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Abstract

Partly due to the use of exhaustive-annotated data, deep networks have achieved impressive 

performance on medical image segmentation. Medical imaging data paired with noisy annotation 

are, however, ubiquitous, but little is known about the effect of noisy annotation on deep learning 

based medical image segmentation. We studied the effect of noisy annotation in the context of 

mandible segmentation from CT images. First, 202 images of head and neck cancer patients were 

collected from our clinical database, where the organs-at-risk were annotated by one of twelve 

planning dosimetrists. The mandibles were roughly annotated as the planning avoiding structure. 

Then, mandible labels were checked and corrected by a head and neck specialist to get the 

reference standard. At last, by varying the ratios of noisy labels in the training set, deep networks 

were trained and tested for mandible segmentation. The trained models were further tested on 

other two public datasets. Experimental results indicated that the network trained with noisy labels 

had worse segmentation than that trained with reference standard, and in general, fewer noisy 

labels led to better performance. When using 20% or less noisy cases for training, no significant 

difference was found on the segmentation results between the models trained by noisy or reference 

annotation. Cross-dataset validation results verified that the models trained with noisy data 

achieved competitive performance to that trained with reference standard. This study suggests that 

the involved network is robust to noisy annotation to some extent in mandible segmentation from 

CT images. It also highlights the importance of labeling quality in deep learning. In the future 

work, extra attention should be paid to how to utilize a small number of reference standard 

samples to improve the performance of deep learning with noisy annotation.
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1. Introduction

Deep supervised networks have achieved impressive performance in medical image 

segmentation partly due to the use of high-quality exhaustive-annotated data (Liu et al 2017, 

Chen et al 2019, Hesamian et al 2019). However, in radiation oncology, it is hard or 
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impossible to conduct sufficient high-quality image annotation. In addition to potential 

hurdles of funding acquisitions, time cost and patient privacy, accurate annotation of medical 

images always depends on scarce and expensive medical expertise (Greenspan et al 2016) 

and thereby, medical imaging data paired with noisy annotation is prevalent, particularly in 

radiation oncology.

Increasing attention has been paid to the issue of label noise in deeply supervised image 

classification (Hendrycks et al 2018, Tanaka et al 2018, Han et al 2019). These approaches 

to tackle the label noise could be generally categorized into two groups. One tends to 

analyze the label noise and to develop deep networks with noise-robust loss functions. Reed 

et al proposed a generic way to tackle inaccurate labels by augmenting the prediction 

objective function with a notion of perceptual consistency (Reed et al 2014). The 

consistency was defined as the confidence of predicted labels between different objective 

estimations computed from the same input data. Further, the authors introduced a convex 

combination of the known labels and predicted labels as the training target in self-learning. 

Patrini et al presented two procedures for loss function correction, and both the application 

domain and the network architecture were unknown (Patrini et al 2017). The computing cost 

is at most a matrix inversion and multiplication. Both procedures were proven to be robust to 

the noisy data, and importantly, the Hessian of the loss function was found independent from 

label noise for the ReLU networks. By generalizing the categorical cross entropy, Zhang and 

Sabuncu developed a theoretically grounded set of noise-robust loss functions (Zhang and 

Sabuncu 2018). These functions could be embedded into any deep networks to yield good 

performance in a wide range of noisy label scenarios. And notably, Luo et al designed a 

variance regularization term to penalize the Jacobian norm of a deep network on the whole 

training set (Luo et al 2019). Both theoretically deduced and experimental results showed 

that the regularization term can decrease the subspace dimensionality, improve the 

robustness, and generalize well to label noise. However, these approaches require prior 

knowledge or accurate estimation of the label noise distribution, which is not practical in 

real-world applications. The other group tends to figure out and to remove or correct noisy 

labels by using a small set of reference labels. Misra et al demonstrated that noisy labels 

from human-centric annotation are statistically dependent on the data, and thus, reference 

labels could be used to decouple this kind of human reporting bias and to improve image 

captioning performance (Misra et al 2016). Xiao et al introduced a general framework to 

train deep networks with a limited number of reference samples and massive noisy samples 

(Xiao et al 2015). The relationships among images, class labels, and label noises were 

quantified with a probabilistic graphical model, which was further integrated into an end-to-

end deep learning system. Mirikharaji et al proposed a practical framework to learn from a 

limited number of clean samples in the training phase that assigned higher weights to pixels 

with gradient directions closer to those of reference data in a meta-learning approach (2019). 

This kind of approaches is feasible but significantly increases the computing complexity.

Many efforts have been made to tackle label noise in image classification, while little is 

known about the effect of annotation quality on object segmentation. Object segmentation 

can be viewed as pixel-wise image classification and requires high-quality exhaustive-

annotated data for algorithm training. However, in radiation oncology, some organs-at-risk 

(OARs) may be roughly annotated due to the trade-off between time spent and radiation 
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treatment planning quality. Such inconsistent and rough annotations can mislead the training 

of deep networks and result in ambiguous localization of anatomical structures. Thus, this 

study concerns the effect of annotation quality on medical image segmentation. It involves 

medical data annotated by dosimetrists in radiation treatment planning and differs from the 

aforementioned studies, which artificially generate noisy labels and do not reflect real-life 

scenarios. Further, two public datasets are used for cross-dataset validation. The primary 

purpose of this study is to investigate whether a deep network trained with noisy data can 

achieve comparative performance with that trained with reference standard. Specifically, the 

effect of different ratios of noisy cases in the training set is investigated in the context of 

deep learning based mandible segmentation from CT images.

2. Methods and materials

2.1. Data collection

Three datasets were analyzed. One is an in-house collection, named the UTSW dataset. It 

contained 202 images of head and neck (H&N) cancer patients (47 females and 155 males; 

mean age, 62 years). CT images and corresponding RT Structures were exported from 

Varian Eclipse Treatment Planning System (Eclipse v15.5, Varian Medical Systems). The 

isotropic in-plane voxel resolution was between 1.17 and 1.37 mm, and the slice thickness 

was 3.00 mm. The in-plane image size was [512, 512] and the slice number ranged between 

127 and 264. All patient data are HIPPA-compliant de-identified and protected under an IRB 

for retrospective studies.

The second one is a public domain dataset from The Cancer Imaging Archive, named the 

TCIA dataset (Clark et al 2013, Nikolov et al 2018). It included 31 cases (4 females, 25 

males and 2 unknown; mean age, 59 years), and to each case, 21 OARs were annotated by a 

single radiologist with a second arbitrating and compared with a ground truth from two 

further radiologists arbitrated by one of two independent oncology specialists. The in-plane 

voxel resolution was isotropic within the range of 0.94 and 1.27 mm, and the slice thickness 

was 2.50 mm. The in-plane image size was [512, 512] and the slice number was between 

119 to 437.

The last one is the Public Domain Database for Computational Anatomy (PDDCA) dataset 

(Raudaschl et al 2017). As part of the challenge at the International Conference on Medical 

Image Computing and Computer Assisted Intervention (MICCAI) in 2015, the dataset was 

released for the segmentation of anatomical structures in the H&N region of CT images. In 

this study, 40 images (25 training images, 10 off-site testing images, and 5 on-site testing 

images) were collected, and to each image, 9 structures were manually re-contoured by 

experts for uniform quality and consistency (Santanam et al 2012). The isotropic in-plane 

voxel resolution was between 0.76 and 1.27 mm, and the slice thickness ranged in 1.25 and 

3.00 mm. The in-plane image size was [512, 512] and the slice number was in the range of 

76 to 360.
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2.2. Mandible annotation and correction

Mandible, the largest bone in the human head, is one of the OARs in 3D-conformal 

radiotherapy or intensity-modulated radiotherapy for H&N cancers. The mandible regions 

are outlined in radiation treatment planning to avoid the potential development of jaw 

osteoradionecrosis. Anatomically, the mandible starts from the bottom chin area to the 

alveolar process and condyloid process, excluding the teeth.

To the UTSW dataset, 12 dosimetrists participated in image annotation. Among them, three 

dosimetrists each annotated more than 30 cases (31, 59, and 82 cases), and the others each 

annotated fewer than 10 cases. To address the issue of inaccurate annotation, the correction 

procedure was applied by a H&N radiation oncology specialist with 10+ year experience to 

get the reference standard. Given the reference annotation, figure 1 shows the distribution of 

voxel numbers in mandible regions, kept regions, deleted regions, and added regions after 

manual correction. Within the UTSW dataset, the mandible contained 14 09 ± 3236 voxels 

(≈ 57.89 ± 13.29 cm3); in the correction procedure, 95% voxels (13 398 ± 3474) were kept 

in the noisy labels; and to form the reference labels, 3887 ± 3254 and 699 ± 765 voxels are 

removed from and added to the noisy labels, respectively.

Figure 2 illustrates three representative examples of mandible contour before and after 

correction. In the figure, the top row shows the delineation of mandible regions for radiation 

treatment planning, and the bottom row shows the corresponding regions after correction. 

The red and green contours stand for the boundaries of mandible regions. In general, label 

noise of the mandible is from incomplete annotation ((a) vs (d)), different definitions of 

mandible regions ((b) with vs (e) without the teeth), and inaccurate contouring ((c) vs (f)). In 

addition to noisy annotation, it is observed that the major challenge in mandible 

segmentation comes from the correct exclusion of the teeth (b) and metal artifacts of dental 

implants in image acquisitions (c).

2.3. Data preparation

CT images and corresponding label images of the UTSW, TCIA and PDDCA datasets were 

prepared in the same way as follows. First, to the label images, the mandible regions were 

assigned with value 1 and other regions were with 0. Then, CT images were transformed 

into RAS (right, anterior, superior) anatomical coordinate system, and tri-linear-interpolated 

to the same voxel resolution [1.17, 1.17, 3.00] mm3, and accordingly the label images. 

Third, one label image from the UTSW dataset was manually selected by the H&N radiation 

oncology specialist and the center of the mandible was set as the reference center in the 

image coordinate system. The centers of mandible regions of all other label images were 

translated to the reference center, and the CT images were translated accordingly. Finally, 

the centralized CT images and label images are cropped to the same matrix size of [256 256 

128]. In addition, to highlight bone regions, the CT number (Hounsfield units) V of CT 

images was normalized by the mean μV>−100and standard deviation σV>−100following 

V ′ = V − μV > − 100 /σV − 100, where V > −100 denotes those pixels with CT number larger 

than −100, which is the threshold for typical fat tissue.
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2.4. Experiment design

Table 1 shows the data splitting and experiment design. To the UTSW dataset, patient cases 

were divided into a training set (180 samples), a validation set (10 samples), and a test set 

(12 samples). For fair comparison, samples in both the validation and the test set were fixed. 

In addition, two open datasets, TCIA and PDDCA, were used for cross-dataset test after 

deep models were trained, validated and tested on the UTSW dataset.

To investigate the effect of noisy annotation on deep learning based mandible image 

segmentation, 8 designs were conducted on the UTSW dataset as shown in figure 3, where a 

rectangle denotes 18 (10%) samples, a rectangle with brown color indicates the CT images 

paired with noisy label images, and a rectangle with green color stands for the CT images 

paired with reference standard images. In each design, the percentages of noisy label cases 

were from 0% to 60% at 10% equal increment in addition to 100%, labeled alphabetically 

by (A) to (H). As for design B to G, each repeated six times of experiments by randomly 

splitting noisy cases for deep model training, validation and test, and results were reported 

on average. Thus, this study contained 8 designs and 38 times of experiments in total.

2.5. A deep neural network and parameter settings

A compact deep network HighRes3DNet was used, which utilizes efficient and flexible 

elements, such as dilation convolution and residual connection, for volumetric image 

segmentation (Li et al 2017). It has been applied for brain parcellation and hyperintensity 

isolation (Li et al 2017, Kuijf et al 2019). In this study, parameters were set as follows. Both 

the input and output image size were [256, 256, 128], and the output images were in binary 

values. The Adam optimizer was used for hyper-parameter optimization (Kingma and Ba 

2014). Binary cross entropy was set as the loss function, and ReLu as the activation 

function. The learning rate was 10−4, the number of iterations was 105, and the batch size is 

1. For each CT image, 64 patches of size [96, 96, 96] were uniformly generated. Other 

parameters were set as default with random initialization. The model was validated per 103 

iterations at the training stage, and 102 checkpoints were saved after the training. Neither 

fine-tuning nor data augmentation was used.

2.6. Model training, validation and selection

Figure 4 shows an example of model training (blue line) and validation (red circles) based 

on 100% noisy cases. In the training stage, the network inferred the data samples in the 

validation set per 103 iterations, and thus, 102 check points (red circles) of loss values were 

obtained after the training procedure. To select the best trained model, the validation losses 

were compared, and the check point with the least loss value indicated the model at this 

point was optimized. The selected model was used for follow-up mandible segmentation. In 

this example, the model validated at 9.6 × 104 iterations achieved the least loss value (8.0 × 
10−5), and it was taken as well-trained.

2.7. Performance evaluation

The segmentation performance was evaluated by using Dice similarity coefficient (DSC), 

percent volume error (PVE), 95% percentile Hausdorff distance (HD95) and contour mean 

distance (CMD) (Chen et al 2015, Taha and Hanbury 2015, Raudaschl et al 2017, Nikolov et 
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al 2018). Given a reference annotation A, a segmented result B and their corresponding 

boundary point sets as X = {x1,x2,…,xm} and Y = {y1,y2,…,yn}, DSC is defined as 
2 × A ∩ B

A + B  and PVE is defined as A ∪ B − A ∩ B
A  where | · |stands for the number of voxels 

enclosed by contours. DSC values range in [0, 1] and larger values indicate better agreement 

between reference standard and segmentation results. PVE ranges from 0 to positive infinity, 

and 0 represents the best. Moreover, taking ||x − y||as the Euclidean distance of two points 

xand y, HD is defined as max(h(X,Y),h(Y,X))where ℎ(X, Y ) = max
x ∈ X

min
y ∈ Y

x − y  and CMD is 

defined as max(d(X,Y),d(Y,X))where d x, y = 1
m ∑x ∈ X min

y ∈ Y
x − y . Note that the 

operations of maxand minstand for getting the maximum and the minimum value, 

respectively. HD95 and CMD are reported since they are robust to outliers and noise on 

overall evaluation of segmentation quality, and a smaller value denotes a better performance.

2.8. Software and platform

Experiments were conducted on a 64-bit Windows 10 workstation with 8 Intel (R) Xeon (R) 

processors (3.60 GHz), 64.0 GB RAM, and a NVIDIA GeForce RTX 2080 Ti GPU card. 

HighRes3DNet was implemented in NiftyNet (Gibson et al 2018) (version 0.5.0, https://

niftynet.io/), a deep learning toolbox dedicated for medical image analysis based on 

Tensorflow (version 1.13.2, https://www.tensorflow.org/).

3. Results

3.1. Annotation quality of dosimetrists

The mandible annotation of 12 dosimetrists showed inter-rater disagreement, such as the 

inclusion of teeth regions. Mandible is one of OARs delineated with less care, and the 

delineation is incomplete or over-segmented (figure 2). The initial annotation quality, 

however, was still acceptable since most voxels were kept in the correction procedure (figure 

1). Given the reference standard, figure 5 shows the initial quality of mandible annotation 

(DSC, 0.86 ± 0.09; PVE, 0.34 ± 0.23; HD95, 7.84 ± 13.26 mm; and CMD, 1.96 ± 4.73 mm). 

It is found 20 cases with DSC < 0.75, 40 cases with PVE > 0.50, 6 cases with HD95 > 16.00 

mm, and 8 cases with CMD > 4.00 mm.

3.2. Data quality for model training

Table 2 shows the data quality of the training set in each design. It is observed that when the 

number of noise cases increases, the data quality is degraded. On average, there is 0.15 

decrease of the DSC and 0.34 increase of the PVE, and the distance of boundary points 

increase to 6.76 mm of the HD95 and to 1.82 mm of the CMD.

3.3. Performance evaluation on the UTSW test set

The performance of selected models on the UTSW test set is shown in table 3 and the best 

result of each metric is boldfaced. Given the model (A) trained with the reference standard 

as the baseline, deep networks trained with noisy label images achieve slightly inferior 

results. When the percentage of noisy label images increases to 100%, each design still 

achieves competitive performance on the DSC (< 0.10 decrease), the PVE (< 0.20 increase), 
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the HD95 (< 7.00 mm increase) and the CMD (< 1.70 mm increase). It should be 

highlighted that, when using 20% or 10% noisy cases for model training, no significant 

decrease of segmentation performance is found between the model trained with reference 

standard and the models trained with noisy cases on each metric (two sample t-test, p > 

0.11).

3.4. Performance of cross-dataset validation

The performance of cross-dataset validation test was summarized and the best result of each 

metric is boldfaced. Table 4 shows the segmentation results on the TCIA dataset. It indicates 

that the model (A) trained with reference annotation on the UTSW dataset achieves superior 

results with the highest DSC and the lowest PVE and HD95, and other models trained with 

noisy data obtain close results. Taking the model A as the baseline, some designs achieve 

rivaling performance on the DSC (design B, E, F, G and H with < 0.06 decrease), the PVE 

(design B, E, F, G and H with < 0.10 increase), the HD95 (design B, C, E, F and H with < 

4.00 mm increase) and even better performance on the CMD (design B, C, F and H).

Table 5 shows the results of cross-dataset evaluation on the PDDCA dataset. It is found that 

the model A trained with UTSW reference annotation achieves the best performance with 

the highest DSC and the lowest PVE, and the second best HD95 and CMD, and other 

models trained with noisy cases get competitive results. Notably, design F using 50% noisy 

cases of the training set achieves the second best DSC and PVE, the third best HD95, and 

the fourth best CMD.

Figure 6 demonstrates the results of mandible segmentation from CT images. The models 

are trained and tested on the UTSW dataset, and further evaluated on the TCIA and the 

PDDCA dataset. From top to bottom rows are the metrics of DSC, PVE, HD95 and CMD, 

and from left to right columns are the results on the UTSW test set, and the TCIA and the 

PDDCA dataset. The left column indicates that the model A trained with the UTSW 

reference standard outperforms other models (design B to H) trained with noisy labels, 

meanwhile the model A achieves overall best results on cross-dataset evaluation. Moreover, 

from the first column, a general trend is observed on each metric values that increasing the 

number of noisy training samples leads to the decrease of segmentation performance on the 

UTSW dataset. Meanwhile, this decreasing trend holds but not strictly, in particular when 

the number of noisy cases reaches 40% and 50%, in the intra- and inter-dataset evaluation.

3.5. Performance of selected models on the training samples

The performance of selected models on the UTSW training set is additionally evaluated. The 

results are shown in tables 6 and 7, where the training labels and the reference standard, 

respectively, perform as the ground truth for quantitative assessment. Table 6 indicates that 

fewer noisy cases correspond to better model training. When the ratio of noisy cases 

increases to 100%, it causes up the most to 0.10 decrease on the DSC, 0.17 increase on the 

PVE, 7.83 mm increase on the HD95, and 2.08 mm increase on the CMD.

Table 7 indicates that increasing the number of noisy cases leads to worse segmentation 

results. When the ratio of noisy cases reaches 100%, the metric values get worse of 0.10, 
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0.21, 7.69 mm and 1.77 mm on the metrics DSC, PVE, HD95 and CMD on average, 

respectively.

It is worth noting that the difference is quite limited by comparing the metric values of each 

design in tables 6 and 7. The maximum difference is 0.03 on the metric DSC from design H, 

0.08 on the metric PVE from design H, 1.23 mm on the metric HD95 from design F, and 

0.47 mm on the metric CMD from design H.

3.6. Computation time

Based on the software and platform, it took about 0.89 s per iteration, 24.72 h to complete 

one training procedure, and 5.83 s to fulfill the test of one volume.

4. Discussion

This study concerns deep learning with noisy annotation and explores mandible 

segmentation from CT images for radiation treatment planning. It demonstrates the 

segmentation performance of deep network HighRes3DNet trained with different numbers 

of noisy cases, suggesting that the network is robust to noisy annotation to some extent. 

These trained models are further evaluated on two unseen datasets, indicating the models 

trained with noisy cases achieve competitive performance as the model trained with 

reference standard. The performance of mandible segmentation at the training stage was 

additionally compared by using noisy labels and reference annotation as the ground truth, 

and it shows that the entropy-based training loss is a good driver for the segmentation task 

regardless of the training data quality. It also suggests that the prediction model may 

improve with bootstrap ensemble approaches, since training with reference annotation 

results in most consistent high-quality performance.

4.1. The robustness of deep learning to noisy annotation

Experimental results indicate that the involved deep network is robust to noisy annotation to 

some extent. Based on noisy cases in design H (table 2), this study shows that the selected 

model was well-trained (table 7) and obtained good segmentation on the test set (table 3). In 

particular, there was no significant difference in segmentation metrics on the test set between 

the model trained with reference standard and the model trained with 10% or 20% noisy 

cases (table 3, two sample t-test, p > 0.11). A similar phenomenon has been observed in 

image classification. Van Horn et al claimed that if the training set is sufficiently large, a 

small label error rate of training data led to an acceptable small increase of prediction error 

in the test set (Van Horn et al 2015). Rolnick et al observed that deep learning was robust to 

label noise, and they figured out that a sufficient training set can accommodate a wide range 

of noise levels (Rolnick et al 2017). This kind of robustness to label noise can be explained 

from the capacity of deep networks on continual representation learning. Rolnick et al also 

pointed out that a deep architecture tends to learn the intrinsic pattern of objects instead of 

merely memorizing noise (Rolnick et al 2017). Arpit et al conducted close examinations at 

the memorization of deep networks with regard to the model capacity, generalization, and 

adversarial robustness (Arpit et al 2017). They showed that deep networks preferred to 

prioritize learning simple and general patterns before fitting the noise.
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It should be noted that there is a general trend observed from each metric that more noisy 

training samples lead to worse segmentation results (tables 3–5), while some designs using 

more noisy cases still achieve competitive performance to those designs based on less noisy 

cases. For instance, design F using 50% noisy cases obtained slightly superior results on the 

DSC and the PVE metrics than design B that used 20% noisy cases for model training 

(tables 4 and 5). Two reasons could account for this finding. First, in each design, six times 

of random selection of noisy samples for model training are not sufficient, which is hard to 

reflect the intrinsic distribution of label noise. Second, the metrics DSC and PVE denote part 

of the segmentation quality, but not the overall accuracy. In spite of the slight randomness, 

the other metrics HD95 and CMD show that design F obtained worse performance than 

design B (tables 3–5). Thus, the general decreasing trend is reasonable and interpretable.

It should be also noted that while the performance degrades on the UTSW test set with more 

noisy labels (table 3), this is not that obvious with external datasets (tables 4 and 5), 

especially with the DSC metrics. As shown in tables 4 and 5, it is surprising that design C 

shows significantly worse DSC than design A and even worse than many other ones with 

more noisy samples. It might make sense with an external dataset, which has different data 

distribution and ground truth definition so that segmentation errors may show up randomly. 

The exact reason needs further investigation.

4.2. The importance of annotation quality in deep learning

The importance of labeling quality has been highlighted in previous studies, and this study 

further emphasizes this point. Given the annotation quality of dosimetrists (table 2), 

experimental results indicate that the selected models trained with 100% noisy cases (design 

H) achieved worse performance than the annotation quality of dosimetrists (table 3). Even in 

the training stage, the selected model obtained inferior results (table 7) than the initial 

annotation. On the contrary, when using reference standard for model training (design A), 

models reached superior performance on the training set (table 7) and the test set (table 3). 

The cross-validation test on the TCIA and the PDDCA dataset (tables 4 and 5) further 

verifies that a model trained with reference standard could generalize better on unseen 

datasets. Interestingly, when comparing each design on the UTSW training set (tables 6 and 

7), the limited difference on segmentation performance implicitly suggests that when 

inconsistent labels exists in the training data, the deep network would try to get an average 

or balance model, which might be the reason why the trained models could achieve close 

metric values either using noisy labels or reference annotation as the ground truth.

A deep network is a computational model. It consists of multiple levels of abstraction for 

representation learning. Through an iterative process of forward pass and back propagation, 

a deep network attempts to learn an intricate structure from a large number of data samples, 

and its internal hyper-parameters are dynamically updated toward an optimal solution 

(Lecun et al 2015, Shen et al 2020). To deep supervised learning, any noisy annotation is 

bound to mislead the iterative process and subsequently, the learned structure may not be 

representative, and the determined parameters may not be optimal. Thus, to provide 

sufficient high-quality data samples is essential for deep learning based image segmentation.
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4.3. Future work on deep learning with noisy annotation

In radiation oncology, it is possible to provide a small number of exhaustive-annotated 

samples and thus, how to utilize such limited samples to address the issue of deep learning 

with noisy annotation becomes an urgent problem.

Several studies for image classification have provided clues on this topic (Hendrycks et al 
2018, Tanaka et al 2018, Han et al 2019, Tajbakhsh et al 2020). One way is to implicitly 

estimate the possibility of training samples with reference labels. Reed et al proposed a 

coherent bootstrapping model to evaluate the consistency between given labels and its 

predicted labels in the training stage, and both labels contributed to the resultant prediction 

in a convex combination (Reed et al 2014). Han et al trained two deep networks 

simultaneously, and the networks learned from each other and mutually exchanged probable 

reference labels to reduce the error flows (Han et al 2018). As such, each network could 

attenuate different types of labeling errors and lead to better performance. The other way is 

to explicitly guide the model training with reference labels. Given reference samples in the 

validation set, Ren et al designed an online meta-learning algorithm, which updated the 

weights of training examples using a gradient descent step on the current training example 

weights to minimize the loss on the validation set (Ren et al 2018). Mirikharaji et al 
developed an adaptive reweighting approach and commensurately treated both reference and 

noisy labels in the loss function (Mirikharaji et al 2019). They deployed a meta-learning 

approach to assign higher importance to pixels whose loss gradient direction was closer to 

those of reference data. Additionally, utilizing a noise-robust loss function could further 

improve the training effectiveness (Zhang and Sabuncu 2018).

The optimization of deep networks is content-aware and the purpose is to retrieve patterns 

shared by training samples (Lecun et al 2015). And thus, building multiple atlases for a 

specific application potentially improves the representation learning performance as reported 

in the literature. Ma et al utilized deep learning to localize the prostate region and to 

distinguish prostate pixels from the surround tissues (Ma et al 2017), and used similar 

atlases to refine the segmentation results. Zhu et al proposed a hybrid framework for the 

fusion of predicted hippocampus regions (Zhu et al 2020). The framework first used atlases 

to estimate the deformation of image labels, and then a fully convolutional network was 

designed to learn the relationship between pairs of image patches to correct the potential 

errors. Finally, both multi-atlas image segmentation and the fully convolutional network 

were used for label fusion. Vakalopoulou et al introduced a multi-network architecture to 

exploit domain knowledge (Vakalopoulou et al 2018). After co-aligning multiple anatomies 

through multi-metric non-rigid registration, each network performed CT image segmentation 

for interstitial lung disease in the atlas space. At last, segmentation results were fused in the 

source data space. Ding et al presented a deep learning based label fusion strategy (Ding et 
al 2019). It attempted to locally select a set of reliable atlases by deep learning, and finally, 

estimated labels were fused via plurality voting.

Deep learning with noisy annotation is challenging but clinically important (Rozario et al 
2017, Min et al 2019, Sahiner et al 2019, Yang et al 2019). In this study, the deep network 

shows certain robustness to noisy annotation, while for further improvement, it should take 

advantage of reference samples either implicitly or explicitly to avoid the misleading of 
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noisy annotation in the training stage. In general, multiple atlases provide diverse but 

representative contextures, and multi-atlas image segmentation provides good spatial 

consistency via deformable segmentation, both of which might contribute to the 

development of robust deep networks and may be generalizable to noisy annotation.

4.4. Limitations of the current study

There are several limitations in the current study. At first, the inter- and intra-reader 

variability of clinicians on mandible annotation were not explored. This study involved one 

specialist for mandible annotation as the reference standard. It may cause the model training 

biased toward that specific reference standard and thus, multiple clinicians should be 

involved in the preparation of reference annotation. Second, due to limited computing 

resources, the number of experiments in each design is not enough and more experiments 

should be conducted to represent the distribution of annotation noise. Third, the number of 

cases for model testing is small, and in the future studies, more patient cases should be 

collected. Then, the annotation quality can be directly stratified through metric values, such 

as DSC values, and the effect of noisy annotation on deep learning could be analyzed from 

other perspectives. Furthermore, other networks besides the one explored in this study, such 

as U-Net (Ronneberger et al 2015) and V-Net (Milletari et al 2016), or other techniques, 

such as data augmentation (Yu et al 2019) and the Dice loss function (Milletari et al 2016, 

Sudre et al 2017), may be applied and may make a great effect on the segmentation 

performance. Thus, in the future, massive experiments should be systematically conducted 

and the effect of noisy annotation on deep learning could be deeply understood.

5. Conclusions

This study concerns deep learning with noisy annotation in medical image segmentation. It 

shows that the involved deep network is robust to noisy annotation to some extent in 

mandible segmentation from CT images. In general, a deep network trained with noisy 

labels is inferior to that trained with reference annotation. Thus, how to maximize limited 

reference standard samples to improve the performance of deep learning with noisy 

annotation needs further investigation.
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Figure 1. 
Voxel number analysis of the mandible regions. In each violin plot, the solid and dotted lines 

correspond to median and quartile values. It indicates the size of the mandible. Given the 

reference annotation, it further shows the distributions of the number of voxels kept in, 

deleted from, and added to the noisy labels in the correction procedure.
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Figure 2. 
Perceived annotation difference via contour visualization. The top row shows rough 

contouring of the mandible in radiation treatment planning and the bottom row shows the 

corresponding mandible after label correction. It shows that the label noise mainly comes 

from incomplete annotation ((a) vs (d)), different definition of the mandible with the teeth 

(b) or without the teeth (e), and inaccurate delineation ((c) vs (f)).
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Figure 3. 
Experimental design with various ratios of noisy cases for mandible segmentation. Eight 

designs were conducted, and the ratios included 0% (A), 10% (B), 20% (C), 30% (D), 40% 

(E), 50% (F), 60% (G) and 100% (H). Moreover, each design of B to G was repeated six 

times based on random splitting of noisy samples for model training, validation and test.
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Figure 4. 
Model training, validation and selection. A model under training will be validated per 103 

iterations which results in 102 check points (red circles). To select an optimal model, the 

validation loss is calculated and the check point with the least loss value is selected as the 

optimized model for follow-up mandible segmentation from CT images.
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Figure 5. 
Initial quality of mandible annotation. Given the reference standard, the annotation quality is 

evaluated from DSC, PVE, HD95 and CMD metrics. The box and whiskers plots show the 

max, median and min values, and the violin plots shows the median and quartile.
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Figure 6. 
Experimental results on deep learning based mandible segmentation. The models are trained 

and tested on the UTSW dataset and further evaluated on two other datasets. The metrics of 

DSC, PVE, HD95 and CMD are shown from top to bottom rows, and the results on the 

dataset UTSW, TCIA and PDDCA are shown from left to right columns, correspondingly.
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Table 1.

Data splitting and experiment design.

UTSW TCIA PDDCA

Train Validation Test Test Test

Total scans(patients) 180 (180) 10(10) 12(12) 31(30) 40 (40)
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Table 2.

Annotation quality of the UTSW training set.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

B (10%) 0.99 ± 0.05 0.03 ±0.12 0.48 ± 1.78 0.16 ±0.46

C (20%) 0.97 ± 0.07 0.07 ±0.18 1.38 ±4.65 0.31 ± 0.94

D (30%) 0.96 ± 0.08 0.11 ±0.21 2.29 ± 7.87 0.56 ± 2.38

E (40%) 0.94 ± 0.09 0.14 ±0.22 2.37 ± 9.70 0.80 ±3.15

F (50%) 0.93 ±0.10 0.17 ± 0.24 4.25 ± 10.54 0.94 ± 3.52

G (60%) 0.91 ±0.10 0.20 ± 0.25 5.54 ±11.37 1.17 ±3.76

H (100%) 0.85 ± 0.09 0.34 ± 0.24 6.76 ± 12.78 1.82 ± 4.48
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Table 3.

Performance evaluation on the UTSW test set.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 0.90 ± 0.07 0.21 ± 0.18 5.65 ± 7.38 1.46 ± 1.98

B (1O%) 0.89 ± 0.07 0.22 ±0.15 6.41 ± 7.02 1.64 ± 1.89

C (20%) 0.87 ± 0.09 0.25 ±0.15 7.14 ±6.58 1.82 ± 1.66

D (30%) 0.84 ±0.12 0.30 ± 0.22 9.65 ± 10.24 2.61 ± 2.74

E (40%) 0.85 ± 0.09 0.29 ±0.18 9.67 ±8.19 2.34 ± 2.09

F (50%) 0.87 ± 0.07 0.27 ±0.18 6.93 ± 6.32 1.89 ± 1.67

G (60%) 0.83 ±0.10 0.35 ± 0.20 12.53 ± 16.29 3.13 ±3.56

H (100%) 0.82 ± 0.07 0.40 ± 0.20 7.63 ± 5.08 1.91 ± 3.47
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Table 4.

Performance of cross-dataset test on the TCIA dataset.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 0.90 ± 0.02 0.20 ± 0.05 3.51 ± 1.42 2.02 ± 2.92

B (10%) 0.85 ± 0.05 0.28 ± 0.09 5.38 ±12.38 1.48 ± 1.44

C (20%) 0.82 ± 0.07 0.32 ±0.11 5.94 ± 3.24 1.80 ± 1.06

D (30%) 0.82 ±0.12 0.32 ±0.15 12.87 ± 40.00 2.99 ± 4.90

E (40%) 0.85 ± 0.08 0.28 ±0.11 7.22 ± 8.46 2.11 ± 1.91

F (50%) 0.86 ± 0.04 0.27 ± 0.08 7.16 ± 16.79 1.81 ± 2.04

G (60%) 0.85 ±0.10 0.28 ±0.14 11.30 ±23.63 2.66 ± 3.22

H (100%) 0.85 ± 0.06 0.28 ±0.10 4.70 ± 2.32 1.37 ± 0.60
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Table 5.

Performance of cross-dataset test on the PDDCA dataset.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 0.87 ± 0.04 0.28 ± 0.08 4.79 ± 1.69 1.78 ± 0.95

B (1O%) 0.82 ± 0.05 0.35 ± 0.08 4.63 ± 1.66 1.49 ± 0.50

C (20%) 0.80 ± 0.07 0.39 ±0.11 6.32 ± 5.28 2.02 ± 1.24

D (30%) 0.80 ±0.10 0.39 ±0.13 15.79 ±40.25 3.74 ± 7.38

E (40%) 0.83 ± 0.05 0.35 ± 0.08 7.22 ± 7.87 2.28 ± 1.72

F (50%) 0.84 ± 0.04 0.34 ± 0.09 5.92 ± 13.21 2.12 ±1.63

G (60%) 0.82 ± 0.09 0.35 ±0.12 10.36 ± 22.06 2.66 ± 2.94

H (100%) 0.82 ± 0.05 0.37 ± 0.08 21.70 ±64.88 4.74 ± 9.81
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Table 6.

Evaluation of selected models on the UTSW training set by using the training labels as the ground truth to 

quantify the segmentation performance.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 0.92 ± 0.05 0.16 ±0.09 4.00 ± 6.05 1.10 ± 1.08

B (10%) 0.90 ± 0.06 0.20 ±0.11 4.72 ±6.16 1.21 ± 0.99

C (20%) 0.86 ± 0.09 0.25 ±0.13 6.85 ± 8.44 1.67 ± 1.62

D (30%) 0.84 ±0.12 0.30 ± 0.20 11.18 ± 17.68 2.75 ± 3.61

E (40%) 0.84 ±0.10 0.32 ± 0.24 11.23 ± 15.35 2.73 ± 3.96

F (50%) 0.86 ± 0.08 0.28 ± 0.22 9.40 ± 17.32 2.35 ± 4.04

G (60%) 0.82 ±0.12 0.33 ± 0.25 11.83 ± 16.60 3.18 ±4.83

H (100%) 0.85 ± 0.09 0.29 ± 0.26 7.72 ± 12.31 2.36 ± 4.33
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Table 7.

Evaluation of selected models on the UTSW training set when using the reference standard as the ground truth 

to quantify the performance metrics.

DSC PVE HD95 (mm) CMD (mm)

A (0%) 0.92 ± 0.05 0.16 ± 0.09 3.96 ± 6.08 1.03 ± 1.01

B (10%) 0.90 ± 0.06 0.18 ± 0.09 4.41 ±6.15 1.12 ±0.94

C (20%) 0.88 ± 0.08 0.23 ±0.11 6.59 ± 9.26 1.53 ± 1.68

D (30%) 0.85 ±0.12 0.28 ±0.18 10.74 ± 17.32 2.52 ± 3.02

E (40%) 0.85 ± 0.09 0.31 ±0.17 10.86 ± 13.57 2.45 ± 2.50

F (50%) 0.88 ± 0.06 0.25 ± 0.12 8.17 ± 15.36 1.84 ± 2.47

G (60%) 0.83 ±0.10 0.32 ± 0.16 11.65 ± 14.67 2.80 ± 3.34

H (100%) 0.82 ± 0.08 0.37 ±0.16 7.78 ± 8.73 1.89 ± 1.78

Phys Med Biol. Author manuscript; available in PMC 2020 October 16.


	Abstract
	Introduction
	Methods and materials
	Data collection
	Mandible annotation and correction
	Data preparation
	Experiment design
	A deep neural network and parameter settings
	Model training, validation and selection
	Performance evaluation
	Software and platform

	Results
	Annotation quality of dosimetrists
	Data quality for model training
	Performance evaluation on the UTSW test set
	Performance of cross-dataset validation
	Performance of selected models on the training samples
	Computation time

	Discussion
	The robustness of deep learning to noisy annotation
	The importance of annotation quality in deep learning
	Future work on deep learning with noisy annotation
	Limitations of the current study

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.

