysis on the
ultralow-delta (<4 Hz) band (hereafter referred to as slow-wave
band (Dalal et al. 2011)). The length of each trial was ∼4 s (see
Materials and Methods) in the UPENN-RAM cohort which did

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
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not allow us to analyze the ultralow band (<0.5 Hz) separately.
We therefore combined ultralow and delta (0.5–4 Hz) frequency
bands into a single ultralow-delta (<4 Hz) frequency band, and
all analysis in our paper was carried out in this ultralow-delta
frequency band across cohorts. Secondary analyses in the theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–80 Hz)
bands did not reveal any systematic network signatures and are
not discussed further. Our analysis pipeline, summarizing the
linear and nonlinear measures used in this study, is shown in
Figure 2.

Intra-SN Correlation Is Stronger than SN Interaction
with DMN and FPN Electrodes

We first used linear correlation analysis to examine SN integrity
and distinctiveness with respect to the DMN and FPN. In the
MNI cohort, we found that intra-SN correlation in the slow-
wave band was stronger than SN correlation with the DMN
(P < 0.05) and FPN (P < 0.05) electrodes (Fig. 3a). Similarly, in the
UPENN-RAM cohort, intra-SN correlation was stronger than SN
correlation with the DMN (P < 0.01) and FPN (P < 0.01) electrodes
(Fig. 3b). This result provides electrophysiological evidence that
the AI and ACC are more strongly coupled with each other than
with the DMN and FPN. Moreover, in both cohorts, intra-SN
temporal correlation was also stronger than DMN–FPN correla-
tion (P < 0.01 in MNI cohort and P < 0.05 in UPENN-RAM cohort)
suggesting that intra-SN correlation is the strongest among all
pairs of electrodes spanning the SN, DMN, and FPN.

No Evidence for Negative Correlations between
SN and DMN

The question of whether the SN, or FPN, is intrinsically nega-
tively correlated with the DMN has remained a controversy in
fMRI research (Murphy et al. 2009) and one that ultimately needs
resolution using electrophysiological recordings. We did not find
any consistent evidence for long-time negative correlation in
iEEG recordings between the SN, or FPN, and DMN electrodes in
either the MNI or the UPENN-RAM cohort (Fig. 3).

SN Is a Causal Outflow Hub in Cross-Network
Interactions with DMN and FPN

Previous fMRI studies have suggested that the SN acts as a
causal outflow hub with respect to interactions with the DMN
and FPN (Sridharan et al. 2008). To test the potential neural
basis of this finding, we used PTE which provides a robust
estimation of directed information flow between electrodes (see
Materials and Methods for details). Net causal outflow was
calculated as the difference between the total outgoing infor-
mation and total incoming information (PTE(out)–PTE(in), see
Materials and Methods for details). In this case, we used unfil-
tered time series since causality estimation is known to be
sensitive to filtering (Barnett and Seth 2011). In both the MNI
(Fig. 4a) and UPENN-RAM (Fig. 4b) cohorts, the SN had signif-
icantly higher net causal outflow than the DMN (P < 0.001 in
both cohorts) and FPN (P < 0.001 and P < 0.01 in MNI and UPENN-
RAM cohorts, respectively) electrodes. We did not find consis-
tent differences between causal influences of the AI and ACC
(Supplementary Figs 1 and 2).

These results demonstrate strong and replicable causal influ-
ences of the SN on the DMN and FPN and provide novel vali-
dation of dynamic causal influences that had previously been
detected with fMRI data.

Shorter Decorrelation Times in SN, Compared to DMN
and FPN Electrodes

The previous sections focused on interelectrode interactions
related to SN integrity. In this and the following sections, we turn
our attention to dynamic temporal features associated with SN
time series. To test the hypothesis that the underlying temporal
structure of SN time series differs from those of electrodes
in the DMN and FPN, we examined long-range dependency of
time series within each electrode. Temporal dependency was
evaluated by computing the decorrelation time using both linear
and nonlinear methods. In both cohorts, linear analysis revealed
shorter decorrelation times in the SN electrodes compared to
the FPN electrodes (P < 0.05 and P < 0.001 in MNI and UPENN-
RAM cohorts, respectively) (Fig. 5). Nonlinear analyses revealed
shorter decorrelation times in SN electrodes, compared to DMN
(P < 0.01 and P < 0.05 in MNI and UPENN-RAM cohorts, respec-
tively) and FPN (P < 0.001 in both cohorts) electrodes (Fig. 5).
These results demonstrate faster temporal dynamics in the SN
network and their replicability.

Higher Entropy of iEEG Activity in SN, Compared to
DMN and FPN Electrodes

To further characterize the distinct nonlinear properties of the
SN, we examined sample entropy (SE), which quantifies the
“complexity” of a time series from its nonlinear features. We
calculated SE from the original time series by constructing con-
secutive coarse-grained time series at multiple scales (see Mate-
rials and Methods for details) and then computing SE for each of
these time series.

In the MNI cohort, for our primary analysis involving the
original times series (scale 1), we found that SN electrodes had
significantly higher SE, compared to DMN (P < 0.01) and FPN
(P < 0.001) electrodes (Fig. 6a). Similarly, in the UPENN-RAM, the
SN electrodes had significantly higher SE, compared to DMN
(P < 0.05) and FPN (P < 0.001) electrodes (Fig. 6b).

We extended our analysis of sample entropy to multiple
scales (five scales in both cohorts) and found similar results:
in the MNI iEEG dataset, SN electrodes had significantly higher
SE than the DMN electrodes for all other scales considered
(P < 0.01 for scales 2–5) (Fig. 6a). SN electrodes also had signif-
icantly higher SE than the FPN electrodes at all other scales
(P < 0.001 for scales 2–5) (Fig. 6a). Similarly, in the UPENN-RAM
iEEG dataset, SN electrodes had significantly higher SE than the
DMN electrodes for all other scales considered (P < 0.05 for scales
2–5) (Fig. 6b). SN electrodes also had significantly higher SE than
the FPN electrodes at all other scales (P < 0.001 for scales 2–
5) (Fig. 6b). These replicable results indicate greater entropy of
iEEG signals in the SN, reflecting higher mean rate of creation
of information at multiple time scales (Grassberger 1991; Costa
et al. 2005).

Discussion
The SN is a large-scale distributed brain network anchored in
the AI and ACC that plays a critical role in a wide range of

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa111#supplementary-data
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Figure 2. iEEG data analysis pipeline. Data analysis steps used to investigate differential intra- and cross-network connectivity of the SN electrodes, with DMN and
FPN electrodes.

adaptive human behaviors (Dosenbach et al. 2006, 2008; Menon
and Uddin 2010; Menon 2015a, 2015b). We used two indepen-
dent iEEG cohorts to investigate the neurophysiological foun-
dations of the SN and its dynamic interactions with the DMN
and FPN. Critically, given the nonlinear nature of iEEG signals
(Menon et al. 1996) and emerging findings of time-varying con-
nectivity observed in fMRI data (Chen et al. 2016), both lin-
ear and nonlinear measures were used to probe the temporal
dynamics of intra- and cross-network interactions that under-
pin the SN. Linear correlation revealed that intra-SN coupling
is stronger than SN coupling with electrodes in the DMN and
FPN. Dynamic causal analysis revealed the SN as a hub with
respect to cross-network interactions with the DMN and FPN
electrodes, underlying its role in fast temporal switching of
networks (Sridharan et al. 2008). Further electrophysiological
evidence for distinctiveness of the SN came from the analysis

of temporal structure in regional electrophysiological activity
within each electrode. Linear and nonlinear time series analysis
both indicated faster temporal dynamics of activity in AI and
ACC, compared to DMN and FPN nodes. Our findings provide
new insights into SN integrity and the unique dynamic temporal
properties that distinguish it from the DMN and FPN. Notably,
all key results in the MNI cohort were replicated in the inde-
pendent UPENN-RAM cohort, highlighting the robustness of our
findings.

iEEG Temporal Correlations Reveal Neural Basis
of SN Integrity

Distinct yet dynamically interacting large-scale functional
networks that comprise the human brain have most readily
and consistently been identified using fMRI (Menon 2015a,
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Figure 3. Intra-SN correlation of iEEG activity compared to SN correlation with DMN and FPN electrodes. (a) MNI cohort. (b) UPENN-RAM cohort. In both cohorts, intra-
SN correlation was stronger compared to the correlation of the SN with the DMN and FPN electrodes. Error bars denote standard error of the mean (SEM) across all

pairs of electrodes. ∗∗P < 0.01, ∗P < 0.05 (Mann–Whitney U-test).

Figure 4. Net causal outflow of SN electrodes, compared to DMN and FPN electrodes. (a) MNI cohort. (b) UPENN-RAM cohort. Causality was estimated using PTE

which characterizes directionality of nonlinear interactions between brain regions. Net causal outflow was calculated as the difference between the total outgoing
information and total incoming information (PTE(out)–PTE(in)). In both cohorts, SN electrodes showed higher net causal outflow, when compared to the DMN and FPN
electrodes. Error bars denote standard error of the mean (SEM) across all pairs of electrodes. ∗∗∗P < 0.001, ∗∗P < 0.01 (Mann–Whitney U-test).

2015b). Previous fMRI-based studies using both independent
component analysis and seed-based connectivity analysis have
consistently identified the SN as a fronto-opercular–cingulate
network distinct from the DMN and FPN (Seeley et al. 2007). Our
analysis of iEEG data revealed stronger intranetwork coupling
in SN than cross-network coupling of SN with DMN and FPN
electrodes. The intra-SN correlation was also the strongest
among all pairs of electrodes spanning the SN, DMN, and
FPN. Spectral analysis revealed that the strongest and most
consistent effects were in the slow-wave frequency band (<4 Hz),
consistent with observations in human EEG and MEG recordings
(Schroeder and Lakatos 2009; Hirvonen et al. 2018) as well as
animal local field potential (LFP) recordings (Jaime et al. 2019).

These findings provide novel electrophysiological evidence for
the integrity and distinctiveness of the SN.

Weak and Inconsistent Evidence for Negative
Correlations between SN and DMN in
Resting-State iEEG

The lack of negative correlation between the SN, or FPN, and
the DMN electrodes is consistent with reports based on task-
free local field potential recordings in a cat visual cortex (Popa
et al. 2009). Our findings suggest that negative correlations
of the SN, or FPN, with the DMN may arise mainly from
dynamic changes in activation and deactivation that occur
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Figure 5. Decorrelation times of iEEG activity in SN, compared to DMN and FPN electrodes using both linear and nonlinear analysis. (a) MNI cohort. (b) UPENN-RAM
cohort. Decorrelation time, the interval in which past “memory” in the time series is lost, was determined using both linear and nonlinear measures. In linear analysis,
SN electrodes had shorter decorrelation times in comparison to the FPN electrodes in both cohorts. In nonlinear analysis, SN electrodes had shorter decorrelation
times in comparison to the DMN and FPN electrodes in both cohorts. Error bars denote standard error of the mean (SEM) across all electrodes. ∗∗∗P < 0.001, ∗∗P < 0.01,
∗P < 0.05 (Mann–Whitney U-test).

during cognition, rather than being an intrinsic feature of their
functional organization (Greicius and Menon 2004). Further
research with resting-state and task-based slow-wave frequency
iEEG recordings is needed to probe the neurophysiological basis
of putative anticorrelated interactions across large-scale brain
networks.

Causal Dynamics and Hubs in the SN

Previous fMRI studies have suggested that SN plays an impor-
tant role in its task-related engagement and disengagement of
the DMN across a wide range of cognitive and affective tasks
(Chen et al. 2016). These studies have shown that SN nodes
have earlier latency and exert stronger causal influences to
DMN and FPN nodes during cognition. Higher causal influ-
ences of the AI node of the SN on multiple brain areas have
also been reported in resting-state fMRI (Deshpande et al. 2011;
Zhou et al. 2018). Despite the consistency of these findings
across task-related and resting-state fMRI studies, it is not clear
whether these observations have a neuronal basis or whether
they are an artifactual feature of fMRI signals arising from its
slow dynamics and regional variation in hemodynamic response
function.

To address this question, we used PTE, which provides a
robust and powerful tool for characterizing information flow
between brain regions based on phase coupling (Lobier et al.
2014; Hillebrand et al. 2016; Wang et al. 2017). Analogous to the
formulation in Granger causal analysis, a brain region has a
stronger causal influence on a target if knowing the past phase
of signals in both regions improves the ability to predict the
target’s phase in comparison to knowing only the target’s past
phase (Granger 1969). However, PTE has several advantages over
Granger causal analysis (Barnett and Seth 2011), as it 1) can
capture nonlinear interactions, 2) is more accurate and compu-
tationally less expensive than transfer entropy, and 3) estimates

causal interactions based on phase, rather than amplitude, cou-
pling (Schreiber 2000; Lobier et al. 2014; Hillebrand et al. 2016).

PTE revealed significantly higher net causal outflow in SN
electrodes than DMN and FPN electrodes, in both MNI and
UPENN-RAM cohorts. To evaluate the overall temporal pattern of
causal interactions, we computed a causal hub metric based on
difference between PTE for out versus in links. We found that the
SN had stronger causal influences on DMN and FPN electrodes,
thus providing novel electrophysiological evidence for their role
as a causal signaling hub. This pattern of neuronal signaling may
underlie the SN’s causal role in facilitating dynamic switching
between the DMN and FPN. Our findings thus provide novel elec-
trophysiological evidence that the SN plays a prominent causal
role in signaling with other brain networks (Sridharan et al.
2008; Cai et al. 2016) and is consistent with the temporal order
of task-evoked responses reported using cortical electrogram
recordings (Raccah et al. 2018). We suggest that the SN’s causal
influences on the DMN and FPN give it a powerful and flexible
role in cognitive control as hypothesized previously based on
fMRI studies (Dosenbach et al. 2008; Menon and Uddin 2010;
Chen et al. 2016). Further research with both task and resting-
state iEEG data and dense sampling of electrodes in multiple
cortical and subcortical regions, as well as the AI and ACC, are
necessary to further probe the broader causal role of the SN in
the human brain.

Fast Temporal Dynamics of iEEG Activity in the SN

The AI and ACC nodes of the SN were further distinguished
by their intrinsic dynamic properties. Decorrelation time and
sample entropy have been extensively used in the neuroscience
literature to probe neural dynamics and have been shown to play
important roles in cognition (Sokunbi et al. 2013; Wang et al.
2014, 2018; Cavanagh et al. 2016; Jia et al. 2017; Pedersen et al.
2018; Saxe et al. 2018; Wairagkar et al. 2018; Xue et al. 2019).
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Figure 6. Entropy of iEEG activity in SN electrodes, compared to DMN and FPN electrodes. (a) MNI cohort. (b) UPENN-RAM cohort. Sample entropy (SE) was used to
quantify the rate of information creation from its nonlinear dynamical features. In both cohorts, SN electrodes had higher entropy in comparison to the DMN and FPN
electrodes. Error bars denote standard error of the mean (SEM) across all electrodes. ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05 (Mann–Whitney U-test).

For example, it has been shown that decorrelation time can
distinguish between resting-state and movement intention and
can play an important role in designing better brain–computer
interfaces (Wairagkar et al. 2018). Furthermore, variability of
decorrelation time across neurons in the prefrontal cortex pre-
dicts involvement in decision-making processes (Cavanagh et al.
2016).

Linear autocorrelation-based analysis revealed shorter
decorrelation times in SN electrodes compared to FPN electrodes
and comparable decorrelation times in SN electrodes compared
to DMN electrodes. Nonlinear mutual information-based
analysis revealed shorter decorrelation times in SN electrodes,
in comparison to DMN and FPN electrodes. This highlights
the importance of taking nonlinear features into account in
analyzing neuronal dynamics and suggests that distinguished

features between two brain networks can be missed by linear
analysis only.

Decorrelation times capture the interval in which past
“memory” in the time series is lost, and our finding of faster
decorrelation times in SN is consistent with its hypothesized
role in facilitating fast temporal interactions with other
brain networks (Dosenbach et al. 2006, 2008; Sridharan et al.
2008; Chen et al. 2016). Multiscale entropy measures which
assess complexity and information in dynamical systems
(Grassberger 1991) revealed higher entropy in the SN, which
further distinguished SN activity from the DMN and FPN. Thus,
multiple quantitative approaches provide converging evidence
for fast temporal features associated with the AI and ACC. These
unique dynamic temporal properties of the SN may underlie
its flexible role in initiating network switching and mediating



Multicohort Replication of Nonlinear Dynamics of the Salience Network Das and Menon 5319

causal interactions between brain networks (Sridharan et al.
2008; Bressler and Menon 2010; Menon 2011; Taghia et al. 2018).

SN Stability and Flexibility

Our linear correlation and nonlinear causal analyses identify
distinct temporal features associated with network stability and
flexibility. On the one hand, we found that intranetwork correla-
tion of the SN was significantly higher than cross-network corre-
lations with the DMN and FPN. On the other hand, causal analy-
ses, which capture temporal delay-dependent dynamics, uncov-
ered the influence of the SN on the DMN and FPN. Together,
these neurophysiological properties may allow the SN to main-
tain a balance between network stability and flexibility. Criti-
cally, linear analysis captures network stability, while nonlinear
analysis captures flexibility. In terms of cognitive function, our
findings indicate that SN nodes have the intrinsic capacity
to influence other brain networks which may help facilitate
dynamic state changes associated with both internal mental
events and the external environment. Further iEEG studies com-
paring task-related and stimulus-related responses are required
to test this hypothesis.

Reproducibility of Findings

Reproducibility is a challenge for all of neuroscience but partic-
ularly so for invasive human intracranial electrophysiological
studies where data is hard to obtain and open-source data
sharing is rare (Jacobs et al. 2016; Frauscher et al. 2018). To
address this concern and to determine the reliability of our
findings, we used two unique iEEG datasets shared by the MNI
(Frauscher et al. 2018) and UPENN-RAM (Jacobs et al. 2016) con-
sortia. Despite differences in acquisition sites, recording sys-
tems, and protocols, we replicated three major results across
the two cohorts: 1) SN nodes showed stronger correlation with
each other, when compared to the DMN and FPN, 2) the SN
is a dynamic causal hub in relation to its interaction with the
DMN and FPN, and 3) the SN showed faster temporal dynamics
and higher entropy than electrodes in the DMN and FPN. These
results provide robust evidence for the unique electrophysiolog-
ical properties of the SN and its dynamic temporal properties.

Conclusion
Our study significantly advances knowledge of the neurophys-
iological underpinnings of large-scale networks in the human
brain. Convergent evidence from multiple quantitative mea-
sures revealed a unique profile of intra- and cross-network
interactions, and dynamic temporal properties, that charac-
terize the SN and distinguish it from other brain networks.
Analysis of linear dynamical properties revealed higher lev-
els of correlated activity between the AI and ACC nodes of
the SN than with regions belonging to the other networks. SN
nodes showed unique causal relationships with the other brain
regions and also have different intrinsic signal dynamics. More
broadly, our findings provide new insights and perspectives
into foundational mechanisms underlying stability and flexi-
bility of large-scale networks in the human brain. Finally, our
study demonstrates how iEEG data sharing efforts can facilitate
reproducibility and help propel discoveries in human system
neuroscience that would be otherwise virtually impossible to
achieve (Holdgraf et al. 2019).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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