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Abstract

Rural lower Yakima Valley, Washington is home to the reservation of the Confederated Tribes and 

Bands of the Yakama Nation, and is a major agricultural region. Episodic poor air quality impacts 

this area, reflecting sources of particulate matter with a diameter of less than 2.5 micrometers 

(PM2.5) that include residential wood smoke, agricultural biomass burning and other emissions, 

truck traffic, backyard burning, and wildfire smoke. University of Washington partnered with the 

Yakama Nation Environmental Management Program to investigate characteristics of PM2.5 using 

9 months of data from a combination of low-cost optical particle counters and a 5-wavelength 

aethalometer (MA200 Aethlabs) over 4 seasons and an episode of summer wildfire smoke. The 

greatest percentage of hours sampled with PM2.5 >12 μg/m3 occurred during the wildfire smoke 

episode (59%), followed by fall (23%) and then winter (21%). Mean (SD) values of Delta-C (μg/

m3), which has been posited as an indicator of wood smoke, and determined as the mass 

absorbance difference at 375-880nm, were: summer – wildfire smoke 0.34 (0.52), winter 0.27 

(0.32), fall 0.10 (0.22), spring 0.05 (0.11), and summer – no wildfire smoke 0.04 (0.14). Mean 

(95% confidence interval) values of the absorption Ångström exponent, an indicator of the 

wavelength dependence of the aerosol, were: winter 1.5 (1.2-1.8), summer – wildfire smoke 1.4 

(1.0-1.8), fall 1.3 (1.1-1.4), spring 1.2 (1.1-1.4), and summer – no wildfire smoke 1.2 (1.0-1.3). 

The trends in Delta-C and absorption Ångström exponents are consistent with expectations that a 

higher value reflects more biomass burning. These results suggest that biomass burning is an 

important contributor to PM2.5 in the wintertime, and emissions associated with diesel and soot are 

important contributors in the fall; however, the variety of emissions sources and combustion 

conditions present in this region may limit the utility of traditional interpretations of aethalometer 

data. Further understanding of how to interpret aethalometer data in regions with complex 
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emissions would contribute to much-needed research in communities impacted by air pollution 

from agricultural as well as residential sources of combustion.
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1. Background

1.1 Study motivation

Rural lower Yakima Valley, Washington is home to the reservation of the Confederated 

Tribes and Bands of the Yakama Nation, and is a major agricultural region. In 2013 through 

2016, Yakima County had the greatest percentage of monitored days per year with PM2.5 

over 35 μg/m3 in WA (Washington Tracking network). Residential wood smoke is felt to be 

a major contributor (Pruitt 2014; VanderSchelden et al, 2017), although local sources include 

agricultural biomass burning, wildfire smoke, emissions associated with truck traffic, other 

agricultural emissions, and backyard burning.

High exposure to wood smoke is associated with respiratory issues, including asthma and 

lower respiratory tract infections (Noonan and Balmes, 2010). Factors influencing pediatric 

asthma and lower respiratory tract infections in rural settings are under-studied (Estrada and 

Ownby, 2017). Wood smoke is of even greater concern during the late fall and winter 

months when weather inversions are common, trapping air pollution in the valley. Due to 

stagnant atmospheric conditions common in the wintertime in Yakima Valley, the county 

(for its jurisdiction) and Yakama Nation and EPA (for the Yakama Reservation) issue bans 

on burning.

It remains a research challenge to understand PM2.5 in rural settings given the sparseness of 

regulatory monitoring. Low-cost air monitors estimating PM2.5 concentrations are useful in 

providing greater spatial resolution in time-resolved PM2.5 levels (Zikova et al, 2017; 

Morawska et al 2018). However, their accuracy varies by season (Sayahi, Butterfield, & 

Kelly, 2019) and PM concentration, and calibration is necessary especially at higher PM 

levels (Kelly et al, 2017). Low-cost PM monitors cannot distinguish between PM originating 

from residential wood smoke versus other PM sources. However, this information is 

important for developing interventions to mitigate emissions. A multi-wavelength 

aethalometer can complement low-cost PM monitors by providing information that may be 

used to address PM sources.

As part of the US EPA Monitoring for Communities Program, the University of Washington 

partnered with the Yakama Nation Environmental Management Program to investigate 

characteristics of local PM2.5 using a combination of low-cost PM monitors, a regulatory 

PM2.5 monitor, and a 5-wavelength aethalometer. We were particularly interested in the 

application of the aethalometer in distinguishing wood smoke in this region. This study used 

a combination of 9 months of PM2.5, Delta-C, and absorption Ångström exponent data over 

4 seasons, including a period of wildfire smoke, to further understand contributions to PM2.5 
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in this highly impacted, rural area, and to investigate the utility of Delta-C and Ångström 

exponent data in identifying source contributions in this region.

2. Methods

2.1 Sampling location

Data were collected at two Yakama Nation air monitoring sites: one in Toppenish, 

Washington from late fall 2017 to mid-summer 2018, and another in Harrah, Washington 

from mid-summer 2018 to mid-fall 2018. The Toppenish site is located near a high school, 

at the end of a residential area and near agricultural fields, an industrial area, and a major 

roadway (Highway 97). This air monitoring site contains a low-cost monitor and the EPA-

recognized federal equivalent method (FEM) beta attenuation monitor (BAM) (EPA site ID 

53-077-0015). The BAM measures an hourly average of PM2.5 concentration. A second low-

cost monitor was placed at the Harrah site about 11 miles west, located near an elementary 

school, in a heavy agricultural region, away from major highways. This second site was 

chosen due to interest in capturing emissions more specifically related to agriculture. This 

site was previously a tribal air monitoring site (inactive EPA site ID 53-077-0017).

2.2 Particulate air monitoring instruments

The low-cost air monitors (cost of components $1,500-$2,000) were designed and 

assembled in-house at University of Washington for use in prior studies. Two optical particle 

sensors (Plantower PMSA003) report instantaneous measures of particle counts every two to 

three minutes, with the following size cut-points: 0.3, 0.5, 1, 2.5, 5, and 10 micrometers. 

Additionally, the Plantower provides estimates of mass concentrations for PM1, PM2.5, and 

PM10. The Plantower PMSA003 reports two sets of mass concentrations, CF=1 which is 

intended for factory calibrations, and ATM which is intended for ambient measurements. 

This study used the ATM PM2.5 mass concentration values. The low-cost monitor also 

includes temperature and relative humidity (RH) sensors (Honeywell HIH6130).

Yakama Nation owns and operates the BAM, in collaboration with the WA Department of 

Ecology. The BAM measures aerosol sample PM2.5 mass and reports hourly data. Hourly 

data was retrieved from the Washington State Department of Ecology’s Air Quality 

Monitoring Website (Washington State Department of Ecology). BAM hourly PM2.5 data 

was used to calibrate the low-cost monitor ATM PM2.5 mass concentration data as described 

in section 2.5.

The other monitor utilized was a 5-wavelength aethalometer: the microAeth® MA200 

(AethLabs) (2017 price <$10,000) which calculates particle mass every 1-minute at the 

following wavelengths: 880, 625, 528, 470, and 375 nm. The mass of particles that absorb 

light in the infrared (IR) range (880 nm) is considered to represent black carbon (BC) 

(Kirchstetter et al, 2004). The mass of particles that absorb light in the ultraviolet (UV) 

range (375 nm) is considered to represent brown carbon (BrC), which includes particles 

emitted by biomass burning (Laskin, Laskin, & Nizkorodov, 2015), such as wood smoke, 

tobacco, and agricultural burning. The PFTE filter automatically advances when it is 

saturated, and the filter cartridge was replaced as needed. The flow set point was 100 ml/min 
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and the attenuation threshold was set to 50%. The first 30 minutes of measurements after a 

filter cartridge change were removed to mitigate estimates influenced by the instrument 

warming up. Optimized Noise Reduction Averaging was applied for every 5% change in the 

attenuation value for each channel, as described by Hagler et al (2011). Data was averaged 

by hour. The aethalometer also includes temperature and RH sensors.

2.3 Sampling timeframe

During the study period, Yakima Valley was highly impacted by summertime wildfire smoke 

from wildfires in Washington, nearby states, and British Columbia. The study aethalometer 

was co-located at both sites, with data divided into 5 time periods: winter (12/21/17-3/20/18, 

Toppenish), spring (3/21/18-6/20/18, Toppenish), summer wildfire smoke (8/1/18-9/9/18, 

Harrah), summer no wildfire smoke (6/21/18-7/31/18 and 9/10/18-9/21/18, Harrah), and fall 

(9/22/18-11/29/18, Harrah). Technical and site-based challenges interrupted data collection 

at several points (Figure 1).

Aethalometer data is available each month from January to October 2018, missing several 

days intermittently. The aethalometer data from most of July is not included in this study 

because the aethalometer was moved from Toppenish to Harrah on 7/25. BAM data is 

available from December 2017 to November 2018, missing nearly all of February and 

several days in June. Data from the low-cost monitor in Toppenish is available for December 

2017 to March 2018 (missing several weeks in January and March), May to June 2018, and 

September to November 2018. Data from the low-cost monitor in Harrah is available from 

March to November 2018, missing several days at the end of July.

2.4 Absorption Ångström exponent

Absorption is denoted by babs (m−1) and is specific to each wavelength. To convert babs to 

mass, the aethalometer uses mass absorption efficiency values denoted by σ (m2g−1) 

empirically derived by the manufacturer (AethLabs, San Francisco). Mass absorption 

efficiency values used for each wavelength of the MA200 are available in the supplementary 

information (SI) Table 1. Using these mass absorption efficiency values, babs can be back-

calculated from the mass at each wavelength using the following equation:

babs = mass × σ

The wavelength dependence of babs changes with aerosol composition, and can be described 

using the absorption Ångström exponent, denoted by α. Using α to describe wavelength 

dependence facilitates comparison between different studies using aethalometers 

(Sandradewi et al, 2008). In general, α has been observed to increase with more biomass 

burning (Kirchstetter et al, 2004; Zotter et al, 2017; Sandradewi et al, 2008).

Ångström exponent values (α) were derived from linear regression parameters of babs by 

wavelength (λ) on a log-log scale, using the following equation:

ln(babs) = − α × ln(λ) + b
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Wavelength dependence (babs vs. λ) was plotted with a power law fit using the parameters α 
and b calculated from the regression in the previous equation. The power law fit is shown in 

the following equation:

babs = eb × λ−α

2.5 Delta-C

Delta-C, the absorbance difference at 375nm-880nm, was used as a biomass burning 

indicator. Delta-C has been used as an indicator for residential wood smoke (Wang et al, 

2011a; Wang et al, 2012a; Sandradewi et al, 2008; Zhang et al, 2017; Sofowote et al, 2014; 

Crilley et al, 2015), forest fires (Wang et al, 2011a; Wang et al, 2010; Landis et al, 2017; 

Kimbrough et al, 2015), and other biomass burning and fireworks (Wang et al, 2011b; 

Kirchstetter et al, 2004). Delta-C has also been used to estimate the relative contribution of 

wood smoke to PM2.5 (Wang et al, 2011a; Wang et al, 2012a).

2.6 Calibration of the low-cost monitor

Numerous studies have documented the importance of accounting for relative humidity in 

calibrating low-cost PM sensors with reference PM instrument measures, and that the 

relationship between light scattering and relative humidity is non-linear (Liu et al, 2019; 

Chakrabarti et al, 2004; Jayaratne et al, 2018; Sioutas et al, 2000; Day et al, 2000). The 

Plantower sensor response exponentially increases at RH levels above 78% (Jayaratne et al, 

2018). One challenge of applying previous calibration methodology is that different studies 

involve different particle composition, which affects particle light scattering, as well as 

varying RH. Not all sensors respond the same, and thus evaluations of, for example, Nova 

(Liu et al, 2019) and personal DataRAM (Chakrabarti et al, 2004), may not be applicable to 

calibration of the Plantower. Selection of the reference instrument may also influence 

calibration. Jayaratne, et al based calibration of the Plantower on the TEOM (Jayaratne et al, 

2018), while we used the BAM. Choice of RH measurement could also influence the 

calibration. Jayaratne, et al relied upon the reference monitoring site's RH measurement 

(Jayaratne et al, 2018), while Liu et al (2019) and our study relied upon an RH sensor inside 

of the low-cost monitor enclosure. This RH measurement may be different from ambient air 

RH. Generally, our approach to calibration is consistent with these previous studies in that 

we rely upon empirical co-location data with reference instrumentation, measurement of RH 

as a potential influence on the relationship between low-cost sensor response and particle 

mass concentrations, and a calibration model that allows for non-linear exponential response 

to increasing RH.

One low-cost monitor was co-located with the BAM, running intermittently between fall 

2017 and fall 2018 at the Toppenish site for PM monitor calibration. Seasonal (winter, 

spring, summer, and fall) calibration equations were calculated by conducting multiple linear 

regressions between the hourly low-cost and BAM PM2.5 mass concentration data. Summer 

wildfire and no wildfire periods were combined into a single summer season for the 

calibration model to include more data in the regression. All of the available co-located 

BAM and Toppenish low-cost monitor data were included in the calibration models. Each 
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regression included RH, RH2, and temperature as co-variates to account for the potential 

impact of RH and temperature on sensor accuracy (Jayaratne et al, 2014; Chakrabarti et al, 

2004; Zheng et al, 2018; Liu et al, 2019). RH and temperature data came from sensors 

within the low-cost monitor. Low-cost monitor temperature and RH were compared to each 

other and to the BAM and Washington State University’s AgWeatherNet Toppenish Station 

(AgWeatherNet) to confirm it is appropriate to use within-monitor temperature and RH data 

for the calibration. The model used is shown in the following expression:

BAM PM2.5~low cost PM2.5 + RH + RH2 + temperature

Parameters calculated for each variable from the multiple linear regressions were used to 

establish calibrated PM2.5 values, using the following equation:

Calibrated PM2.5 = β0 + β1 × low cost PM2.5 + β2 × RH + β3 × RH2 + β4 × temperature

Where β0 is the intercept, β1 is the coefficient for the low-cost PM2.5, β2 is the coefficient 

for RH, β3 is the coefficient for RH squared, and β4 is the coefficient for temperature. The 

seasonal calibration models were used to adjust data by season from the low-cost monitor 

located in Harrah.

The two low-cost monitors were co-located in Seattle, WA from 7/10/17 to 7/13/17 for a 

total of 69 hours. We assessed the correlation and mean absolute difference of hourly PM2.5 

mass concentration data from these two monitors to confirm that it is appropriate to use a 

calibration equation from the monitor in Toppenish and apply it to the monitor in Harrah.

2.7 Analyses

For each time period when both aethalometer and co-located PM2.5 data were available, 

hourly mean PM2.5, Delta-C, IR, and Delta-C:PM2.5 were calculated. Temperature from the 

BAM and RH from the AgWeatherNet Toppenish station were reported to provide context 

for seasonal weather differences. For Delta-C:PM2.5 only, PM2.5 <1 μg/m3 (7.7% of sampled 

hours) were excluded to avoid spuriously high or negative ratio values that occur with noise 

in the Delta-C data and almost zero PM2.5 mass values. This ratio used Harrah low-cost 

monitor PM2.5 data in the summer and fall, and Toppenish BAM data in the winter and 

spring. A non-parametric Kruskal-Wallis test (Kruskal and Wallis, 1952) followed by a 

Dunn multiple-comparison test using bonferroni p-value adjustment (Dunn, 1964; Pohlert, 

2014) was used to assess statistical significance of seasonal differences in mean PM2.5, 

Delta-C, IR, and Delta-C:PM2.5. The Dunn test was repeated with each season treated as the 

control group to identify pairwise differences between season.

Wavelength dependence was plotted and α (375-880nm) values were calculated by season. 

Diurnal patterns of PM2.5, Delta-C, and α values were assessed using boxplots for each 

hour. Delta-C, PM2.5, and α values were also compared by season between weekends and 

weekdays, with non-parametric Kruskal-Wallis tests comparing weekends vs. weekdays 

within each season. The number and percentage of hours per season with PM2.5 >12 μg/m3 

were calculated, as well as the α values for those peak hours.
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All of the available aethalometer data were analyzed to assess statistical significance of 

seasonal differences in α values using a non-parametric Kruskal-Wallis test followed by a 

Dunn multiple-comparison test using bonferroni p-value adjustment, with the Dunn test 

repeated with each season treated as the control group as described above. All of the 

available PM2.5 data were used to compare seasonal PM2.5 concentrations between 

Toppenish and Harrah.

Negative PM and aethalometer data were included in these analyses. Negative BAM PM2.5 

data are due to expected instrument noise (Schulte, 2017), negative low-cost monitor PM2.5 

data are due to the application of the calibration equation, and negative aethalometer data are 

due to either measurement error or volatility of species in the aerosol sample (Wang et al, 

2011b). For both Toppenish and Harrah, the two Plantowers in each monitor were compared, 

and failed Plantowers (those with readings >3000 μg/m3) were not used. During the study 

period, one Plantower in each monitor failed. Data from the other Plantower in each monitor 

were used. During the fall season, the remaining Plantower in Harrah had 81 data points 

(prior to averaging by hour) with PM2.5 readings >3000 μg/m3. These data were excluded. 

All analyses were completed using R version 3.5.1 (2018-07-02).

3. Results and Discussion

This paper describes one of the first applications of seasonal PM and BC monitoring in rural 

Yakima Valley, based on a combination of low-cost PM monitors, regulatory PM 

monitoring, and a multi-wavelength aethalometer. In conducting this study, we demonstrated 

the usefulness of low-cost monitor calibration with the local FEM BAM, and combined use 

of calibrated PM concentrations with information on Delta-C and absorption Ångström 

exponent to understand how biomass burning, wildfire smoke, and other sources of PM2.5 

and BC impact the Yakama Reservation airshed.

3.1 Low-cost monitor calibration

During the pre-study co-location in Seattle, WA, Pearson’s correlation for hourly average 

PM2.5 (μg/m3) from the Plantowers used in this study was 0.94 (95% confidence interval 

(CI) 0.90-0.96). The mean absolute difference was 0.08 μg/m3. The Pearson’s correlation for 

temperature and RH were both 0.99 (95% CI 0.99-1.0).

During the study period, Toppenish low-cost monitor temperature and RH differed from 

BAM temperature and AgWeatherNet RH (Table 1). Low-cost monitor temperature tended 

to be higher than BAM temperature, and low-cost monitor RH tended to be lower than BAM 

RH. This is expected as the low-cost monitor temperature and RH sensors are within the 

monitor enclosure, resulting in warmer and drier conditions.

For the seasonal calibration equations, summer and fall R2 exceeded spring and winter 

(Figure 2). The range of β1 values (PM2.5 slope) was 0.45 to 0.58 (SI Table 2). In each 

season, the calibration equation resulted in values closer to the 1-1 line, as compared to the 

raw data (Figure 2).
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The relationships appear to be non-linear at PM2.5 values above about 25 μg/m3. These 

values comprise 10.6% of fall PM2.3 measurements, 1.9% of winter, 0% of spring, and 5.3% 

of summer. We tested alternative calibration equations for fall using terms for PM2.5
2, 

PM2.5
3, and PM2.5

4, and found that the mean absolute difference between the calibrated 

PM2.5 predicted by each of the non-linear equations versus the linear equation was 0.001 in 

each case. Because this difference is not meaningful, we decided to continue using linear 

equations for the rest of the analysis.

3.2 Seasonality of PM2.5, Delta-C, IR, and Delta-C:PM2.5

All season pairs of mean PM2.5, Delta-C, IR, and Delta-C:PM2.5 were statistically 

significantly different from each other (p < 0.05) except for: winter and summer fire Delta-

C, spring and summer no fire Delta-C, spring and summer no fire IR, fall and summer no 

fire Delta-C:PM2.5, spring and summer no fire Delta-C:PM2.5, and fall and spring Delta-C: 

PM2.5. Mean PM2.5 concentrations were highest during the summer wildfire season, along 

with Delta-C and IR (Table 2). Delta-C:PM2.5 was not highest during the summer wildfire 

season, possibly due to the combination of high PM2.5 levels and decay of BrC in 

transported wildfire plumes (Forrister et al, 2015). Mean Delta-C was second highest in the 

winter, likely reflecting wintertime wood burning. The hourly mean wintertime Delta-

C:PM2.5 ratio in this study was 0.033, greater than the hourly mean ratios in the other 

seasons. Based on a period of high residential wood combustion during a winter inversion, 

Wang et al. identified a Delta-C:PM2.5 ratio indicative of high contribution of wood smoke 

to PM2.5 of 1:7.5 = 0.133 (Wang et al, 2011a), which is greater than the wintertime hourly 

mean ratio in this study but less than the maximum wintertime Delta-C:PM2.5 ratio in this 

study (0.27). Mean Delta-C:PM2.5 in the fall was similar to spring and lower than winter at 

0.011, while mean PM2.5 was similar to winter. This suggests that there are other (non-BrC) 

important contributions to PM2.5 in the fall.

Except for the summer wildfire smoke, these 9 months of sampling were relatively low for 

PM2.5 for this area, especially in the winter (wintertime hourly mean was 7.7 μg/m3, max 39 

μg/m3). In winter the year prior to this study (12/21/16-3/20/17) hourly mean was 16.9 

μg/m3, max 67 μg/m3 (Washington State Department of Ecology). Overall trends for the 

county are available from Washington Tracking Network and report the following annual 

average 24-hour PM2.5 from 2010 to 2016: 9.1, 10.2, 11.7, 12.9, 10.1, 13.3, and 11.6 μg/m3 

(Washington Tracking Network). Reduced wintertime PM2.5 in this study compared to the 

previous year may be due to a combination of the success of the Yakama Nation 

Environmental Management Program’s wood stove changeout program, and the sampled 

hours potentially capturing fewer than usual wintertime weather inversions and milder 

temperatures requiring less home heating.

Mean hourly Delta-C for the winter season was 0.27 μg/m3, which is within the range of 

other reported wintertime mean Delta-C values in wood smoke impacted areas: 0.26 μg/m3 

in Laredo, TX (Wang et al, 2011b), and 0.10 to 0.34 μg/m3 in Rochester, NY (Wang et al, 

2011b; Wang et al, 2012c; Croft et al, 2017; Evans et al, 2017; Huang et al, 2011; Rich et al, 

2018).
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Spring, fall, and summer without wildfire smoke hourly means of Delta-C ranged from 0.04 

to 0.10, which is lower than most other reported means of Delta-C during non-winter 

seasons or year-round: −0.4 to 0.15 μg/m3 in Rochester, NY (Wang et al, 2011b; Wang et al, 

2012c; Wang et al, 2012a; Evans et al, 2017; Huang et al, 2011), and 0.21-1.58 μg/m3 in 

Karachi, Pakistan (Malashock, 2012).

Summer wildfire smoke hourly mean and max of Delta-C (0.34 and 5.09) were lower than 

other reported Delta-C means during wildfire episodes: 20 and 8.0 μg/m3 in Fort McMurray, 

Alberta (Landis et al, 2017). This may be due to previously mentioned decay of BrC in 

transported wildfire plumes (Forrister et al, 2015). The wildfire smoke impacting Yakima 

Valley originated from regional, not local, wildfires.

3.2.1 Use of Delta-C—Reports of the reliability of Delta-C to indicate wood smoke 

vary. Delta-C was found to be impacted by traffic emissions (Su et al, 2015), industrial 

emissions (Cheng et al, 2014), coal combustion (Kirchstetter et al, 2004; Olson et al, 2015), 

and other aerosols (Kirchstetter et al, 2004; Zhang et al, 2017; Olson et al, 2015) in addition 

to wood smoke. Harrison et al found that Delta-C did not capture wood smoke as well as 

levoglucosan (2012).

However, Delta-C was found to reflect diurnal and seasonal patterns expected from 

residential wood burning (Wang et al, 2011a; Wang et al, 2012a; Sandradewi et al, 2008; 

Zhang et al, 2017; Sofowote et al, 2014; Crilley et al, 2015), be sensitive to smoke from 

forest fires (Wang et al, 2011a; Wang et al, 2010; Landis et al, 2017; Kimbrough et al, 

2015), be sensitive to other biomass burning and fireworks (Wang et al, 2011b; Kirchstetter 

et al, 2004), and not be associated with vehicle exhaust (Wang et al, 2011a; Kirchstetter et 

al, 2004; Wang et al, 2012b) in other studies. Delta-C was also found to correlate with other 

wood smoke markers – levoglucosan and potassium (Wang et al, 2011a; Harrison et al, 

2012; Kimbrough et al, 2015; Crilley et al, 2015), and to correlate with PM2.5 in wood 

smoke dominated environments (Zhang et al, 2017). In one study, Wang et al attributed more 

than 72% of Delta-C to a wood combustion factor (2012a).

Because Delta-C is sensitive to many types of biomass burning, it cannot be used to 

distinguish residential wood smoke from other biomass burning in areas with multiple 

biomass burning sources. Zhang et al caution that Delta-C is only semi-quantitative and in 

general cannot be used to signify a particular amount of a compound (2017). At the same 

time, Delta-C:PM2.5 may indicate the relative contribution of biomass burning to total PM2.5 

(Wang et al, 2011a), implying that higher Delta-C:PM2.5 is expected during instances of 

greater biomass burning. This is consistent with our study observations in this region with 

known wood burning for wintertime heat.

3.3 Wavelength dependence and absorption Ångström exponents by season

The α value based on mean absorbance was highest in the winter at 1.5, followed by 

summer wildfire at 1.4, fall at 1.3, and spring and summer no wildfire at 1.2 (Table 3). The 

relative height of the curves in Figure 3 reflects relative mass of BC and BrC. Seasonal α 
values had wide 95% CI that overlapped in all seasons. The α values are all within the range 

of other studies’ values for seasons with higher expected biomass burning (0.98-1.6) (Favez 
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et al, 2009; Sandradewi et al, 2008; Soni et al, 2011) and aerosols dominated by traffic 

emissions, soot, and diesel (~1-1.5) (Kirchstetter et al, 2004), but barely approach the range 

of values expected from biomass burning based on constrained studies (1.6-2.8) (Kirchstetter 

et al, 2004; Sandradewi et al, 2008; Zotter et al, 2017).

The low end of the non-winter CIs (1.0-1.1) were within the range of other studies’ values 

for seasons with lower expected biomass burning (0.64-1.1) (Sandradewi et al, 2008; Soni et 

al, 2011) as well as higher expected biomass, traffic emissions, soot, and diesel, but are 

higher than values attributed to a modern motor vehicle fleet (0.9) (Zotter et al, 2017). 

According to estimates from Garg et al, these mean values are more representative of 

flaming (<1.4) rather than smoldering (>2) combustion conditions (2015).

The seasonal differences in α values were statistically significant (p-value <0.0001). Rank of 

α values in summer wildfire and wintertime were significantly different from the other three 

seasons: fall, spring, and summer no wildfire (Table 4). Summer wildfire and winter were 

not significantly different from each other, and fall, spring, and summer no wildfire were not 

significantly different from each other. This suggests that the aerosols in wintertime and 

summer wildfire were more dominated by emissions from biomass burning relative to the 

other seasons.

3.3.1 Use of Ångström exponents—In general, α has been observed to increase with 

more biomass burning (Kirchstetter et al, 2004; Zotter et al, 2017; Sandradewi et al, 2008). 

Favez et al found an average α (370–950 nm) of 1.25 in wintertime in Paris, France which is 

highly impacted by wintertime wood smoke (2009). Sandradewi et al reported average α 
(370–950 nm) values of 1.6 in the winter in a Swiss alpine valley highly impacted by wood 

smoke, 1.1 in the summer in the same valley, and 2.8 for a wood fire conducted in a 

laboratory (2008). Kirchstetter et al reported α over wavelengths ranging from a minimum 

of 330-450 nm to a maximum of 700-1100 nm for 20 different aerosol samples, and found 

that in general motor vehicle dominated aerosols had values around 1, while biomass 

dominated aerosols had values around 2 (2004). Kirchstetter et al also summarized the α 
findings of previous studies, which also tended towards ~1-1.5 for motor vehicle, soot, and 

diesel, and towards ~1.6-2.4 for biomass burning (2004).

Aerosols with a variety of pollution sources may have α values that do not clearly 

distinguish between higher and lower biomass burning expected with seasonal changes. 

Over 2 years in Delhi, India, Soni et al found that α values were 0.64, 0.68, 0.84, and 1.16 

during seasons with lower expected biomass burning, and 0.98, 1.02, 1.19, and 1.21 during 

seasons with higher expected biomass burning (2011). Zotter et al found through 

comparisons between aethalometer data and elemental carbon source apportionment that an 

optimal α for traffic emissions is 0.9 and for wood burning is 1.68 (2017), however these 

values are based on emissions from a modern car fleet and constrained conditions for 

residential wood combustion, so may not apply to more complex aerosols.

Garg et al conducted a study in Mohali, India comparing a seven wavelength aethalometer to 

a mass spectrometer looking at a variety of emissions, including traffic and burning of 

agricultural residue, leaf litter, and garbage (2015). They suggest that combustion efficiency 
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impacts α more than fuel type, where flaming conditions lead to lower α values (<1.4) and 

smoldering conditions lead to higher α values (>2) (Garg et al, 2015). Garg et al note that 

where aerosols are impacted by a variety of sources with a variety of combustion 

efficiencies, α may not be useful in identifying sources (2015).

While differences in α between seasons were statistically significant, the CIs for our 

observed values were wide. This could be due to the mixture of emissions sources and 

combustion conditions present in this region, including field and crop residue burning, low-

temperature diesel emissions, truck traffic, backyard burning, and wood burning. Even the 

period of summer wildfire smoke did not produce a mean α clearly associated with biomass 

burning. This could be related to smoke aerosol characteristics changing during transport 

from regional wildfires, and wildfire combustion conditions.

In future studies, it may be helpful to target sampling to specific emissions in this area. For 

example, the aethalometer could be placed in the middle of a residential area with heavy 

wood stove use, or in the center of a large orchard using diesel-powered orchard heaters, or 

in an area dominated by one type of crop where the same type of burning occurs around the 

same time. Comparing results from targeted sampling may shed light on the small seasonal 

differences observed in this study, with a mixture of emissions.

3.4 Peak PM2.5 hours

Summer wildfire had the greatest percentage of sampled hours over 12 μg/m3 (Table 5). 

There is no general guidance available to assess health impacts of varying concentrations of 

hourly PM2.5; the US EPA Air Quality Index (AQI) assesses 24-hour PM2.5, and 

differentiates between the “Good” and “Moderate” category at an approximate PM2.5 cut-

point of 12 μg/m3. 59% (453) of the sampled hours during the summer wildfire season had 

PM2.5 concentrations over 12 μg/m3. The mean α for these peak hours was 1.6, higher than 

summer wildfire overall. Fall had a slightly higher percentage of sampled hours over 12 

μg/m3 compared to winter. The mean α for fall peak hours was 1.2, which is lower than for 

fall overall, and the mean α for winter peak hours was 1.6, which is higher than for winter 

overall. This suggests that contributions to peak PM2.5 in the fall are more dominated by 

emissions associated with diesel and soot (or more flaming combustion conditions), and 

contributions to peak PM2.5 in the winter are more dominated by biomass burning.

While wintertime wood burning receives a lot of attention from a public health perspective, 

it is important to note that for this sampling period, winter and fall had a similar percentage 

of hours with PM2.5 >12 μg/m3. This could be related to a relatively mild winter sampling 

period, but still merits consideration. Agricultural emissions coinciding with the fall season 

include crop residue burning and orchard heaters, and deserve attention in future studies. 

The wildfire smoke period had more than double the percentage of sampled hours with 

PM2.5 >12 μg/m3 compared to winter and fall, underscoring the public health urgency 

surrounding wildfire smoke in this region.

3.5 Diurnal and weekday vs. weekend patterns

Marked differences were observed in diurnal patterns between seasons (Figure 4). No 

diurnal patterns were observed during spring; in the winter, PM2.5 and Delta-C tended to be 
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lower during midday hours. The fall pattern was similar to winter for Delta-C, but weaker 

than winter for PM2.5. During the summer wildfire, PM2.5 diurnal patterns did not resemble 

any of the other seasons. Winter α were slightly lower but also more varied during midday 

hours, while fall α were lower in the mornings and higher but more varied in the afternoons. 

Summer without wildfire had highly varied α values.

Median and 3rd quartile Delta-C values were very similar between weekdays and weekends 

across seasons, with Delta-C slightly higher on weekdays during summer wildfire (SI Table 

3). PM2.5 concentrations were slightly higher on weekdays than weekends during summer 

wildfire, spring, and fall. In contrast, PM2.5 concentrations were very similar between 

weekdays and weekends in the winter and summer no wildfire. α were very similar between 

weekdays and weekends in each season, but slightly higher on winter, spring, and summer 

wildfire weekends.

Delta-C and PM2.5 followed expected diurnal patterns for wintertime wood burning, with 

higher levels at night and lower levels during the day; this is due to a combination of diurnal 

changes in the atmospheric boundary layer and likely increased burning for heat at night. 

Winter α values were relatively similar throughout the day, with lower values in the middle 

of the day, reflecting the pattern in Delta-C, although the midday α values are more varied. 

In the fall, PM2.5 had a weaker diurnal pattern, but Delta-C had a stronger diurnal pattern, 

and the diurnal pattern in fall α suggests an emissions profile more dominated by biomass 

burning at night vs. during the day. In combination with the lower mean α value for fall 

PM2.5 peaks (Table 5), this suggests that there are important contributors to fall PM2.5 with 

either a fuel mix less dominated by biomass, or more flaming combustion conditions.

Weekend vs. weekday differences observed may be due to the proximity of the monitors to 

schools, potentially capturing school-related traffic, including school buses. This traffic is 

not present on the weekends, but is still present to some degree in the summer. The diurnal 

pattern expected from school-related traffic is difficult to distinguish from other potential 

emissions sources along with changes in the atmospheric boundary layer.

Expected diurnal and weekly patterns in this region are different from urban or other non-

agricultural regions. In other places, heating-related emissions are expected to be greater at 

night and on the weekends, and most other emissions (usually traffic) are expected to be 

lower at night and on the weekends. In agricultural areas, work-related emissions may not 

necessarily be lower at night and on weekends, as agricultural activities follow the seasons 

and weather patterns more than a typical urban work schedule. Some emissions are more 

likely to occur at night, such as orchard heating.

3.6 Use of low-cost sensors for spatial comparisons in PM2.5

The low-cost monitors allowed us to expand upon the single BAM site, and compare PM 

concentrations between Toppenish and Harrah. Seasonal PM2.5 concentrations were very 

similar between Toppenish and Harrah (Table 6). The SD for both Harrah and the low-cost 

monitor in Toppenish were lower than the BAM SD, which reflects the impact of the 

calibration. Similarly, the maximum values are lower than those measured by the BAM. The 

contrast in peak PM2.5 between the BAM and low-cost monitor in Harrah during the wildfire 
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season suggest that this difference is due to the impact of the calibration rather than 

reflecting a true difference in maximum PM2.5 concentrations.

Technical and site-based challenges resulting in missing data impacted both low-cost and 

traditional monitors. Missing aethalometer data is due to delayed filter cartridge changes or 

power loss. The low-cost monitor in Toppenish had missing data due to time stamp 

dysfunction, and the low-cost monitor in Harrah was not deployed until late winter, and then 

had power loss. Missing BAM data is due to instrument recalibration needs. One Plantower 

in each low-cost monitor failed over the course of the study period, highlighting the 

importance of having duplicate sensors.

Missing data from the low-cost monitor in Toppenish (Figure 1) explains some of its 

discrepancy from the BAM. The BAM did not report data for several weeks in the winter 

during which the low-cost monitor in Toppenish did report data, so it is useful to note that in 

the winter the low-cost monitor is very similar to the BAM. This suggests that despite the 

high missingness in the BAM in the winter, the data we do have is likely representative - we 

are likely not missing a major peak or trough in winter PM2.5 concentration. Typically when 

using low-cost monitors, we look to more accurate instruments, such as a BAM, to validate 

the data. Therefore, it was a surprising benefit in this case to be able to use the low-cost 

monitor data to verify that the BAM winter data is likely representative of the season despite 

high missingness.

4. Conclusion

This study is one of the first to pair low-cost PM monitors with an aethalometer, and 

addresses BrC and BC in a rural, agricultural setting. 9 months of data over 4 seasons, 

including episodes of wildfire smoke from regional wildfires, allowed us to characterize 

differences in combustion sources by season. Biomass burning is suspected to be a major 

contributor to PM2.5 in the wintertime, and year-round PM2.5 comes from a variety of 

sources, mainly agricultural-related. Low-cost monitors calibrated through co-location with 

regulatory instruments were useful in extending spatial information on PM2.5, but calibration 

resulted in less variance. Having two Plantowers in each monitor was important because 1 

failed in each monitor over the study period. Wintertime diurnal patterns of Delta-C and 

PM2.5 were consistent with residential wood smoke. Mean Ångström exponent α values 

were highest during peak PM2.5 hours in the winter and during the wildfire season, 

compared to other seasons, consistent with literature suggestions that higher α values are 

associated with biomass burning. Of the seasonal peak PM2.5 hours, mean Ångström 

exponent α values were lowest during fall. In this region, the greatest percentage of sampled 

hours per season with PM2.5 >12 μg/m3 occurred during the wildfire smoke period, and were 

very similar between fall and winter. These results suggest that biomass burning is an 

important contributor to PM2.5 in the wintertime, and emissions associated with diesel and 

soot are important contributors in the fall; however the variety of emissions sources and 

combustion conditions present in this region may limit the utility of traditional 

interpretations of aethalometer data. Further understanding of how to interpret aethalometer 

data in regions with complex emissions would contribute to much-needed research in 

communities impacted by air pollution from agricultural and home and backyard burning.
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Figure 1: 
Timeline of the study showing where and when monitors were running. Time periods with 

monitors not running are denoted by the diagonal lines.
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Figure 2: 
Seasonal comparisons between raw low-cost and BAM PM2.5 (μg/m3) and calibrated low-

cost and BAM PM2.5 (μg/m3) co-located in Toppenish.
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Figure 3: 
Plot shows mean hourly absorption at each wavelength with power law curves for each 

season. Equations used for the curves are the following: winter y = e−1.984 × x−1.513, spring y 
= e−4.600 × x−1.241, summer wildfire y = e−2.119 × x−1.438, summer no wildfire y = e−5.118 × 

x−1.176, and fall y = e−3.907 × x−1.255.
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Figure 4: 
Boxplots of Delta-C, PM2.5, and Ångström exponent α values (375-880nm) per hour by 

season. Horizontal lines show the median value, boxes show the range from 1st quartile to 

3rd quartile, and whiskers show 3rd quartile + 1.5 × interquartile range and 1st quartile – 1.5 

× interquartile range. Each season has the same y-axis scale.
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Table 1:

Seasonal hourly temperature and RH from co-located low-cost monitor and BAM, and nearby AgWeatherNet 

station in Toppenish. Only includes hours when all monitors are reporting.

Winter
Mean (SD)
Range
n=794 hours

Spring
Mean (SD)
Range
n=897 hours

Summer
Mean (SD)
Range
n=694 hours

Fall
Mean (SD)
Range
n=1504 hours

BAM – Temperature (°C) 1.3 (4.9)
−10.7 to 15.6

19.3 (5.2)
7.2 to 31.7

18.1 (5.4)
5.1 to 31.2

8.8 (7.1)
−7.4 to 26.6

Low-cost monitor – Temperature (°C) 11.0 (4.4)
1.5 to 28.7

26.6 (7.3)
13.7 to 43.9

25.2 (7.4)
13.3 to 41.3

16.7 (6.6)
4.8 to 39.2

AgWeatherNet – RH (%) 81.4 (22.2)
23.8 to 99.6

49.6 (18.5)
14.8 to 99.2

53.4 (21.8)
16.8 to 94.1

72.7 (23.6)
16.6 to 99.7

Low-cost monitor - RH (%) 40.1 (7.9)
17.3 to 55.3

33.4 (12.2)
10.2 to 67.1

36.2 (12.9)
12.8 to 61.3

42.6 (11)
14.3 to 68.1
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Table 2:

Mean, standard deviation (SD), and range of temperature, RH, PM2.5, Delta-C, mass at IR, and Delta-C:PM2.5 

by season for time periods with both PM2.5 and co-located aethalometer data.

Temperature (°C) (BAM) Mean SD Min Max n hours

Winter 5.3 4.1 −4.6 17.2 841

Spring 15.6 6.5 −0.2 31.7 1851

Summer – wildfire 22.2 6.0 9.7 38.1 794

Summer – no wildfire 19.4 7.9 5.1 37.7 431

Fall 12.2 5.6 0.8 26.6 690

RH (%) (AgWeatherNet) Mean SD Min Max n hours

Winter 74.5 23.7 21.8 99.5 842

Spring 50.9 19.2 14.8 99.4 1851

Summer – wildfire 53.0 21.7 16.8 93.8 765

Summer – no wildfire 56.8 20.7 14.9 94.1 302

Fall 63.8 23.8 16.6 99.3 690

PM2.5 (μg/m3) Mean SD Min Max n hours

Winter (BAM, Toppenish) 7.7 6.0 −4.0 39.0 843

Spring (BAM, Toppenish) 4.0 3.7 −4.0 43.0 1853

Summer – wildfire (BAM, Toppenish) 19.6 17.9 −1.0 95.0 794

Summer- wildfire (low-cost monitor, Harrah) 19.7 14.7 2.6 79.1 765

Summer – no wildfire (BAM, Toppenish) 8.8 4.9 0.0 26.0 432

Summer – no wildfire (low-cost monitor, Harrah) 5.8 1.8 3.0 16.5 302

Fall (BAM, Toppenish) 11.1 6.6 −1.0 43.0 687

Fall (low-cost monitor, Harrah) 9.1 5.2 2.2 24.8 691

Delta-C (μg/m3) Mean SD Min Max n hours

Winter 0.27 0.32 −0.25 2.76 843

Spring 0.048 0.11 −0.53 1.83 1853

Summer – wildfire 0.34 0.52 −1.48 5.09 765

Summer – no wildfire 0.035 0.14 −0.41 0.40 302

Fall 0.096 0.22 −0.63 2.07 691

Mass at IR (μg/m3) Mean SD Min Max n hours

Winter 0.50 0.42 −0.021 2.53 843

Spring 0.23 0.30 −0.035 6.13 1853

Summer – wildfire 0.74 0.84 −0.16 8.34 765

Summer – no wildfire 0.21 0.20 −0.16 0.96 302

Fall 0.41 0.38 −0.13 3.10 691

Note that PM2.5 <1 μg/m3 were excluded when calculating Delta-C:PM 2.5.

Delta-C:PM2.5 Mean SD Min Max n hours

Winter 0.033 0.034 −0.12 0.27 768

Spring 0.013 0.024 −0.075 0.37 1587

Summer – wildfire 0.017 0.023 −0.093 0.12 765

Summer – no wildfire 0.007 0.024 −0.060 0.060 302
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Temperature (°C) (BAM) Mean SD Min Max n hours

Fall 0.011 0.025 −0.079 0.17 691
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Table 3:

Absorption Ångström exponents and 95% CI by season, based on linear regression on the log-log scale of the 

values shown in Figure 3.

Season α (375-880) and 95% CI

Winter 1.5 (1.2-1.8)

Summer - wildfire 1.4 (1.0-1.8)

Fall 1.3 (1.1-1.4)

Spring 1.2 (1.1-1.4)

Summer – no wildfire 1.2 (1.0-1.3)
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Table 4:

p-values from Dunn multiple comparison tests of rank of α values by season pairs.

Spring Summer – wildfire Summer – no wildfire Fall

Winter <0.0001 0.66 <0.0001 <0.0001

Spring -- <0.0001 1.00 0.08

Summer – wildfire -- -- <0.0001 <0.0001

Summer – no wildfire -- -- -- 0.36
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Table 5:

Number and percentage of sampled hours with PM2.5 >12 μg/m3 in each season and Ångström exponent α 
values and 95% CI based on mean absorbance at each wavelength during these peak hours.

Season Number of hours per
season with PM2.5>12 μg/m3

% of sampled hours per
season with PM2.5>12 μg/m3

α(375-880)
and 95% CI

Winter 179 21 1.6 (1.2-1.9)

Spring 40 2 1.4 (1.1-1.6)

Summer – wildfire 453 59 1.6 (1.0-1.8)

Summer – no wildfire 5 2 1.3 (1.3-1.5)

Fall 162 23 1.2 (1.0-1.5)
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Table 6:

Seasonal hourly PM2.5 from the three monitors. Data shown from low-cost monitors are calibrated.

Winter Spring Summer no
wildfire

Summer
wildfire

Fall

PM2.5 (μg/m3) PM2.5 (μg/m3) PM2.5 (μg/m3) PM2.5 (μg/m3) PM2.5 (μg/m3)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Range Range Range Range Range

n (hours) n (hours) n (hours) n (hours) n (hours)

BAM – Toppenish (all 
hours available)

10.1 (7.4) −4.0 to 
39
n=1,365

4.1 (3.8) −4.0 to 43
n=1,912

7.1 (4.9) −2.0 to 50.0
n=1,108

27.1 (34.3) −1.0 to 
272.0
n=954

13.9 (8.6) −1.0 to 
44.0
n=1,649

Low-cost monitor – 
Toppenish (all hours 
available)

10.0 (5.8) 1.5 to 
33.5
n=1,470

4.1 (2.2) 1.1 to 14.0
n=1,096

6.0 (1.8) 3.0 to 18.3
n=444

12.8 (8.1) 3.7 to 43.0
n=356

13.9 (7.9) 2.6 to 
32.1
n=1,638

Low-cost monitor – 
Harrah (all hours 
available)

N/A 3.7 (2.8) −0.0 to 
27.1
n=2,208

5.9 (2.3) 1.8 to 17.3
n=1,119

25.7 (25.2) 2.6 to 
168.2
n=927

12.0 (7.3) 1.5 to 
40.9
n=1,642

BAM – Toppenish 
(hours that coincide with 
the low-cost monitor in 
Toppenish)

11.5 (8.2)
–2.0 to 39.0
n=794

4.0 (3.1)
−4.0 to 20.0
n=898

6.2 (4.1)
−1.0 to 26.0
n=340

12.6 (8.4)
0.0 to 54.0
n=354

13.9 (8.6)
−1.0 to 44.0
n=1,638

Low-cost monitor – 
Toppenish (hours that 
coincide with the BAM)

11.5 (6.4)
1.4 to 30.6
n=794

4.0 (2.1)
1.1 to 14.0
n=898

6.1 (1.9)
3.0 to 18.3
n=340

12.7 (8.0)
3.7 to 43.0
n=354

13.9 (7.9)
2.6 to 32.1
n=1,638

Atmos Environ (1994). Author manuscript; available in PMC 2021 March 01.


	Abstract
	Background
	Study motivation

	Methods
	Sampling location
	Particulate air monitoring instruments
	Sampling timeframe
	Absorption Ångström exponent
	Delta-C
	Calibration of the low-cost monitor
	Analyses

	Results and Discussion
	Low-cost monitor calibration
	Seasonality of PM2.5, Delta-C, IR, and Delta-C:PM2.5
	Use of Delta-C

	Wavelength dependence and absorption Ångström exponents by season
	Use of Ångström exponents

	Peak PM2.5 hours
	Diurnal and weekday vs. weekend patterns
	Use of low-cost sensors for spatial comparisons in PM2.5

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:

