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Abstract

Purpose: Stereotactic radiosurgery (SRS) has become a standard of care for patients’ with brain 

metastases (BMs). However, the manual multiple BMs delineation can be time-consuming and 

could create an efficiency bottleneck in SRS workflow. There is a clinical need for automatic 

delineation and quantitative evaluation tools. In this study, building on our previous developed 

deep learning-based segmentation algorithms, we developed a web-based automated BMs 

segmentation and labeling platform to assist the SRS clinical workflow.

Method: This platform was developed based on the Django framework, including a web client 

and a back-end server. The web client enables interactions as database access, data import, and 

image viewing. The server performs the segmentation and labeling tasks including: skull stripping; 

deep learning-based BMs segmentation; and affine registration-based BMs labeling. Additionally, 

the client can display BMs contours with corresponding atlas labels, and allows further 

postprocessing tasks including: (a) adjusting window levels; (b) displaying/hiding specific 

contours; (c) removing false-positive contours; (d) exporting contours as DICOM RTStruct files; 

etc.
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Results: We evaluated this platform on 10 clinical cases with BMs number varied from 12–81 

per case. The overall operation took about 4–5 min per patient. The segmentation accuracy was 

evaluated between the manual contour and automatic segmentation with several metrics. The 

averaged center of mass shift was 1.55 ± 0.36 mm, the Hausdorff distance was 2.98 ± 0.63 mm, 

the mean of surface-to-surface distance (SSD) was 1.06 ± 0.31 mm, and the standard deviation of 

SSD was 0.80 0.16 mm. In addition, the initial averaged false-positive over union (FPoU) and 

false-negative rate (FNR) were 0.43 ± 0.19 and 0.15 ± 0.10 respectively. After case-specific 

postprocessing, the averaged FPoU and FNR were 0.19 ± 0.10 and 0.15 ± 0.10 respectively.

Conclusion: The evaluated web-based BMs segmentation and labeling platform can 

substantially improve the clinical efficiency compared to manual contouring. This platform can be 

a useful tool for assisting SRS treatment planning and treatment follow-up.
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1. INTRODUCTION

Brain metastases (BMs) represent the most common brain cancers with a median survival of 

11 months.1 Its incidence has increased with the advanced therapy technology and 

prolonged cancer survival. An estimated 20–40% of all cancer patients in the United States 

have brain metastases.2,3

Whole brain radiotherapy (WBRT), irradiating the entire brain, is a standard of care for 

patients with more than three BMs. Stereotactic radiosurgery (SRS), delivering high dose to 

a small target volume with fast dose fall-off within the brain, is often chosen for patients 

with limited size and limited number (<3) BMs.4–6 Recently, SRS has been considered as a 

less toxic alternative to WBRT for patients with BMs > 3,7 since several clinical trials has 

demonstrated that cognitive function decline was found more frequent with WBRT than with 

SRS while no difference in overall survival was found between these two regimens.8,9 High 

quality SRS treatment outcome requires accurate target delineation for: a) high-quality 

treatment planning to ensure tumoricidal dose to the target and minimal dose to nearby 

critical structures and normal tissue; and b) post-treatment follow-up to quantitatively 

evaluate tumor progression or regression. However, in current clinical practice, physicians 

have to manually delineate and label the BMs. This process is highly time-consuming 

especially in patients with mBMs, where manual contouring and labeling is proportional to 

number of tumors. In some extreme cases in which the number of BMs is up to a hundred, 

this process could take hours. Therefore, the automation of mBMs segmentation and 

labeling has become an urgent need in the clinic.

Brain tumor segmentation has been a prevalent research topic for decades, and various 

algorithms have been proposed.10–13 However, those algorithms cannot be directly applied 

into SRS for clinical use. For example, some of these methods require the integration of 

multimodality images,10,14–16 but the SRS treatment often only acquires T1-weighted MRI 

with Gadolinium contrast (T1c) to accommodate clinical workflow. In addition, some 

methods are threshold-based or region-based.17 However, BMs are often small in sizes, 
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which can be missed in theses algorithms. Furthermore, some of these algorithms are only 

applicable in the 2D images,16,18,19 or are not fully automated and require manual 

interactions.20–23 For example, Havaei et al. proposed a kNN-based brain tumor 

segmentation algorithm which requires manual selection of voxels.22

Recently, more BMs auto-detection and segmentation algorithms are developed.24–29 For the 

algorithms focusing on the BMs auto-detection task,28,29 manual input to contour the BMs is 

still needed after the auto-detection. Among the studies focusing on BMs segmentation task,
24–27 Chitphakdithai et al. utilized longitudinal scans to segment and track BMs volume 

changes.25 With the requirement of a time series of scans and image registration, this 

algorithm could be a good tool for treatment follow-up, but maybe difficult to be adopted in 

SRS treatment as series images might not be available. Losch et al. investigated and applied 

deep convolutional networks (with varied network settings) on the detection and 

segmentation of BMs.26 This initial investigation achieved reasonable results, but its 

performance could be further improved, especially on the computational time. Charron et al. 

adapted the DeepMedic30 model and explored using single and multimodal MRIs to 

segment BMs.24 So far there is still no commercial available tool for automatic BMs 

delineation and labeling in SRS, as well as the treatment response evaluation.

To address the clinical need, the goal of our study is to develop an accurate automated BMs 

segmentation tool to improve the efficiency of SRS treatment. Our group has previously 

proposed a deep learning-based BMs segmentation algorithm utilizing single T1c image 

modality for SRS applications.31 Based on this algorithm, we developed a web-based 

automatic brain metastases segmentation and labeling platform with post-processing 

functions, which could offer substantial clinical time savings and improvement in workflow 

efficiency.

2. MATERIALS AND METHODS

Figure 1 illustrates the framework of this web-based BMs segmentation and labeling 

platform. In current stage, this platform is developed and used in our own institution behind 

institutional network firewall to avoid HIPPA violation. It consists of a web client side and a 

back-end server side. The client side is developed in HTML and JavaScript, and could be 

launched with any common web browsers. Once under the institutional internal network, 

certified users can access the web client via the server IP/Port address. This web-based 

design allows the users to utilize the developed tools without software installation on local 

computers. This web client enables the user interactions such as database access, image 

visualization, and task selection, etc. The back-end server is developed based on the Django 

framework32 in Python. This server side is responsible of executing the tasks received from 

the web client, for instance, data format conversion, BMs segmentation and labeling, 

postprocessing, etc. As is demonstrated in the Fig. 1, the overall workflow of this platform 

can be described in the following process:

1. Users import images from local folder or database through the web client;
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2. After receiving the imported data from the client, the back-end server performs 

tasks including skull stripping, BMs segmentation, and labeling, and then sends 

the results back to the client;

3. The web client displays the received segmentation results, and allows the users to 

conduct further modification as well as postprocessing;

4. Once finished the postprocessing, the server exports the modified segmentation 

as DICOM RTStruct file into a local folder or to the DICOM server.

2.A. Database design

Database design is essential in the construction of this platform for managing patient data. In 

clinic, the patient data usually contains two main components, the DICOM images and the 

nonimage clinical parameters. These two components supports each other and are 

inseparable for clinical use. For efficient database management, two kinds of database 

structures are implemented in this platform: Orthanc33 and MongoDB.34

Orthanc is an open-source, lightweight, and standalone DICOM server for healthcare and 

medical research. Our platform utilizes the Orthanc for storing the DICOM images. For the 

clinical data, another open-source database MongoDB is implemented in the platform. 

MongoDB is a document-oriented non-SQL database, which is powerful in processing the 

clinical parameters. The clinical parameters, such as primary histology, prior SRS, prior 

WBRT, are usually nonrelational and unstructured data, thus making the JSON format 

preferred in our implementation. Within the database, data are stored as key-value pairs. 

Patient ID is set as the key to connect these two database and link all the clinical parameters.

Once uploaded in this platform, patient data will be stored in the platform database. Users 

can import images from this database or the local folder for different tasks. In addition, this 

database also allows the users to conduct follow-up evaluation utilizing the patient treatment 

history stored in the database. For patient confidentiality and data security purpose, the web 

client access is required to be under the secured network environment with valid individual 

credential.

2.B. Interface design

The layout design of the client interface is demonstrated in the [Fig. 2(a)], with detailed 

zoom-in views provided in [Figs. 2(b)–2(d)]. In general, this interface mainly contains three 

components including a task bar [Fig. 2(b)], a task-related function list [Fig. 2(c)], and a 3D 

image viewer function list [Fig. 2(d)]:

1. Navigating through the task bar (blue box in [Fig. 2(a)]), users can select tasks 

among segmentation, follow-up comparison, or database access.

2. The left side of the interface (marked with the red box in [Fig. 2(a)]) is the task-

related function list. For instance, the segmentation-related functions include 

image upload, BMs segmentation, false-positive contour removal, results export, 

and report generation.
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3. The right side of this interface (marked with the green box in [Fig. 2(a)]) 

implements a 3D image viewer which displays the imported images as well as 

the segmentation results. A list of the segmented BMs with corresponding atlas 

labels will also be displayed there after the completeness of the segmentation 

task. This imager viewer also provides basic viewer functions including change 

the window levels, show image orientation, read crosshair coordinates, read the 

DICOM header, and hide/display specific tumor contours, etc.

As in the case shown in [Fig. 2(a)], the automatic-segmented BMs contours are displayed in 

red and overlaid with the cross-section images in the interface. Each BMs are labeled based 

on their anatomical locations, and will be listed on the right side of the interface [Fig. 2(d)]. 

For example, in the 3D image viewer, the segmentation pointed by the crosshair with the 

orange arrow in [Fig. 2(a)] is corresponding to the label ‘right_frontal_2’ marked with 

orange box in the tumor label list in [Fig. 2(d)]. The tumor label list allows the users to 

locate or review a specific segmentation, and to hide or select tumor segmentation from the 

list. By clicking one tumor label from the list, the crosshair will jump to the center of that 

tumor to guide the users locate the target.

2.C. Backbone algorithms

2.C.1. BMs segmentation—Previously our group has developed an automatic BMs 

segmentation algorithm with a deep learning algorithm, En-DeepMedic, based on T1c image 

only.31 Concentric local and global 3D image patches will be extracted from the input image 

volumes and then utilized in the En-DeepMedic CNN architecture to accurately segment 

mBMs.

We incorporate the above segmentation algorithm along with other necessary preprocessing 

procedures into this platform, thus ensuring this platform be robust for conducting the BMs 

auto-segmentation task in clinical SRS cases. The segmentation workflow implemented in 

the platform can be described in the following steps:

1. Convert the original DICOM images into Nifti format, and resample into the 

resolution of 1mm3;

2. Strip skull using robust learning-based MRI brain extraction system (ROBEX);35

3. Segment BMs with the En-DeepMedic network;

4. Resample the segmentation results back to the original resolution.

During the segmentation, a sign will be displayed next to the segmentation button in the 

function list [Fig. 2(c)] to indicate the status of the process as ‘Processing’, ‘Success,’ or 

‘Failed’. After the segmentation task is completed, the platform will proceed the BMs 

labeling process introduced as below.

2.C.2. BMs labeling—In clinical practice, physician will label each BMs contour based 

on its anatomical location within the brain. This process is essential for treatment planning 

and treatment follow-up by identifying each tumor. To mimic and automate this manual 

labeling process, we designed an affine registration-based algorithm to automatically label 
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BMs contours. The general idea of this algorithm is to map the patient’s brain into a 

common brain atlas and to label each BMs based on its location in the atlas.

In this platform, we utilized the Talairach (TAL) atlas36 as the template for BMs labeling. 

The TAL atlas is a 3-dimensional coordinate system of the human brain, which can be used 

to map the orientation of brain structures independent from individual variations in size or 

shape. It provides a hierarchy of anatomical regions based on volume-occupant with 

corresponding labels indicating the hemisphere level, lobe level, gyrus level, tissue level, and 

cell level correspondence. Considering the actual clinical need in radiation oncology, in this 

platform, the original five-level label from the TAL atlas is condensed to a two-level label, 

indicating only the hemisphere and lobe of the BMs location in the TAL atlas. Table I lists 

the simplified labels used in the platform.

Accurately mapping the patient data into the TAL atlas is crucial for the BMs labeling 

process. However, the TAL atlas is not an MRI-like intensity-based brain atlas, which can 

cause errors when registering patient images with TAL atlas. Considering this potential 

problem, we incorporate another commonly used brain atlas into the labeling process, which 

is the MNI standard space.37 The MNI space is a brain atlas model generated by averaging 

305 T1 MRI brains. The transformation between the MNI space and the TAL space has 

already been investigated by many research groups.38–40 Therefore, using MNI space as a 

co-registration bridge between TAL space and patient data, it could obtain more accurate 

transformation than directly registering TAL space and patient data together.

In the registration process, affine registration is chosen in this task for time-efficiency sake 

and avoiding unexpected distortion caused by inaccurate deformation in certain regions.41–43 

The [Fig. 3(a)] shows the original skull-stripped images and the [Fig. 3(b)] is the MNI 

template used for registration. The deformable registration results and the affined 

registration results are shown in the [Figs. 3(c) and 3(d)] respectively. The deformable 

registration could cause deformation of the brain tissue, as shown in this case (marked in the 

red box in the [Fig. 3(c)]). Although the deformable method can better fit the individual 

images into the template regarding the overall size and shape, the internal distortion can 

cause more unexpected errors when finding the atlas locations of each segmentation.

Figure 4 demonstrates the workflow for the automated BMs labeling strategy. The overall 

labeling process can be summarized as:

1. Register the original T1c image to the MNI standard space via affine registration 

to obtain the transformation matrix T1, while the transformation T0 between 

MNI atlas and the TAL atlas is already known;40

2. Register the segmentation to the TAL atlas utilizing the transformation matrix 

T1* T0;

3. Find the center of mass (COM) of each BMs segmentation in the TAL coordinate 

system;

4. For every BMs, find the corresponding atlas label of the COM coordinates in the 

TAL atlas;
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5. For the BMs with the same atlas locations, sort and number each contour based 

on the COM location in the superior-inferior direction; For contours failed in 

finding a label, name and number each contour as ‘tumor 1’ to ‘tumor N’.

When the BMs labeling process is completed, the web client will display the BMs 

segmentation with atlas labels listed for reviewing.

2.C.3. Postprocessing/ False-positive removal—The BMs segmentation algorithm 

implemented in this platform is sensitive to intensity variations in the T1c images.31 Thus, 

the segmentation result might contain false-positive contours in the superior sagittal sinus or 

other confluences of sinuses, which contains the flow contrast agent and presents high 

intensity in the images.

However, the BMs and the cranial sinuses hold different geometric characteristics. 

Specifically, BMs treated in SRS usually have small volumes and rounded shapes, whereas 

the segmented sinuses present more irregularity in the shape. To quantify this irregularity, 

we adopt the sphericity metric calculated by the volume of convergence and the surface area 

of volume to evaluate each segmentation’s geometric characteristics.44,45 Thus, a false-

positive removal strategy has been made and applied in this platform by using user-defined 

sphericity and radius thresholds to exclude the false-positive segmentations. As is shown in 

the [Fig. 2(c)], users can remove the irregular segmentation which has the sphericity smaller 

than the desired threshold or which has a radius larger than the desired threshold. The range 

of the sphericity threshold is set as from 1 to 5, and the selectable range for the tumor radius 

threshold can be from 0.0 to 20.0 mm.17 This planform provides another postprocessing 

function for better viewing experience, where users can remove or recover the corresponding 

BM segmentation, respectively, by checking or unchecking the tumor atlas label listed in the 

interface [Fig. 2(d)].

Once after the postprocessing and the users are satisfied with the results, the segmentation 

results can be exported for planning and stored in the database for the treatment follow-up.

3. RESULTS

3.A. Demo case

The Fig. 5 and Fig. 6 shows one demo case using patient data, with 50 BMs to demonstrate 

the detailed implementation of this platform. Once the users import the images and choose 

the segmentation function in the menu, the platform will begin the segmentation task and 

then display the results as well as the tumor labels in the web client. This whole process will 

take about 4–5 minutes.

The [Fig. 5(a)] shows the original DICOM image as the input and [Fig. 5(b)] displays the 

skull-stripped images after the preprocessing procedure and transformed into the Nifti 

format. This skull-stripping step will be conducted as the first step in the segmentation step. 

Then the skull-stripped image will be utilized in the segmentation and labeling algorithms. 

As is described in the section 2.C.2, in the labeling process, the patient data will be affine-

registered into the MNI template for finding the atlas location of each BMs. Figure 5(c) 

demonstrate the registration results compared with the target MNI template in [Fig. 5(d)].
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The initial segmentation results with corresponding atlas labels will be displayed in the 

interface as is shown in the [Fig. 6(a)] for review. For this demo patient data, this platform 

segments out 61 segmentations in total, which are all listed in the tumor list with the atlas 

labels. For a rough comparison, the manual contour is also displayed in the [Fig. 6(b)]. 

However, the initial results might contain false-positive segmentations. After the review, 

users can choose the postprocessing function in the menu to remove the false-positive 

results. In this demo case, we set the removal threshold in this function as the sphericity no 

smaller than four or the radius no larger than 5 mm. The [Fig. 6(c)] demonstrates the 

performance of this removal strategy, in which the left side is the initial segmentation, and 

the right side presents the results after the postprocessing. It can be found that the false 

positive segmentation of one sinus, pointed by the yellow arrow, is removed from the results 

while maintaining other true-positive BMs segmentations. After this false-positive removal 

processing, 42 segmentations are kept considering as the true segmentations for the 

following manual review.

3.B. Segmentation accuracy

We evaluated the segmentation accuracy of this platform in 10 patient data with number of 

mBMs varying from 12 to 81. Six different evaluation metrics are implemented to assess the 

performance: center-of-mass-shift (COMS), Hausdorff distance (HD), the mean and the 

standard deviation of surface to surface distance (SSD), false positive over union (FPoU), 

and false negative rate (FNR). In all these evaluation metrics, manual segmentation is used 

as ground truth.

COMS represents the shift of the tumor center; ideally it will become 0 when the 

segmentation result is perfectly matched with the ground truth contour. It can be estimated 

by the formula below:

COMS = Δx2 + Δy2 + Δz2 (1)

where Δx, Δy, and Δx is the center-of-mass distance from the tumor volume in auto-

segmentation to the tumor volume in the ground truth contour.

HD measures the greatest value of all the distances from a point on one contour set to the 

closest point on the other contour set. It can be calculated by the formula below:

HD = max h SA, SGT , h SGT , SA (2)

h SA, SGT = max
pA ∈ SA

min
pGT ∈ SGT

pA − pGT (3)

where the SA represents the auto segmentation surface, and the SGT represents the surface of 

the ground truth clinical contour. The terms pA and pGT are the points in the set SA and SGT 

respectively.

SSD measures the shortest Euclidean distance between two known surfaces. In this 

assessment, we calculate the mean value of the SSD (MSSD) and the standard deviation of 

Yang et al. Page 8

Med Phys. Author manuscript; available in PMC 2020 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the SSD (SDSSD) between the auto-segmentations and the ground truth contours to evaluate 

the accuracy. The term d(pA; SGT) in Equation (4) represents the shortest Euclidean distance 

from a point in the segmentation contour to the ground truth contour surface:

d pA, SGT = min
pGT ∈ SGT

pA − pGT 2 (4)

MSSD = meanpA ∈ SA d pA, SGT (5)

SDSSD = stdpA ∈ SA d pA, SGT (6)

In addition to the above four metrics, the false-positive over Union (FPoU) and the false-

negative rate (FNR) of the auto-segmentation before and after the postprocessing are also 

evaluated to demonstrate the accuracy of this segmentation platform:

FPoU = Numberof false positiveautosegmentation
Autosegmentation∪Groundtrutℎ (7)

FNR = Numberof falsenegativeautosegmentation
Totalnumberof groudtrutℎ (8)

where the FPoU is calculated by the ratio of the number of false-positive BMs 

segmentations over the total number of BMs from auto-segmentation and ground truth. And 

the FNR is calculated as the ratio of the number of unsegmented BMs by auto-segmentation 

over the total number of BMs in the ground truth.

The evaluation results for 10 patient data are listed in the Table II. The postprocessing is 

conducted by setting personalized removal threshold to minimize the FPoU while keeping 

the FNR unchanged for each subject. ‘Pre-’ in Table II represents the original metrics before 

the postprocessing. And ‘Post-’ represents the evaluation of results after the false-positive 

removal process. The values of these metrics are acceptable and demonstrate that this 

platform can accurately segment the BMs with small error. Details regarding these 

quantitative results will be discussed in the following discussion section.

3.C. Labeling accuracy

We evaluate the labeling accuracy by comparing the physician’s manual labels with the 

automatically generated atlas labels on 10 patients. Figure 7 compares the manual and auto-

generated labels in one demo case for qualitative evaluation. Note that the order of the labels 

in these two lists is not the same. This labeling result is from the same patient data 

demonstrated in the Section 3.A. We can find that these auto-generated labels are in 

consistence with the manual labels in a similar fashion. The quantitative evaluation 

regarding the accuracy of the BMs labels in these 10 patient data are listed in the Table III. A 

case will be considered as correct if not only the BMs get assigned with a label, but also the 

label can accurately reflect the location of the BMs. For example, though the BMs labeled as 
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‘right_frontal_6’ in the platform (red box in [Fig. 7(a)]) was named as ‘R lat motor strip’ by 

physician (red box in [Fig. 7(b)]), we still consider this case as correct since the motor strip 

is located at the frontal lobe.

4. DISCUSSION

In this work, we developed and evaluated a web-based brain metastases segmentation and 

labeling platform with interactive postprocessing and evaluation functions. Based on the 

qualitative and quantitative evaluation, this platform performs well on the patient data with 

great consistency compared with the physicians’ manual contours and labels.

From the demo case demonstrated in the section 3.A, it can be found qualitatively that our 

platform can accurately segment mBMs and label them based on their corresponding 

locations. The auto-segmentations and labels match well with the clinical contours and 

clinical labels. For the quantitative evaluation, as is shown in the Table II, our platform can 

accurately segment the BMs from T1c images with a mean COMs of 1.55 ± 0.36 mm, a 

mean HD of 2.98 ± 0.63 mm, and a mean MSSD and SDSSD of 1.06 ± 0.31 mm and 0.80 ± 

0.16 mm, respectively, among these 10 clinical patient data contain mBMs from 12 to 81. 

These values demonstrate that our auto-segmentation results are all acceptable and are in 

great consistency with the clinical contours. This platform can handle various clinical cases 

with different number of mBMS and still keeps good accuracy and sensitivity. In addition to 

the accuracy and sensitivity, the time takes for this platform to segment and label one patient 

data is as fast as 4 min. Compared with the manual contouring which usually takes 30 min or 

more, this platform will bring time saving in the clinical practice. Besides, the overall design 

of this platform is simple and easy to use. It incorporates various functions for the follow-up 

comparison, DICOM header information display, window level adjustment, etc., which are 

helpful regarding the user experience and can help to improve the overall workflow 

efficiency. In future work, we will develop some tools to allow users to access the quality of 

segmentation results to facilitate independent algorithms evaluation, and further improve the 

platform based on users’ feedback. This platform has only been validated for internal usage 

within our institution as the segmentation model was trained with our internal dataset. As a 

future work to extend the application into external institutions and sites, further investigation 

and validation is needed to ensure the robustness among patient data with varied scanners 

and protocols.

From Table II, we can find that the averaged FPoU of the segmentation is 0.43 ± 0.19, and 

the averaged FNR is 0.15 ± 0.10 for the tested 10 patient data. Both of metrics are calculated 

based on the initial results without applying the postprocessing implemented in the platform. 

After the postprocessing with the personalized case-specific removal thresholds, the 

averaged FPoU becomes 0.19 ± 0.10 demonstrating the effectiveness of this false-positive 

removal strategy, with the averaged FNR kept unchanged as 0.15 ± 0.10.

We notice that the main causes of the most false-positive cases are the inaccurate skull-

stripping as well as the influence of cranial sinuses. Fig. 8 shows some examples of the 

false-positive cases. From the [Fig. 8(a)] we can find that the false positive contours are all 

located at the places with the appearance of the venous sinuses. Since the image modality 
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utilized in this platform is the T1c images, the injected contrast agents can cause the veins 

becoming bright in the images, thus further causing the false-positive segmentations. In 

addition to the blood vessel, the imperfect skull-stripping can also lead to the false-positive 

segmentations. As is shown in the [Fig. 8(b)], the left image is the skull-stripping results. In 

the red box of this image, the truncated pattern indicates the errors caused by the skull 

removal process. And the right image in the [Fig. 8(b)] shows the corresponding false-

positive segmentations caused by this imperfect removal. As pointed by the yellow arrow, 

the false-positive result appears at the slice where the brain tissue is truncated by the skull-

stripping process. In this platform, we have introduced a false-positive removal function by 

setting threshold in the geometry characteristics, since the veins and the BMs usually present 

differently in shape and volume. Although this criteria can largely improve the overall false-

positive rate, it is not robust enough to precisely distinguish the BMs and the false-positive 

results. As a future plan, we will improve the segmentation algorithm by incorporating the 

brain vessels regional information to further reduce the false-positive rate. As for the skull-

stripping procedure, our platform currently implements the algorithm ROBEX,35 which is 

widely used in the neuroscience research. However, our standard MRI data modality in SRS 

treatment is T1c, in which the veins under the skull will displays as bright compared with 

standard T1 images. To remove the wrong segmentation caused by skull-stripping, we will 

develop a skull-stripping method targeting in the T1c modality in the future.

The false-negative rate or the tumor detectability of our platform is mainly influenced by the 

low contrast and small volumes. The segmentation algorithm implemented in this platform is 

a deep-learning based voxel-wise classification strategy, which utilizes both local and global 

image features.31 If a metastases only contains few voxels and presents a low contrast with 

the neighboring tissue, this network might fail to classify it as tumor based on its 

relationship between neighboring voxels. For the cases shown in the Fig. 9, these BMs 

marked by yellow arrows have a small volume with low contrast, thus causing the failure in 

segmentation. In addition to the contrast and volume, one possible reason for the undetected 

BMs is that our training data of the segmentation model and the testing data used in this 

platform have different imaging protocols. One solution could be including new protocol 

data into the training data set to improve the accuracy. More practical solution will be 

developing a transfer learning module to handle different protocol data, thus the platform 

can have the mobility to be adopted by other institutions using different imaging protocols.

From Table III we can find that the averaged labeling accuracy among the 10 testing cases is 

100%, which indicates that our platform can precisely label BMs based on their anatomical 

locations. By comparing the labeling results with manual labels in the Fig. 7, it can be found 

that the naming strategy of our auto-labels are following the same manner as the actual 

clinical practice, which indicates the lobe location and counts of the BMs. In addition to the 

similar format, we can also find that our labeling algorithm can accurately label each BMs 

with its atlas location information, and the results matches well with the clinical labels. 

Different physician has different strategy in labeling the BMs, and the data in a same clinic 

might have different naming standards due to different reviewers. Our methods can not only 

precisely label each segmentation, but also help to standardize the naming and labeling 

process to improve the patient data management. The accuracy of the labeling process 

highly depend on the registration accuracy. Although rarely happens, the BMs segmentation 
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will not be assigned with an atlas label if it falls outside of the brain atlas after the 

registration process. The Fig. 10 shows one example of the failed labeling process, since this 

BMs locates at the bottom of the left temporal lobe and it falls outside from the temporal 

lobe region in the template after the registration. To further eliminate the failed cases, we 

will improve the implemented registration algorithm in the future.

5. CONCLUSION

To conclude, our web-based platform can segment and label mBMs with high accuracy in 

only 4–5 min. In addition, it also incorporates multiple functions as follow-up comparison, 

postprocessing, and allows various user interactions. The implementation of this platform in 

clinic will greatly benefit the clinical efficiency of the brain metastases SRS treatment.
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FIG. 1. 
The overall workflow of this web-based BMs segmentation and labeling platform.
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FIG. 2. 
The layout design of the platform interface: (a) the overall the interface design; (b) The task 

bar design; (c) The tasked-based function list; (d) the 3D image viewer function list.
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FIG. 3. 
A comparison of the affine registration and deformable registration results: (a) a sample 

patient T1c images; (b) the target MNI template; (c) the deformable registration result; (d) 

the affine registration result.
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FIG. 4. 
The workflow of the automatic BMs labeling process.
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FIG. 5. 
Demo case of the skull stripping and affine registration process: (a) a sample patient MRI 

images as original input; (b) skull-stripped images after preprocessing; (c) images after 

affine registration; (c) the MNI template in affine registration.
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FIG. 6. 
Demo case of the segmentation and postprocessing results: (a) the initial segmentation and 

labeling results; (b) the corresponding manual clinical contour; (c) illustration of the false-

positive removal process.
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FIG. 7. 
A comparison of (a) the manual atlas labels and (b) the auto atlas labels.
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FIG. 8. 
Examples of false-positive segmentations caused by: (a) cranial sinuses; (b) imperfect skull-

removal.
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FIG. 9. 
Examples of false-negative results.
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FIG. 10. 
One example of the failed labeling cases.
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TABLE I.

A list of the simplified TAL atlas label for BMs labeling.

Hemisphere level Lobe level Label name

Left/right cerebrum Frontal left_frontal

Insula left_insula

Cingulate left_cingulate

Limbic left_limbic

Occipital left_occipital

Parietal left_parietal

Sublobar left_sub_lobar

Thalamus left_thalamus

Temporal left_temporal

Cerebellum left_cerebellum

Brainstem Midbrain brainstem_midbrain

Pons brainstem_pons

Medulla brainstem_medulla

Inter-hemispheric / inter_hemispheric

Occipital inter_hemispheric_occipital

Sublobar inter_hemispheric_sub_lobar

Frontal inter_hemispheric_frontal

Limbic inter_hemispheric_limbic
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TABLE III.

Quantitative evaluation of the labeling accuracy.

Patient Number of BM with labels Number of BMs without labels Label accuracy (%)

1 15 0 100

2 11 0 100

3 22 0 100

4 14 1 100

5 34 3 100

6 14 0 100

7 23 1 100

8 40 2 100

9 33 2 100

10 57 3 100

Mean 26 ± 15 1 ± 1 100
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