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SUMMARY Brucellosis is a bacterial disease of domestic animals and humans. The
pathogenic ability of Brucella organisms relies on their stealthy strategy and their ca-
pacity to replicate within host cells and to induce long-lasting infections. Brucella or-
ganisms barely induce neutrophil activation and survive within these leukocytes by
resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found
in the target organs, except for the bone marrow, early in infection. Still, Brucella in-
duces a mild reactive oxygen species formation and, through its lipopolysaccharide,
promotes the premature death of neutrophils, which release chemokines and ex-
press “eat me” signals. This effect drives the phagocytosis of infected neutrophils by
mononuclear cells that become thoroughly susceptible to Brucella replication and
vehicles for bacterial dispersion. The premature death of the infected neutrophils
proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the
absence of neutrophils, the Th1 response exacerbates and promotes bacterial re-
moval, indicating that Brucella-infected neutrophils dampen adaptive immunity. This
modulatory effect opens a window for bacterial dispersion in host tissues before
adaptive immunity becomes fully activated. However, the hyperactivation of immu-
nity is not without a price, since neutropenic Brucella-infected animals develop ca-
chexia in the early phases of the disease. The delay in the immunological response
seems a sine qua non requirement for the development of long-lasting brucellosis.
This property may be shared with other pathogenic alphaproteobacteria closely re-
lated to Brucella. We propose a model in which Brucella-infected polymorphonuclear
neutrophils (PMNs) function as “Trojan horse” vehicles for bacterial dispersal and as
modulators of the Th1 adaptive immunity in infection.

KEYWORDS Brucella, brucellosis, neutrophils, neutropenia, native immunity, adaptive
immunity, Trojan horse
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INTRODUCTION

In 1902, the British bacteriologist and surgeon Sir Percy William Bassett-Smith (1861–
1927) of the Royal Naval Hospital studied the plasma-opsonizing properties in

Mediterranean fever patients infected with “Microccocus melitensis” (Brucella melitensis)
(1). This bacterium was the etiological agent of Mediterranean fever, or Malta fever,
later known as brucellosis, discovered in 1887 by a team of investigators under the
leadership of Surgeon Captain David Bruce on the island of Malta. According to
Bassett-Smith’s experience, one of the most prominent and constant features of human
brucellosis was the “relative reduction of the number, as well as the phagocytic activity,
of the polymorphonuclear white cells.” He related this phenomenon to the “causation
of the prolonged course and recurrent nature of the disease that can last for decades”
(2), as suffered by Alice C. Evans (1881–1975), the brilliant bacteriologist who champi-
oned the procedure of milk pasteurization and found that M. melitensis and the bacillus
of Bang’s disease (Brucella abortus) were related. She acquired the infection in 1922 and
experienced this long-lasting and recurrent disease for 22 years (3). Surgeon Bassett-
Smith, who knew the methods described by the Nobel Prize laureate Élie Metchnikoff
(1845–1916), noted that polymorphonuclear neutrophils (PMNs) were capable of
phagocytizing a large number of M. melitensis organisms without lysis of these leuko-
cytes (4). Moreover, the process could proceed in the absence of specific opsonins
(antibodies), as then proposed by Metchnikoff (5). Later, the American bacteriologist
Irvin Forest Huddleson (1893–1965) extended and illustrated these observations in
1933 (6).

The first comprehensive hematological profiles, carried out in 300 human brucellosis
patients in 1939, demonstrated that 40 to 50% of patients with active brucellosis
displayed absolute and relative neutropenia (7). The correlation between bacteremia
and neutropenia was established a few years later (8). Based on clinical and experi-
mental data, some investigators suggested in 1941 that through a bacterium-
extractable substance, Brucella organisms were “toxic” to PMNs (9). While some sup-
ported this proposal, others denied it, raising a significant controversy among leading
brucellologists of the time (8, 10). Finally, in 1943, investigators observed that in
contrast to other Gram-negative bacteria, Brucella organisms did not prime for the
so-called Shwartzman reaction, a response that recruits large numbers of PMNs in the
skin after the second injection of endotoxin (11).

Amid the 20th century, brucellosis became a global and relevant zoonotic problem.
Due to its high prevalence in humans, a significant number of clinicians studied the
disease. One of the best known American medical brucellologists of the epoch was
Wesley W. Spink (1904 –1988), from the University of Minnesota. He had ample expe-
rience with hundreds of human brucellosis cases and with experimental models (8). In
1951, one of his students, Abraham I. Braude (1917–1984), who later became a
renowned scientist in his own right, observed that soon after invasion, Brucella-infected
PMNs bound Kupffer cells gathering around them in the liver sinusoids. After a few
hours, the Kupffer cells were remarkably full of bacteria, while the liver sinusoids were
devoid of Brucella-infected PMNs (12). These events suggested that the mononuclear
phagocytic cells in the affected organs phagocytized the circulating, infected PMNs.
Spink claimed that PMNs played a significant role in the pathogenesis of the disease
and reported that “phagocytosis of brucellae by these leukocytes may be detrimental
to the host since the bacteria may not be killed but protected by this intracellular
localization” (8). Other studies revealed that Brucella organisms caused mononuclear
granulomas, transient pancytopenia, and hemophagocytosis after the invasion of the
bone marrow (BM) (8, 10). These results suggested that infected cells in the hemato-
poietic tissues (including PMNs) were removed, mainly after long-lasting infections. In
his classic book The Nature of Brucellosis, Wesley W. Spink proposed that “systemic
dissemination of the infection may be dependent, in part, upon the circulation within
the bloodstream of these phagocytes [PMNs], containing viable brucellae” (8).

In the last 3 decades of the 20th century, various groups unequivocally demon-
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strated that Brucella organisms were naturally resistant to the killing action of PMNs
(13–15) and that together with resident macrophages (M�s) and dendritic cells (DCs),
PMNs were the first cells to encounter and internalize Brucella organisms after mucosal
invasion (16, 17). All of these phenomena agreed with the low proinflammatory
response at early times in the infection, the lack of endotoxic symptoms, and the
absence of coagulopathies in brucellosis patients and animals (18, 19).

Despite these remarkable clinical and experimental observations and the significant
role that PMNs play against other bacterial diseases, the function of these leukocytes in
brucellosis remained unexplored for several decades. On the one hand, cellular micro-
biologists focused on unveiling the intracellular life cycle of Brucella organisms in M�s,
DCs, and epithelial cells but not in PMNs (20, 21). As expected, the absence of Brucella
replication in PMNs precluded these cells from studies in cellular microbiology. On the
other hand, most studies in brucellosis concentrated on cells of the acquired immune
system rather than on PMNs participating in the early proinflammatory responses (22,
23). In recent years, however, renewed interest in the role that PMNs have in Brucella
infections has increased. Here, we critically review most of the work done in clinical and
experimental brucellosis concerning PMNs and establish a model for the function of
these leukocytes in the disease.

THE DISEASE NAMED BRUCELLOSIS

Members of the genus Brucella, mainly Brucella melitensis, Brucella suis, Brucella
abortus, and Brucella canis, are pathogens responsible for a worldwide disease known
as brucellosis, which affects domestic animals and humans (24). The high prevalence of
the infection in low- and middle-income nations has a detrimental impact on public
health and causes significant economic losses (25). In high-income countries, where the
disease has been eradicated from livestock, brucellosis exists in wildlife and dogs (26)
and is an “exotic” human infection, often overlooked or confused with other chronic
illnesses (27). This matter is not trivial, since a large proportion of immigrants and
refugees in high-income countries arrive from areas where brucellosis is endemic. Other
Brucella organisms, such as Brucella ovis, a pathogen of rams, Brucella ceti and Brucella
pinnipedialis, infecting marine mammals, and Brucella neotomae and Brucella microti,
parasites of Cricetidae rodents, are of less zoonotic relevance and therefore not con-
sidered dangerous human pathogens (24).

As suggested by their names, the zoonotic Brucella species have different host
preferences: B. melitensis for goats and sheep, B. abortus for cattle, B. suis for pigs, and
B. canis for dogs. The various Brucella organisms are capable of cross-infecting different
animal species, but such infections are, with some exceptions, mostly sporadic and not
epizootic. The zoonotic Brucella species display some differences in virulence. The most
dangerous is B. melitensis, and the least dangerous is B. canis, with B. suis and B. abortus
standing somewhere in the middle (24, 28, 29). Still, the genetic relatedness of the
species is very close, with a DNA similarity near 98 to 99%. Consequently, they show
similar phenotypic characteristics and possess the same virulence factors required for
infection, intracellular life, and dispersion (24). Regardless of the bacterial species
causing brucellosis, the clinical symptoms observed in infected humans are the same,
and the same antibiotic regimen is used to treat the disease, namely, a combination of
doxycycline and streptomycin or a combination of doxycycline and rifampin for at least
7 weeks (8, 10, 19).

Brucella organisms generally invade through the mucosal membranes by direct
contact with infected animals or their secretions. Although several studies have shown
that Brucella organisms are capable of trespassing the respiratory and oral tract, the
conjunctiva, lachrymal ducts, and vaginal and preputial mucosa, the exact mechanisms
of epithelial invasion in these tissues remain unknown (17). It has been shown that
epithelial cells readily phagocytize Brucella organisms (21). In the ligated ileal loop
model, lymphoepithelial M-like cells phagocytize and transfer bacteria to the submu-
cosal plexus when infected with large numbers of brucellae (16). However, this effect
may be the consequence of the model, and it is doubtful that invasion occurs through
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the intestinal route, since it is rather inefficient compared with other routes (30).
Moreover, Brucella is markedly sensitive to gastric juices, and no association between
achlorhydria and brucellosis has been observed (8).

Brucellosis is a disease that progresses with a long incubation period that may last
weeks, months, or even years (8, 10). Experimental eye infection in bovines induces a
delay of 6 to 8 days, before the appearance of a local mild inflammatory response. The
inflamed submucosa contains mainly mononuclear phagocytes, plasma cells, metach-
romatic mastocytes, eosinophilic leukocytes, and just a few PMNs (17). After initial
replication at this site, the bacteria drain into the regional lymph nodes. During this
period, the infected animals do not show signs of disease (31), and in pregnant animals,
the bacteria replicate extensively in placental trophoblasts, causing placentitis and
abortion in the last trimester. In males, the bacteria invade the testes and cause
orchiepididymitis. The aborted fetus is the primary source of infection for other animals
(31). Humans commonly acquire the bacterium from infected animals or through the
ingestion of unpasteurized, contaminated dairy products (Fig. 1) (32).

In contrast to infection in the preferred natural host, brucellosis in humans is a grave
debilitating disease (8, 10). The Mexican brucellologist Maximiliano Ruiz-Castañeda
(1892–1992) described 34 different symptoms and signs (10), and Spink described
about the same number (8). The disease progresses without the characteristic endo-
toxic symptoms of other bacterial infections and is seldom associated with distinctive
clinical or laboratory markers. In its mild form, the disease displays a nonpathogno-
monic collection of symptoms, such as fever, joint pain, myalgia, headache, and
neurasthenia, among others, and, therefore, is difficult to diagnose. If not properly
treated, the bacterium may invade and replicate in vital organs, such as the bone
marrow (BM), the heart, and the brain, causing a severe syndrome, even death (8,
10, 33).

FIG 1 Cycle of Brucella abortus in the bovine host and humans. Brucella organisms infect through the mucosal membranes
(1); once inside, local professional phagocytes such as M�s, DCs, and PMNs internalize the invading bacterium (2). From
here, the bacterium moves to regional lymph nodes (3), and then it spreads to different organs of the reticuloendothelial
system, such as the lungs, spleen, liver, and BM (4). In the pregnant animal, Brucella invades the placental trophoblasts,
replicating extensively within these cells, causing placentitis (5) and abortion in the last trimester of pregnancy (6). The
fetus becomes a source of infection for other animals (7) and humans (8). If the newly infected animal is pregnant, the
abortive bacterial cycle continues (9). Humans may become infected by direct contact with secretions of animals with
brucellosis or through ingestion of unpasteurized, contaminated dairy products (10).
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The natural replicative niche of Brucella organisms corresponds to the intracellular
environment of animal cells. Alternatively, they are better defined as facultatively
extracellular intracellular pathogens rather than facultative intracellular parasites (32). It
is therefore not surprising that Brucella species are closely related and share functional
and structural properties with other animal and plant cell-associated alphaproteobac-
terial parasites, such as Bartonella, Rickettsia, Anaplasma, Afipia, Wolbachia, Ochrobac-
trum, Sinorhizobium, and Agrobacterium (24, 34). The primary host cells in which Brucella
organisms replicate are monocytes (Mo), M�s, DCs, and placental trophoblasts (21).
Infected at much lower rates are B lymphocytes, fibroblasts, osteoblasts, granulocyte-
progenitor cells, hepatocytes, and erythrocytes (35–40). In the course of brucellosis,
mononuclear phagocytic leukocytes are recruited at the site of infection and are the
main effectors engaged by adaptive immunity (41–43). As already mentioned, PMNs
also ingest Brucella organisms in high numbers, but their function in brucellosis departs
from that of mononuclear phagocytic cells.

As with other chronic bacterial infections, the resistance to pathogenic Brucella
organisms relies on strong cell-mediated immunity. This response involves the activa-
tion of the bactericidal mechanisms and antigen-presenting functions of M�s and DCs
and the concomitant activation and expansion of CD4� and CD8� T cells, which are the
principal immune effectors in brucellosis (22). An adequate Th1 immunity, with signif-
icant production of gamma interferon (IFN-�), interleukin-12 (IL-12), IL-6, and other
cytokines, is critical for the clearance of Brucella infections. Studies in animals and
humans have demonstrated that IFN-� is the central cytokine in the adaptive immune
response against brucellosis. Animals deficient in this cytokine or its receptor are highly
susceptible to infection (44). Although antibodies play some role against brucellosis,
clinical observations and experimentation in animals have shown that they may be
dispensable, together with B cells (45). Like other cell-associated alphaproteobacterial
pathogens, in order to establish long-lasting infections, Brucella has evolved different
strategies to evade innate and adaptive immune responses (23, 46). Vaccination with B.
melitensis Rev1 and B. abortus S19 live vaccines effectively protect against ovine/caprine
brucellosis and bovine brucellosis, respectively (47). Brucella extracts or attenuated
strains have been indiscriminately and dangerously used to vaccinate humans. Despite
these efforts, no suitable vaccines are available for humans (47).

THE ROLE OF PMNs IN BACTERIAL INFECTIONS

In this section, we summarize some of the most relevant information on the function
of PMNs within the context of bacterial diseases. For further details on the role of PMNs,
we recommend comprehensive reviews published elsewhere (48–52).

PMNs are essential components of the innate immune system devoted to the
control of microbial infections and are the first leukocytes to be recruited at the
invasion sites (53). PMNs are also the primary cell effectors in the innate immune
response and play a role in regulating adaptive immunity (48, 54). PMN homeostasis
maintains a delicate balance between granulopoiesis in the bone marrow (BM), storage,
release, intravascular margination, clearance, and destruction (48). In the BM, the
production of PMNs corresponds to 5 � 1010 to 10 � 1010 cells/day, following a mat-
uration process that includes invagination of the nucleus and lysosomal granule
formation (55). Mature PMNs migrate from the BM to peripheral blood and the
mononuclear phagocytic system and beneath the mucous membranes (56). The half-
life span of PMNs is open to dispute, ranging from close to 6 h to 6 days and subject
to various circumstances (51, 57), such as their location in tissues, which include the BM,
reticuloendothelial system, lymphatic organs, and blood. Chronic diseases may prolong
or shorten the life span of PMNs, a phenomenon that depends on the course of the
illness and the type of pathogen.

After the bacterial invasion of tissues, PMNs become rapidly activated by cytokines
and chemotactic signals, migrating through endothelial membranes of the small blood
vessels to exert their microbicidal properties (53). Recruitment of PMNs at a site of
infection is a crucial phenomenon of the innate immune response. Chemoattractants,
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such as chemokines, cytokines, complement-derived fragments, leukotrienes, and mi-
crobial components such as N-formylated peptides, influence leukocyte migration
through the activation of G protein-coupled receptors on the PMN membrane (50).

PMNs are powerful professional phagocytes capable of ingesting and killing mi-
crobes intracellularly by activating hydrolytic enzymes, cationic microbicidal peptides,
and reactive oxygen species (ROS). On their surface, PMNs express receptors for
complement proteins, immunoglobulins (Fc), integrins, selectins, cell adhesion mole-
cules (CAMs), and mannose, as well as scavenger receptors, which function as adher-
ence molecules or for phagocytosis. Activated PMNs may degranulate and discharge
ectosomes, microbicidal substances in the surroundings, or discharge PMN-extracellular
traps (NETs). These last elements are composed of sticky DNA, histones, and other
proteins that entrap and kill microorganisms through their cationic or enzymatic action
(58). PMNs also produce chemokines, cytokines, prostaglandins, lipoxins, and other lipid
mediators to attract, activate, and regulate cells of the immune system required for
defense (49).

In many bacterial diseases, the primed, activated PMNs extend their life span and
enhance their microbicidal activity (53, 58, 59). Cytokines such as IFN-� can activate and
prolong the life of these leukocytes in infections (60). After the bacterial invaders are
destroyed, and the inflammatory response slowly resolves, a careful elimination of the
recruited PMNs occurs. This process, which avoids further harm and favors tissue repair,
initiates when the recruited PMNs undergo apoptosis at the resolution site. The dying
PMNs express “eat me” signals such as phosphatidylserine on the cell surface, engaging
M�s and DCs to phagocytize these apoptotic leukocytes in manners that do not
promote proinflammatory responses, generally known as nonphlogistic processes (61).
Indeed, phagocytic cells with internalized apoptotic PMNs are not fully activated and
hamper the release of proinflammatory agonistic signals but promote the production
of regulatory cytokines such as IL-10 and transforming growth factor beta (TGF-�) (56,
62). In other cases, PMNs become fully proinflammatory: they enhance their microbi-
cidal activities, release cytokines and chemokines, degranulate, undergo NETosis, or die
by necrosis or oncosis (52).

Several bacteria have evolved strategies to influence the function of PMNs (63, 64).
The canine and zoonotic pathogen Anaplasma phagocytophilum, a close phylogenetic
relative of Brucella, evades the host immune response by furtive strategies (65, 66) and
actively invades PMNs by a process in which the bacterium takes control of the lipid raft
domain-containing glycosylphosphatidylinositol-anchored protein. Once inside PMNs,
Anaplasma modifies the vesicular biogenesis to create a unique intracellular
membrane-bound compartment that allows their replication in seclusion from lyso-
somal destruction (65). To survive within PMNs, Anaplasma hampers the activation of
NADPH oxidase and the subsequent degranulation of these cells. Furthermore, A.
phagocytophilum lacks genes for the synthesis of lipopolysaccharide (LPS), cyclic
�-glucans (C�G), peptidoglycan, flagella, and fimbria. Therefore, this bacterium lacks
some of the essential pathogen-associated molecular patterns (PAMPs) required to
trigger the innate immune response through the action of pattern recognition recep-
tors, known as PRRs (65).

Bartonella henselae and Afipia felis, pathogens that are close relatives of Brucella
organisms, inhibit human PMN oxidative function and survive within these leukocytes
(67). In cats (the preferred mammal host), bacteremia progresses without neutrophilia
or endotoxicity (68). Likewise, a significant characteristic of trench fever bacteremia
caused by Bartonella quintana is the absence of septic shock symptoms such as
disseminated intravascular coagulation, neutrophilia, or organ failure (69). This phe-
nomenon is related to the absence of agonistic effects of its nonendotoxic LPS on
Toll-like receptor 4 (TLR4). It is noteworthy that Bartonella LPS shares many structural
features with Brucella LPS (Br-LPS) (70–73), which departs from the classical endotoxic
LPSs (74). It seems, therefore, that these closely related intracellular alphaproteobac-
teria share several features associated with a stealthy strategy to invade host cells.

Gram-negative bacteria from other class subdivisions follow different strategies. For
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instance, Shigella flexneri kills PMNs by necrosis, a process characterized by the release
of tissue-injurious granular proteins (75). This event allows the bacterium to disrupt the
epithelial barrier and enter its colonic host cells and cause dysentery. Likewise, Pseu-
domonas aeruginosa strains are toxic and cause lysis and oncosis of PMNs. The
depletion of PMNs by P. aeruginosa contributes to the pathophysiology of the disease
by facilitating bacterial extracellular replication and persistent infections (76, 77).

Although PMNs efficiently internalize chlamydiae, a significant proportion of the
ingested bacteria survive inside these cells (78) and use these leukocytes as “Trojan
horse” vehicles for bacterial dispersion into different organs (79). Chlamydia trachomatis
prevents the activation of PMNs by releasing a protease-like activating factor that
targets and releases a formyl peptide receptor-2 on the surface of PMNs. The cleavage
of this protein dampens the G protein-coupled receptor signal and prevents the
downstream activation of PMNs. The protease-like activating factor suppresses the
oxidative burst, interferes with chemical-mediated activation of PMNs and NET forma-
tion, and enables the pathogen to survive inside PMNs for extended periods (80).

Even Gram-positive bacteria such as Neisseria gonorrhoeae, which promotes the
intense recruitment of PMNs at the infection site, display some evasion strategies. The
fact that a proportion of N. gonorrhoeae organisms can be cultured from PMN-rich
exudates is an indication that at least some bacteria resist the microbicidal mechanisms
of PMNs. It seems, therefore, that some of the ingested gonococci are able to express
significant amounts of virulence factors, such as pili, fimbria, Opa proteins, lipooligo-
saccharide (LOS), and other unknown components, which protect them from oxidative
and nonoxidative antimicrobial activities and modulate PMN phagocytosis as well as
the release of antimicrobial components (81).

Besides the primary function of PMNs in innate immunity, these cells also regulate
inflammation and adaptive immunity in various diseases. These effects may be stimu-
latory or inhibitory, and they may promote or dampen the adaptive immune response
(48, 82–86). As expected, the stimulatory or inhibitory effects exerted on T and B
lymphocytes, antigen-presenting cells (87–94), or NK cells (95, 96) are reliant on the
disease and the infection model. Moreover, there are significant variations in the
immune profiles between acute and chronic processes (97–99). The regulatory mech-
anisms exerted by PMNs on the immune response are discussed below in the context
of brucellosis.

BRUCELLA VIRULENCE STRATEGIES

The overall virulence of Brucella is expressed by three different but related proper-
ties (Fig. 2): (i) the bacterial ability to control its intracellular life to replicate in host cells
(20, 21), (ii) the bacterial capacity to behave as a stealthy pathogen at the onset of
infection to avoid early immune activation (46, 100, 101), and (iii) the resistance of
Brucella organisms to bactericidal substances (102, 103). These properties probably
evolved from ancestral characteristics of free-living alphaproteobacteria.

Control of Intracellular Life by Brucella Organisms

The ability of Brucella organisms to replicate inside M�s, Mo, DCs, and epithelial cells
is directly related to the pathogenicity of these bacteria (Fig. 2A). Once inside permis-
sive host cells, the Brucella-containing vacuole interacts with components of the
endocytic and secretory pathways, such as early endosomes and vacuoles that intersect
with the endoplasmic reticulum, where the bacterium replicates. In this process, the
bacterium avoids fusion with lysosomes in a nontoxic encounter, extending the life of
M�s and Mo and promoting the maturation of DCs (100, 104–106). Brucella ends its
intracellular cycle within vacuoles of the autophagocytic apparatus, followed by the
release of competent bacteria ready to infect PMNs and other cells (107). Once in PMNs,
brucellae survive and persist within the phagosomes, resisting the bactericidal activities
of these leukocytes for a protracted period (13–15).

The bacterial factors involved in the entry of Brucella organisms into cells are just
partially known. PMNs and other professional phagocytes readily ingest opsonized
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Brucella with antibodies and complement through Fc and complement receptors (21).
Brucella lacks classical surface virulence factors such as pili, fimbria, capsules, endotoxic
moieties, toxins, or motile flagella (32). Still, several mutations in genes coding for
various proteins (e.g., BvrS/BvrR, Omp25/Omp31 family, Omp2b, CGH, Efp, CcmC,
BmaC, BtaE) and Br-LPS determinants (O chain, core, and lipid A) affect the binding of
and penetration by Brucella to host cells (108–115). For most of these proteins,
however, there is no demonstration of specific attachment to a cellular receptor.
Furthermore, several of these mutations induce pleiotropic defects in the cell envelope,
complicating matters even more.

FIG 2 Three main virulent properties expressed by Brucella organisms. (A) B. abortus replicates extensively in dividing epithelial HeLa cells (left panel, bacteria
in red, nuclei in blue, actin cytoskeleton in green) and in BM M� (middle panel, bacteria in green, calnexin-positive compartments in blue, Cop-II compartments
in red) or in dividing Raw M� (right panel, bacteria in red, nuclei in blue, cytoskeleton in green). (Photos courtesy of Esteban Chaves [left], Jean Pierre Gorvel
[middle], and Esteban Chaves and Pamela Altamirano-Silva [right], reproduced with permission.) (B and C) The capacity of B. abortus to behave as a stealthy
pathogen is revealed by the absence of endotoxic symptoms and low spleen inflammation at the onset of infection (24 to 48 h) in B. abortus-infected mice
in comparison with Salmonella enterica serovar Typhimurium-infected mice (B) and the negligible amounts of proinflammatory cytokines produced in
comparison to S. enterica Typhimurium infection in mice at the onset of infection (C). (Panel C adapted from reference 100, published under the terms of the
Creative Commons Attribution license [http://creativecommons.org/licenses/by/2.0].) (D) B. abortus resists the attack of an extensive collection of bactericidal
substances, several of them expressed by cells. (E) While the outer membrane of B. abortus remains intact upon treatment with cationic peptides (polymyxin
B), S. enterica Typhimurium demonstrates “blebbing,” chromatin condensation, and death (adapted from reference 102). Note in panel A that Brucella replicates
extensively without inducing noticeable toxic effects in cells. Note in panel B that while the Salmonella-infected mouse (multiplicity of infection [MOI], 103)
shows the characteristic endotoxic cachexia symptoms, the Brucella-infected mouse (MOI, 106) looks unaffected.
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Three exceptions are the following: (i) the O-chain of the Br-LPS that binds scavenger
lectin-like receptors in M�s, (ii) the BmaC membrane protein that binds to fibronectin
and the cognate receptor in epithelial cells, and (iii) BtaE, a polar protein that recognizes
hyaluronic acid (41, 113, 115, 116). Br-LPS binds to C-type lectins on the surface of M�s,
DCs, and PMNs (41, 117), an anticipated event, as mannose residues and sugars with
mannose configuration are present in the Br-LPS core oligosaccharide and the pero-
samine O-chain homopolymer (Fig. 3A). Both BmaC and BtaE localize at the new pole
of the bacterial surface, suggesting that this region may be functionally involved in
adhesion, consistent with the inherent polarization of Brucella organisms (113, 115). The
entrance of Brucella into cells involves the recruitment of several molecular determi-
nants. M�s commonly ingest Brucella organisms through a zipper-like phagocytosis
mechanism, with moderate recruitment of actin filaments and activation of the cyclic
AMP/kinase pathway, followed by phosphorylation of the transcription factor CREB. In
epithelial cells, Brucella organisms penetrate by phagocytosis via moderate recruitment
of actin filaments, activation of small GTPases of the Rho subfamily, such as Cdc42, Rac,
and Rho, and signals mediated by second messengers that include tyrosine kinase
(Tyr-K), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase
(PI3-K) (21).

Brucella organisms have adapted their physiology for intracellular life (118). There-
fore, it is understandable that the vast majority of the so-called virulence factors
described are related to cell cycle and metabolism (119, 120). However, some molecules
are strictly required for transit from extracellular to intracellular environments, traffick-
ing, and replication within cells. Br-LPS is one of the main factors involved in virulence.
Brucella rough mutants display disruptive intracellular biogenesis, do not evade lyso-
somal fusion in M�s and DCs, are readily destroyed by PMNs, and are attenuated in
animal models (13, 21, 121). The mode by which Br-LPS modulates the biogenesis of
phagosomes in M�s and epithelial is barely known. In M�s, Br-LPS is released within
phagocytic compartments. Once inside, Br-LPS binds to the vacuolar membrane and
hampers several functions, including antigen presentation and activation (122).

A significant Brucella constituent involved in virulence corresponds to the two-
component regulatory BvrR/BvrS system, which works as a master regulator of other
systems (114, 123–126). The bvrR and bvrS gene mutants are attenuated and readily
destroyed by PMNs and other cells (Fig. 4A). Coordinated functions between the BvrR
and BvrS proteins are required to modulate the bacterial physiology and the shift from
extracellular to intracellular life. This system controls the homeostasis of components of
the cell envelope, such as outer membrane proteins and Br-LPS. Since BvrR/BvrS
mutants display cell envelope defects, they are also sensitive to the microbicidal action
of PMNs. The phosphorylated regulatory protein BvrR interacts with the genes coding
for quorum-sensing VjbR and the type IV secretion system VirB, essential for intracel-
lular life. The BvrS/BvrR system also controls pathways related to carbon and nitrogen
metabolism.

Like other cell-associated alphaproteobacteria (127), Brucella requires the VirB type
IV secretion system for intracellular survival. Attenuated Brucella VirB mutants are
readily killed by M�s, DCs, and epithelial cells, since they do not avoid the fusion of
Brucella-containing vacuoles with lysosomes (106, 128). The function of the VirB system
is connected with the BvrS/BvrR and the VjbR complexes (123, 125), all essential for
virulence (129). There are several putative effector molecules tentatively associated
with the VirB apparatus. The mechanisms of transfection and the function of most of
these molecules are still unclear (130), and very probably, they do not play a role in
PMN parasitism, since VirB mutants survive for a protected period in these leukocytes
(Fig. 4A).

Although the flagellum-like apparatus is not conspicuous on the bacterial cell, it is
required at later stages of Brucella infection (131). Finally, Brucella periplasmic cyclic
�-glucan (C�G) prevents fusion of the Brucella-containing vacuole with lysosomes by
modifying cholesterol-rich lipid rafts present on the vacuolar membrane and is in
control of the endosomal maturation process (132).
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FIG 3 Noncanonical Br-LPS determines several virulence properties of Brucella species. (A) Comparison of the schematic structures of the
LPSs from B. abortus and S. enterica Typhimurium. Br-LPS displays a nonendotoxic lipid A composed of a diaminoglucose (DAG) backbone
replaced by long-chain fatty acids up to 30 C long and a core oligosaccharide with low-density negative charges and an O-chain
polysaccharide composed of a homopolymer of N-formyl-perosamine sugars (70, 71, 150, 151). In contrast, S. enterica LPS has an endotoxic
lipid A composed of a glucosamine (GlcN) backbone replaced by shorter-chain fatty acids with a core oligosaccharide with high-density
negative charges and an O chain with ramifications (74). The B. abortus WadC mutant lacks positively charged GlcN sugars, exposing the
negative charges of 2-keto-3-deoxyoctulosonic acid (KDO) and phosphates, while the B. abortus rough-LPS mutants, which may occur at
different levels, lack the protective O-chain polysaccharide. Man, mannose; Glc, glucose; QuiN, quinovosamine; PerN, N-formylperosamine;
AraN, arabinosamine; Hep, heptose; Gal, galactose; GlcNAc, acetyl-glucosamine; Rha, rhamnose; Ara, arabinose; P, phosphate; P-H2N,
ethanolamine phosphate. (B) The classical endotoxic Salmonella LPS readily binds to the lipid-binding protein (LBP) and CD14 receptor
that transfer the LPS to the MD-2 coreceptor required for activation of TLR4 and downstream events that result in the induction of NF-�B
and production of proinflammatory cytokines. In contrast, Br-LPS barely promotes the synthesis of proinflammatory cytokines due to its
defective MD-2 binding, lack of TLR4 activation, and subsequent triggering of downstream events. Similar nonagonistic effects have been
found for other Brucella molecules, such as flagellin, lipoproteins, and ornithine-containing lipids (135, 143, 144).
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Brucella Organisms Behave as Stealth Pathogens

Brucella organisms barely induce proinflammatory responses at the onset of infec-
tion (Fig. 2B and C) (100), a characteristic related to the structure of their putative
PAMPs. Various types of PRRs, such as TLRs and NODs, barely recognize Brucella PAMPs,
since these bacterial molecules display molecular modifications (46, 100, 133–135).
Despite some initial controversies on the role of TLR4 in murine brucellosis (136),
evidence for low agonistic activity of Br-LPS is robust and extensive (100, 106, 135, 137,
138). As in other alphaproteobacterial pathogens (71, 73), this phenomenon is linked to
the nonconventional core-lipid A moiety of Br-LPS (Fig. 3A). Br-LPS does not fit and
barely binds to the MD-2 coreceptor of TLR4. This event hampers the recycling and
activation of TLR4 and the subsequent induction of NF-�B that promotes the synthesis
of a collection of proinflammatory cytokines (Fig. 3B) (137). Moreover, Br-LPS induces
just low quantities of ROS mediators (Fig. 4B), and the blocking of TLR4 does not
hamper the interaction of Br-LPS with PMNs (139).

A similar controversy has been observed for TLR2 and TLR9 (100, 137, 140–142).
While some authors do not find any effect on bacterial replication when one of these
TLRs is absent, others find a slight difference in the bacterial loads. It seems evident that
the different Myd88-dependent TLRs cooperate in the control of brucellosis at later
stages. It has been shown that TLR2 and TLR4 cooperate in M� survival at later stages
of B. abortus infections (100) and in the survival of B. microti-infected mice. This event
is significant, since in contrast to other Brucella species, B. microti causes bacteremia
and displays strong pathogenicity for mice (142).

FIG 4 Brucella is resistant to the killing action of PMNs and barely induces activation of these leukocytes.
(A) Sensitivity to the bactericidal action of human PMNs (after 1.5 h) against S. enterica and B. abortus
mutants. The B. abortus BvrR and B. abortus BvrS mutants have membrane and lipid A-fatty acid defects;
the B. abortus WadC mutant has a core defect; the B. abortus PerA mutant lacks O-chain polysaccharide.
The B. abortus VirB mutant is a smooth bacterium defective in the type IV secretion apparatus. Note that
resistance to the bactericidal action of human PMNs is similar in the virulent B. abortus wild type (WT)
and the attenuated B. abortus VirB mutant. (B) In contrast to E. coli LPS and killed Brucella, live B. melitensis
and Br-LPS promote a meager reduction of nitroblue tetrazolium (NBT) of goat’s PMNs (Hanks’ balanced
salt solution [HBSS]). The NBT reduction indirectly measures ROS activity as well as the activity of
oxidoreductases such as NADPH. (Based on data from reference 204.)
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Likewise, the Brucella nonmotile flagellum-like apparatus (131) is not agonistic for
TLR5, a property shared with various alphaproteobacterial pathogens (143, 144).
Brucella-derived outer membrane fragments containing large amounts of lipoproteins
induce low proinflammatory responses compared to conventional PAMPs (100).
Ornithine-containing lipids that are potent PAMPs in other bacteria (145) do not have
a detectable agonistic function during Brucella infections (135). Other molecules, such
as �-cyclic glucans (C�G), have both pro- and anti-inflammatory properties (146).

The Brucella outer membrane works as a shield for PAMPs such as CpG, peptidogly-
can, and C�G (138, 147). This property is related to the high hydrophobicity of the
Brucella outer membrane, which results from the long hydrocarbon aliphatic chains (up
to 30 C atoms) replacing phospholipids, ornithine lipids, lipoproteins, and the lipid A
moiety (135, 148). Some of these long-chain fatty acids may span the Brucella outer
membrane, making the bacterium strongly resistant to disruption (102).

In any case, the overall mild agonistic effect that Brucella organisms exert over PPRs
is reflected in the low activation of infected M�s, DCs, and PMNs and the deficient
production of proinflammatory cytokines at the onset of infection (Fig. 2C) (46, 100).
These experimental observations correlate with the often-prolonged incubation time,
the nonendotoxic clinical manifestations, and the absence of distinctive proinflamma-
tory markers in brucellosis patients (8, 10, 149). Consequently, live Brucella organisms
and their putative PAMPs barely activate PMNs and other immune cells (Fig. 4B), giving
these furtive pathogens time to invade, replicate, and spread through different tissues
before the activation of adaptive immunity.

Brucella Organisms Are Resistant to Bactericidal Substances

The resistance of Brucella organisms to bactericidal molecules of physiological fluids
and cells is due, in part, to the structure of its cell envelope. The positively charged
Br-LPS core oligosaccharide, composed of amino sugars, and the O-chain and NH
homopolymers, built of nonreducing N-formyl-perosamine residues (Fig. 3A) (150, 151),
form a shield, masking the available negative charges on the smooth brucella surface
(152). This property makes the invading bacterium “invisible” to various PRRs and
resistant to the microbicidal action of cellular cationic microbicidal molecules of PMNs
and other cells (102, 103, 148, 153, 154). Indeed, the outer membrane of virulent
brucellae is resistant to complement, oxidative substances, defensins, bactenecins,
cathelicidins, lysozyme, phospholipases, lactoferrin, and PMN extracts, among others
(Fig. 2D and E). The sensitivity of cell envelope Brucella mutants to these substances is
linked, directly or indirectly, to modifications of Br-LPS (114, 133, 138).

One attractive characteristic not directly linked to the structure of the cell envelope
is the resistance of Brucella organisms to DNA alkylating stress mediated by phagocytic
cells. Genes involved in repair and base excision repair pathways are required by the
bacterium to confront alkylation stress within phagosomes (155). This event is com-
mensurate with the absence of bacterial replication within PMNs, a characteristic that
favors resistance to the killing action.

Evolution of Brucella Virulence Mechanisms

The close phylogenetic relatedness of Brucella organisms with other cell-associated
alphaproteobacteria has allowed comparison of the structure and function of several
systems (138). Ochrobactrum spp. are the closest phylogenetic relatives of Brucella spp.
These bacteria share with Brucella pathogens structural and functional features, such as
lipid A, ornithine-containing lipids, flagellin, lipoproteins, C�G, and orthologous sys-
tems such as VirB, BvrS/BvrS, and VjbR, among others (34, 138, 143, 156). Still, the
PAMPs of this opportunistic pathogen keep some structural properties that induce
proinflammatory responses (138). Upon infection, Ochrobactrum kills neutropenic mice,
promotes the release of much higher cytokine secretion, and induces neutrophilia and
recruitment of PMNs. Ochrobactrum LPS has more negative charges in the core oligo-
saccharide than Br-LPS, a property that makes the outer membrane of this opportu-
nistic bacterium more susceptible to the recognition of microbicidal cationic sub-
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stances. In comparison to Br-LPS, which barely binds MD-2/TLR4 molecules,
Ochrobactrum anthropi LPS binds with a high affinity to the MD-2 coreceptor of TLR4.
Consequently, O. anthropi LPS triggers NF-�B (138) and induces a more robust cytokine
response and activation of M�s and PMNs than Br-LPS. This behavior reveals that in
Brucella, the putative PAMPs have been eliminated, modified, or hidden compared to
free-living alphaproteobacteria.

The B. abortus WadC core mutant directly proves the critical role that Br-LPS has in
virulence (133). The core oligosaccharide of this attenuated mutant lacks the positively
charged glucosamine branch linked to the second 2-keto-3-deoxyoctulosonic acid
(KDO) while keeping the O chain bound to the first KDO (Fig. 3A); hence, the negatively
charged molecules become exposed. Consequently, bactericidal molecules of PMNs
and other cells can attack and kill the WadC mutant more efficiently (Fig. 4A). The WadC
mutant also induces higher production of proinflammatory cytokines in infected
phagocytic cells, a phenomenon that is reproduced by its Br-LPS. Like the Ochrobactrum
LPS, the WadC LPS binds to the MD-2 coreceptor of TLR4 with higher affinity, triggering
the activation of NF-�B. As expected, the WadC mutants are also killed more efficiently
by PMNs than virulent wild-type (WT) Brucella organisms (Fig. 4A).

These examples suggest that the free-living Brucella alphaproteobacterial ancestor
evolved and adapted to infect animal cells by fine-tuning its virulence mechanisms.
Some of these adaptations involved structural and functional modifications of the
surface molecules and PAMPs and other virulent systems such as VirB, BvrS/BvrR, and
VjbR. Thanks to these molecular adaptations, Brucella organisms were capable of
circumventing the activation of PMNs, became stealthy pathogens, and avoid the early
recognition of the innate immune system. This strategy opened a “window” for the
dispersion and expansion of Brucella organisms before activation.

PMN RECRUITMENT IN THE COURSE OF BRUCELLOSIS

Mucosal epithelial cells, M�, DCs, and PMNs are the first cells to encounter Brucella
organisms in the mucous membranes (16, 157). Despite this, brucellosis seldom pro-
gresses with the characteristic neutrophilia of many other bacterial infections (Fig. 5)
(19, 31, 100, 101, 158–161). At the onset of systemic infection (the first 48 h) of
experimental murine brucellosis, there is no recruitment of PMNs at the infection site,
and the number of PMNs in blood or target organs, such as the spleen and liver,
remains low. Five days after infection, at the beginning of the acute brucellosis phase
(43), there are still negligible numbers of infected PMNs in the target organs but
significant recruitment of infected mononuclear phagocytes (42). After 2 weeks of
bacterial replication in cells of the reticuloendothelial system, granulomas composed of
lymphocytes and infected M�s and DCs become evident, while PMNs are at low
numbers and are not infected (42, 162).

The recruitment of PMNs depends on the route of infection. Natural Brucella
infection through the skin is rare, since these organisms cannot cross this epithelial
barrier (8, 10). Despite this, experimental subcutaneous inoculation of Brucella organ-
isms into the skin of humans induces the recruitment of PMNs and histiocytes to the
site of infection, within a few hours (33). Likewise, subcutaneous Brucella injection in
mice promotes transient recruitment of PMNs at the site of infection. However, this
effect is 10 times lower than the recruitment of PMNs induced by subcutaneous
injection of Salmonella (100). Infection with high doses of bacteria (107 CFU) by the
intradermal route in the footpad of mice recruits some PMNs and fibroblasts in the skin
(35). However, intradermal administration of Brucella crude extracts in mice after
21 days of bacterial infection promotes only the migration of M�s at the injection site
after 24 and 48 h, with no early or late migration of PMNs (163). A similar inhibitory
effect occurs in PMN mobility in the presence of Brucella extracts in human patients
(164). Moreover, intradermal infections with Brucella organisms or extracts containing
Br-LPS and other components do not promote a Shwartzman reaction or the charac-
teristic immediate local inflammatory response and recruitment of PMNs observed after
the injection of Gram-negative bacteria or enterobacterial endotoxin (6, 8, 10, 165).
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FIG 5 Leukocyte counts in brucellosis. (A) Blood PMN counts in S. enterica Typhimurium- and B. abortus-
infected mice. The yellow area demarcates average blood PMN normal values. PBS, phosphate-buffered
saline. (Adapted from reference 100, published under the terms of the Creative Commons Attribution license
[http://creativecommons.org/licenses/by/2.0].) (B) PMN counts in the peritoneal fluids of five mice infected
with S. enterica Typhimurium or B. abortus. The yellow area (close to the x axis) depicts the normal maximum
upper and lower limits. (Adapted from reference 100, published under the terms of the Creative Commons
Attribution license [http://creativecommons.org/licenses/by/2.0].) (C) Hematological profiles of 17 B. canis-
infected dogs. The average maximum upper and lower limits correspond to the yellow area for each cell type.
Each circle represents one dog, numbered from 1 to 17, with number 1 being the farthest to the left in each
panel. (Adapted from reference 101.) (D) Leukocyte counts in infected quarters (with isolation of Brucella spp.)
and noninfected quarters of udders of 18 cows with brucellosis and comparison with quarters from udders
from noninfected cows. (Based on data from reference 158.) (E) Blood cell profile of 530 human patients with
brucellosis. Neutropenia, due to the absolute low PMN number (�2,500/mm3), is observed in about one-third
of the patients, while relative lymphomonocytosis is observed in close to 90% of the patients. (Based on data
from reference 159.) (F) Comparison of receiver operating characteristic (ROC) curves estimated by regression
analysis of lymphocyte/PMN ratios in human patients with brucellosis and infected with pyogenic bacteria.
Note the frequent neutropenia as a predictive indicator for brucellosis diagnoses in contrast to pyogenic
bacterial infections. (Based on data from references 160 and 161.)
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As stated before, the natural route of Brucella infection is through mucosal mem-
branes. In humans and the preferred host, the mucosal infection seldom promotes
dense PMN recruitment within the next 6 to 8 days (157). Brucella infection of mice by
the intravenous, intraperitoneal, intranasal, intragastric, or oral route barely promotes
the recruitment of PMNs in the blood (Fig. 4A), peritoneum (Fig. 5B), lungs (35), regional
lymph nodes (35), spleen (35, 42, 162), or gastric mucosa (166). Intratracheal inoculation
with a high number of Brucella organisms (108 CFU) induces microgranulomas and
necrosis in the lungs and granulomas in the liver in the presence of PMNs. However,
this does not occur with a lower number of infecting bacteria (�106 CFU) (167).

We ignore why the subcutaneous inoculation of Brucella organisms promotes
transient recruitment of PMNs at the site of infection while systemic infections by other
routes commonly do not. Although mast cells do not phagocytize Brucella organisms,
these bacteria are capable of inducing degranulation of these leukocytes by an
unknown mechanism (168). Resident mast cells, beneath the skin, recruit PMNs to
release cytokines and chemokines and coordinate the movement of these phagocytic
leukocytes to the site of infection (169). Therefore, it is feasible that the subcutaneous
inoculation of large numbers of Brucella organisms promotes the degranulation of mast
cells and the concomitant recruitment of PMNs in the skin. It seems that live Brucella
organisms are required to recruit PMNs in the skin, since the injection of bacterial
extracts or Br-LPS at this site does not induce the same effect.

Epididymitis, orchitis, placentitis, osteoarthritis, BM pancytopenia, meningoen-
cephalomyelitis, and other severe tissue pathologies are mainly observed in long-
lasting brucellosis cases (8, 10). While the recruitment of mononuclear phagocytes at
the infection site is a constant feature, the arrival of PMNs is related to the disease’s
duration and is reliant on the local cytokine and chemokine response and tissue injury
(35, 37, 170–174). M�s, DCs, and fibroblasts produce chemotactic signals, while in-
tensely infected tissues generate damage-associated molecular patterns known as
DAMPs. These two substances are potent mediators for recruiting PMNs and other
inflammatory cells (174).

Abortion is the consequence of placental destruction and cytokine release in the last
trimester of pregnancy. At this stage, there is an intense Brucella parasitism of tropho-
blasts, characterized by necrosis and the presence of a high number of extracellular
bacteria, accompanied by a conspicuous inflammatory exudate and cellular debris (Fig.
5) (170, 172, 175–177). After an abortion, the infected placenta shows vasculitis and
necrotizing placentitis, with infiltration of M�s and PMNs with a large number of
intracellular Brucella organisms (Fig. 6A and B). The destruction of the trophoblast layer
promotes the release of DAMPs and cytokines and the subsequent recruitment of PMNs
(175, 178, 179). The release of proinflammatory mediators by B. abortus-infected bovine
trophoblasts in vivo and in vitro is dampened at an earlier but not later stage of the
infection (171).

In contrast to the infected placenta, the lungs and other tissues of aborted fetuses
from bovines with brucellosis display a predominant inflammatory infiltrate of M�s
with just a few PMNs (176). Likewise, B. canis-infected dogs do not show neutrophilia
or significant hematological alterations (Fig. 5C), and the placentae of bitches after
abortion display a low inflammatory reaction, with very few or no PMNs (180). Brucella-
infected mice also develop moderate multifocal necrotic placentitis (181). The infiltrate
is not particularly purulent; still, the infected mouse placenta shows Brucella within
trophoblasts and signs of inflammation, with infiltration of few PMNs and an abun-
dance of other immune cells (181). Purulent placentae associated with endometritis
and abortion are rare outcomes in murine brucellosis (182), and many pups come to
term and are born alive (28, 182, 183).

At the initial stages of testicular Brucella infection in men, dogs, bulls, and rams, the
inflammatory exudates of the epididymis and cortical testicular tissue seldom show a
PMN predominance (31, 184). Later, severe epididymitis and orchitis, with infiltration of
PMNs and mononuclear cells with intracellular bacteria, become evident (185). As in
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other tissues, the recruitment of PMNs may be due to the combination of cytokines and
DAMPs released by the injured testicular tissue.

B. abortus and B. melitensis also have a strong tropism for the sinuses of the
mammary gland in ungulates (175, 186). Despite this, there are no classical signs of
mastitis, and macroscopically the udders do not demonstrate significant pathological
signs. Although PMNs and other cells in the udder of Brucella-infected animals may
harbor intracellular bacteria, PMNs are not particularly abundant in this tissue (170,
186). The infected quarters of cows do not shed more leukocytes than normal or
noninfected quarters (Fig. 5D). Resident udder PMNs display significantly lesser bacte-
ricidal activity and lower ROS formation against Brucella than those induced by other
pathogens such as Escherichia coli, Salmonella enterica, Streptococcus agalactiae, Staph-
ylococcus aureus, Listeria monocytogenes, and Mycobacterium bovis (187, 188). This
picture contrasts with human breast brucellosis. In rare cases of long-lasting disease,
the bacterium may invade patients’ breasts, with the generation of granulomas con-
taining giant cells and PMNs (189).

Neurobrucellosis in humans and animals such as dolphins seldom progresses with
neutrophilia and inflammatory exudates in the cerebrospinal fluid, and the meninges
have mononuclear cells of lymphocytic and macrophagic origin, some of them con-
taining Brucella and bacterial debris but seldom PMNs (Fig. 6C and D) (172, 190). This
observation is relevant, since parenchymal nerve and glial cells do not become infected
with Brucella organisms and inflammation of the brain is limited to the blood vessels
and the meninges. Brucella invasion of the brain is a severe disease that may cause
death (172).

In contrast to what happens in bacterially induced arthritis (191), Brucella infections
in humans are not a frequent cause of bacterial septic or reactive arthritides, and most
brucellosis patients with arthritis do not show significant hematological changes.
Brucella organisms are seldom isolated from the mononuclear cell-enriched synovial
liquids that generally are devoid of PMNs (192, 193). In long-lasting brucellosis arthritis

FIG 6 Histopathological findings in the placenta and brain of a Brucella ceti-infected striped dolphin. (A)
Placental villi with mononuclear and PMN inflammatory infiltrate (red arrowheads) and some detached
placental epithelial cells (arrow). Hematoxylin and eosin (HE) stain. Magnification, �40. (B) Immunoper-
oxidase labeling of intracellular Brucella antigens inside inflammatory PMNs and mononuclear cells (dark
brown) invading the placental villi (example indicated by an arrow). Immunohistochemistry. Magnifica-
tion, �40. (C) Mononuclear infiltrate in infected brain meninges with the absence of PMNs. HE stain.
Magnification, �40. (D) Immunofluorescence of infected mononuclear cells (in green) in the cerebro-
spinal fluid of infected meninges. HE stain. Magnification, �40. The expected outcomes of stranded
striped dolphins with brucellosis are abortion, meningoencephalomyelitis, and death caused by the
invading bacteria (172). (All photos courtesy of Rocio Gonzalez-Barrientos and Gabriela Hernández-Mora,
reproduced with permission.)

Moreno and Barquero-Calvo Microbiology and Molecular Biology Reviews

December 2020 Volume 84 Issue 4 e00048-20 mmbr.asm.org 16

https://mmbr.asm.org


and bursitis, PMNs may infiltrate the synovial fluid. Inflammation of the joints such as
arthritis, bursitis, and hygromas may also be present in old bovines with a long history
of brucellosis, mainly from low-income countries (194, 195). The most frequent histo-
pathological lesions in bursitis with the isolation of Brucella from the synovial fluid
correspond with multifocal necrosis, hemorrhage, and signs of a granulomatous pro-
cess with a lymphohistiocytic inflammatory infiltrate containing M�s and some PMNs
(194). As expected, joint infections also involve the local immune response and release
of DAMPs due to tissue destruction (174).

B and T lymphocytes are dispensable in brucellar arthritis, while CXCR2 (receptor for
IL-8/CXCL8 chemokine) is necessary for focal PMN recruitment and inflammation in the
joints of mice (196). Although murine PMNs may participate in arthritis, they do not
seem important in Brucella elimination, and CXCR2 in cells is not necessary for the
clearance of these microorganisms. Brucella-infected human fibroblast-like synovio-
cytes produce proinflammatory cytokines and chemokine CXCL8, and supernatants
from these infected cells recruit PMNs and Mo (197). Likewise, human osteoblasts
upregulate their cytokine and CXCL8 production after coculture with supernatant from
Brucella-infected Mo. In turn, Brucella-infected osteoblasts also induce proinflammatory
cytokines and CXCL8 by Mo (36).

It seems that the ability of Brucella organisms to develop long-lasting infections is
linked to their persistence in the BM (198, 199). In humans, the BM shows histopatho-
logical alterations such as granulomas and an augmented number of inflammatory
cells. Later, neutropenia, thrombocytopenia, anemia, and, in severe cases, pancytope-
nia, myelodysplasia, and hemophagocytosis are common BM alterations (198, 200, 201).
Brucella organisms can persist in the BM of infected mice for protracted periods and
induce significant changes in this tissue. Granulomas and augmented numbers of BM
myeloid granulocyte-monocyte progenitors, PMNs, and CD4� lymphocytes are present
during the acute phase (199). The most abundant infected BM cells at the early phases
of murine infection (once antibodies against Brucella have developed) are PMNs,
followed by granulocyte-monocyte progenitors and Mo. At later times, the number of
infected PMNs in the BM decreases considerably, and the numbers become similar to
those of infected Mo. The neutropenia observed in about one-third of patients with
long-lasting infections (Fig. 5E and F) may be due to the sustained death of Brucella-
infected PMNs and granulocyte-monocyte progenitor cells in the BM (39). Monocytes
and granulocyte-monocyte progenitors are likely to serve as host cells for Brucella
replication, remaining in this hematopoietic tissue for protracted periods. It is unlikely
that PMNs function as bacterial reservoirs in the BM, since the number of these infected
cells significantly decreases after the initial infection periods, along with the fact that
Brucella organisms do not replicate in these leukocytes. Instead, according to the Trojan
horse model, PMNs may function as vehicles for dispersion (39).

Repeated injections of antibodies against PMNs eliminate these leukocytes from
blood, lymphatics, and other organs of mice but only partially remove them from the
BM in Brucella-infected mice (93). Nevertheless, those PMNs that remain in the BM
barely become infected (93). This result suggests that anti-PMN antibodies select
functional and fully phagocytic BM PMNs, leaving a population of resting, not fully
phagocytic PMNs in the BM. This observation is relevant since BM M�s phagocytize
bacterial antigen-laden PMNs and subsequently present antigen to CD8� T lympho-
cytes to generate memory T cells (202).

The clinical and experimental observations demonstrate that the recruitment of
PMNs in brucellosis depends on the route of infection, the course of the disease,
infected organs, and tissue destruction. At the onset of infection, and during the long
incubation period, the recruitment of PMNs at the infection site and target organs is
low. At these sites, mononuclear phagocytes and lymphocytes are the primary inflam-
matory cells. Throughout this period, Brucella organisms avoid the recruitment and full
activation of PMNs, behaving as silent pathogens. Once the disease becomes evident
and clinical signs appear, the infection progresses without neutrophilia hematological
alterations or coagulopathies (19, 31, 100, 101). Like the brain or udder, some organs
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seldom present septic PMN infiltration, despite the large numbers of bacteria present
in these tissues. Later, PMNs may arrive at the damaged, infected organs, such as the
testes, placenta, joints, or BM. However, PMNs do not contribute to the resolution of the
Brucella infection, and these leukocytes are dispensable for bacterial clearance and
the cellular immune response (87, 93).

RESISTANCE OF BRUCELLA TO THE BACTERICIDAL ACTION OF PMNs

After infection, Brucella organisms are opsonized and quickly phagocytized by naive
human, bovine, caprine, rat, and canine PMNs (6, 14, 15, 100, 203–207). Human and
bovine PMNs internalize opsonized Brucella cells with complement or immunoglobulins
or with integrins, C-type lectins, and fibronectin-binding receptors (6, 41, 117, 208, 209).
In contrast, murine PMNs require specific antibodies to phagocytize smooth (but not
rough) Brucella organisms, since N-formyl-perosamine oligosaccharides of the LPSs and
related native haptens constitute a shelter for complement and fibronectin opsoniza-
tion in these animals (205).

Brucella organisms can live in large numbers inside PMNs and resist the bactericidal
action of these leukocytes (6, 13, 16, 100, 203, 209, 210). Still, Brucella resistance to
PMNs is high but not absolute (Fig. 4A), and it depends upon various factors. Brucella
is slightly more susceptible to IFN-�-activated PMNs and PMN-granule extracts supple-
mented with H2O2 and halide (13, 117, 211). The bactericidal response of activated
PMNs correlates with larger amounts of superoxide anion and H2O2 secretion. The
production in Brucella organisms is regulated, and catalase mutant bacterial strains
have high sensitivity to H2O2 (212). Extensive contacts with O2�, myeloperoxidase-
H2O2-halide, and other components of the ROS system are lethal for Brucella organisms
(14). Therefore, it seems that activated PMNs may circumvent, in part, the furtive
behavior of Brucella once adaptive immunity has initiated and killed a proportion of the
bacteria.

The bactericidal activities of PMNs also depend on the animal species and Brucella
strain. For instance, bovine PMNs are more bactericidal than those of humans and
caprine, and all these cells are more bactericidal than those of guinea pigs and mice
(13–15, 204, 205). Likewise, bovine PMNs are more bactericidal after ingesting antibody-
opsonized Brucella in the presence or absence of complement (208). In contrast, murine
and guinea pig PMNs show low bactericidal activity against Brucella, regardless of
antibody opsonization (13, 205). B. melitensis, B. abortus, B. canis, and B. suis display
similar resistance against PMNs (117); however, the rough counterparts and some other
attenuated mutants show increased sensitivity to these leukocytes.

The Brucella VirB attenuated mutants are resistant to PMNs for at least 2 h (Fig. 3C).
In contrast, some mutants (e.g., HtrA) susceptible to PMNs keep their virulence in mice
(210). This difference demonstrates decoupling between the capacity of Brucella to
cause systemic infections and its resistance to PMNs and suggests that PMNs are
dispensable for immune defense in brucellosis. It also indicates that the ability to
control intracellular trafficking is independent of bacterial resistance to PMNs. The VirB
mutants inside PMNs persist longer in the skin (35). This resistance suggests that
Brucella organisms do not require the type IV secretion machinery for survival inside
PMNs but rather depend on the other two virulent strategies. The relatively neutral
conditions of PMN phagosomes in comparison to those of M�s may preclude the
turning on of the Brucella type IV secretion system in PMNs (213). Indeed, the expres-
sion of the VirB system requires the acidic conditions of the M� phagosomes (123).
Therefore, the vacuolar milieu of PMNs constitutes a shelter for the bacterium rather
than a replication niche.

The unique structure of the Brucella cell envelope protects these bacteria from the
bactericidal action of PMNs; defects in this layer favor the destruction of these patho-
gens (133, 153, 203, 205). Rough Brucella mutants lack the outer membrane protective
O-polysaccharide layer and display pleiotropic membrane alterations, exposing other-
wise hidden molecular determinants (118, 152, 214, 215). As a consequence, rough
mutants are more susceptible to bactericidal substances and PMNs (13, 15). As ex-
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plained before, WadC exposes negative charges on its outer membrane, a property that
makes the WadC mutant susceptible to the cationic bactericidal molecules of PMNs
(133). Likewise, the smooth Brucella BvrR and BvrS mutants that display Br-LPS altera-
tions and cell envelope defects show high susceptibility to bactericidal substances and
PMNs (114, 124, 153). After the phagocytosis of these cell envelope-defective Brucella
mutants, PMNs degranulate and generate a more robust ROS response than when
infected with the fully virulent counterparts (13). Some investigators proposed that a
nucleotide-like material derived from Brucella extracts was responsible for blocking
PMN degranulation, with preferential inhibition of primary granule release (216). How-
ever, this proposal does not explain why the attenuated mutant brucellae that also
produce this material, or even killed organisms, do not inhibit degranulation (13) or
ROS activation (Fig. 4B).

As mentioned before, the opportunistic Ochrobactrum is more sensitive than Bru-
cella organisms to bactericidal molecules and PMNs (138, 217), and ochrobacteriosis
progresses with moderate to high neutrophilia in humans and mice (138, 218–220). In
contrast to Brucella, Ochrobactrum replicates in neutropenic mice and promotes the
secretion of cytokines but still less than Salmonella (138). These differences are due in
part by the broader diversity of PAMPs in Ochrobactrum, which binds PRRs, promoting
the activation of NF-�B (138, 221).

PMN DEACTIVATION BY BRUCELLA ORGANISMS

Vigorous proinflammatory activities characterize the biological properties of PMNs
during bacterial infections. Among the most conspicuous are the robust production of
cytokines and chemokines, oxidative burst with potent ROS generation, degranulation,
the release of ectosomes, and NET formation (222). Even heavily infected Brucella PMNs,
with up to 25 to 50 bacteria/cell, barely become activated or display significant
phenotypic alterations (6, 16, 139, 205). Brucella-infected PMNs do not undergo NETosis,
degranulation, necrosis, oncosis, or classical apoptosis morphology, and large quanti-
ties of Br-LPS do not promote noticeable phenotypic changes associated with activa-
tion (100, 139, 223). Antibiotics used to treat brucellosis, such as doxycycline, strepto-
mycin, and rifampin, which influence the bactericidal functions of PMNs (224), do not
promote the activation or degranulation of these Brucella-infected cells (225). These
phenomena correlate with low ROS formation (Fig. 4B), negligible activation of the
monophosphate pathway, and low myeloperoxidase activity of Brucella-infected PMNs
(100, 188, 203, 204, 225, 226). These processes may be partially overcome, just by very
high numbers of Brucella organisms (�100/PMN) (227). Moreover, PMNs from human
patients with an early evolution of brucellosis do not show the robust activation
observed in other bacterial diseases (228–230). In long-lasting Brucella infections, the
PMNs of some patients show augmented migration against zymosan but diminished
chemokinesis against specific antigens. Likewise, the phagocytosis mediated by PMNs
diminishes, and the oxidative burst of unstimulated leukocytes is not augmented
before treatment (164).

PMNs infected with Brucella organisms or treated with Br-LPS practically do not
release proinflammatory cytokines such as tumor necrosis factor alpha (TNF-�), IL-1�,
and IL-6 (139) or regulatory IL-10 (231). This phenomenon is consistent with the low
cytokine production of Brucella-infected mice at early time points of the infection (100,
137, 232). The small amounts of cytokines, particularly IL-1�, and the absence of
caspase-1 involvement preclude the generation of the inflammasome pathway in
Brucella-infected PMNs (139). One exception is the release of low but consistent
amounts of IL-8 (CXCL8) (139). This chemokine, constitutively produced by PMNs, is
readily available after Brucella infection (233). The CXCL8 may function as a “find me”
signal for Brucella-infected PMNs by M�s (234).

The mechanisms behind the overall low activation of PMNs relate to the furtive
nature of Brucella organisms. On the one hand, the putative Brucella PAMPs are not
agonistic for PMN PRRs, hampering the activation of these leukocytes. On the other
hand, Br-LPS promotes the premature cell death of infected PMNs (139). These two
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effects work together, triggering a short-term, nonphlogistic process that allows Bru-
cella dispersion and infection of other cells.

BRUCELLA-INFECTED NEUTROPHILS AS VEHICLES FOR MACROPHAGE INFECTION

Intracellular Brucella organisms are nontoxic for host cells (Fig. 2A); instead, they
inhibit apoptosis and prolong the life of Mo and M�s, induce the maturation of DCs,
and do not hamper mitosis of the infected cells (100, 104–106, 235). Despite this,
Brucella provokes the premature cell death of human and mouse PMNs in a dose-
dependent manner, an event that is reproduced by Br-LPS and its lipid A (Fig. 6). The
premature cell death of Brucella-infected PMNs initiates after phagocytosis of the
bacterium and the subsequent intracellular release of Br-LPS. Once inside PMNs, Br-LPS
fails to interact with TLR4; instead, it moves to CD14 lipoprotein domains in the plasma
membrane or intracellular vesicles, as observed in M�s (122). Then, the nonendotoxic
lipid A moiety of Br-LPS recruits NADPH oxidase, which promotes the controlled
generation of small amounts of ROS, triggering the cell death mechanisms (Fig. 7). This
phenomenon occurs without the conspicuous phenotypic and functional changes
characteristic of PMN apoptosis morphology, NETosis, or oncosis (39, 139, 223, 226).
Alternatively, the Brucella-infected PMNs proceed to nonphlogistic premature cell
death that resembles, in some features, apoptosis, but without condensation of the
nucleus or cell fragmentation (139). First, the Brucella-infected PMNs release CXCL8
chemokine as a “find me” signal, and second, they translocate phosphatidylserine to
the membrane external surface as an “eat me” signal (Fig. 7) (39). As demonstrated in
other systems, dying PMNs still perform oxidative metabolism, release CXCL8, and

FIG 7 Brucella organisms do not activate PMNs but induce the premature cell death of these leukocytes. PMNs (nuclei in blue) heavily
infected with B. abortus (in red) do not display significant phenotypic changes characteristic of degranulation, apoptosis, necrosis/
oncosis, or NETosis and do not display significant bactericidal activities or release proinflammatory cytokines. However, through the
release of nonendotoxic Br-LPS inside infected PMNs, B. abortus organisms promote the premature cell death of these leukocytes. After
fusion with cell membranes, Br-LPS interacts with CD14 lipoprotein, progressively recruiting the action of NADPH oxidase and
promoting the slow generation of controlled amounts of ROS mediators, which induce oxidative fragmentation of nuclear DNA and
the recruitment of Chek1 protein, which is mainly responsible for coordinating the DNA damage after the activation of caspase-
activated DNases (CAD). At the same time, some of the ROS effectors may induce recruitment of the RIP1 kinase/FADD cell death
routes and caspase 8 and promote the release of Ca2� to the cytosol. These mediators also recruit cell death executioner caspases
and, together with ROS mediators, trigger additional death effector mechanisms (e.g., activation of calpains and cathepsins). Finally,
the initiator caspase 9 of the intrinsic cell death pathway is activated downstream by caspase 8, contributing to the premature PMN
cell death mechanism. In this process, the infected PMNs release chemokine CXCL8 to attract mononuclear phagocytic cells and
expose “eat me” signals (e.g., phosphatidylserine [Ps]) on the surface to promote their phagocytosis. Since Br-LPS does not interact
with TLR4 on PMNs, then these cells do not become activated through this pathway. (Adapted in part from supplemental material for
reference 139, published under the terms of the Creative Commons Attribution license [http://creativecommons.org/licenses/by/2.0].
The photo [far left] is reproduced from reference 205.)
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express phosphatidylserine on the external surface in a time-dependent manner (61,
236). After this process, M�s find infected PMNs and specifically detect phosphatidyl-
serine on these cells (Fig. 8A). Then, M�s internalize the Brucella-infected PMNs in a
nonphlogistic manner by a homeostatic-like procedure for PMN recycling (see Movie S1
in the supplemental material) (39, 51). Finally, at early times of infection, M�s release
low quantities of proinflammatory cytokines but larger amounts of regulatory IL-10
(39).

The invasion of M�s by Brucella organisms via infected PMNs is 100 to 1,000 times

FIG 8 PMNs are efficient vehicles for dispersing Brucella organisms. (A) The M� (cell with two nuclei and
the actin cytoskeleton in green) phagocytizes a Brucella-infected PMN (cell with a donut-shaped nucleus,
actin cytoskeleton in green, and with intracellular bacteria in red) with high efficiency. RFP, red
fluorescent protein. (Adapted from reference 39, published under the terms of the Creative Commons
Attribution license [http://creativecommons.org/licenses/by/2.0].) (B) B. abortus propagates at higher
rates in M�s colonized through infected PMNs (1). Brucella infects M�s and replicates intracellularly (2).
M�s recognize Brucella-infected PMNs, exposing phosphatidylserine (Ps), through their Ps receptors (Psr).
Once the infected PMNs are phagocytized, bacteria move to the M� phagosomes and replicate
intracellularly at rates 100- to 1,000-fold higher than in M�s infected with bacteria alone (3). The
blockage of Ps with annexin V on the PMN surface hampers the recognition of M�-Psr and the
subsequent bacterial colonization.
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more efficient than when these mononuclear phagocytic cells become infected with
bacteria alone (Fig. 8B). After several hours, once bacteria are inside their replicative
niche in M�s, a simultaneous release of TNF-� and regulatory IL-10 cytokines is
produced. Bacteria inside endoplasmic reticulum-derived compartments are protected
from destruction, even if M�s become activated afterward (100, 106). As expected,
blockage of phosphatidylserine on the surface of the Brucella-infected PMNs hinders
their association with M�s and hampers phagocytosis (Fig. 9B). It seems, therefore, that
the infected PMNs may serve as efficient Trojan horse vehicles for bacterial dispersal, as
suggested by Wesley W. Spink 70 years ago on the basis of clinical observations (8).

BRUCELLA-INFECTED NEUTROPHILS DAMPEN ADAPTIVE IMMUNITY

As in other diseases caused by intracellular bacteria, the activation of cell-mediated
immunity followed by the release of agonistic cytokines and recruitment of mononu-
clear phagocytic cells is essential for eliminating Brucella organisms (22, 23). However,
before this process, PMNs and other elements of innate immunity that are essential for
controlling the first stages of infection recognize invading bacteria (48). Besides the
central role exerted by PMNs in the innate immune response, these leukocytes also
modulate adaptive immunity (48, 80–83). In most bacterial infections, the absence of
PMNs favors bacterial replication and increases lethality (99, 100, 237–239). In murine
brucellosis, however, the absence of PMNs (either in neutropenic mutant Genista mice
or in mice depleted of PMNs with anti-Ly6G antibodies) does not favor Brucella
replication but instead promotes the elimination of these pathogens from the target
organs and fast resolution of the disease (87, 93). This phenomenon correlates with the
transient and greater liability for infection observed in some Brucella-susceptible mouse
strains. In these animals, the recruitment of PMNs in the spleen results from a higher
bacterial burden, without efficient bacterial elimination from this organ (240).

After Brucella infection of neutropenic mice, there is a mild transient increase in
bacterial numbers in the spleen at the onset of infection, a phenomenon that is rapidly
reversed after 2 to 3 days (87). At this time, the absence of PMNs provokes the
exacerbation of cell immunity, with augmented spleen swelling and higher infiltration
of M�s and DCs. The numbers of CD8� CD4� B cells, monocytes, and Th1 cytokines
significantly increase in both the Brucella-infected, neutropenic Genista mice and the
PMN-depleted mice. Removal of PMNs in infected mice, once the adaptive immune
response has initiated, promotes an even faster resolution of the spleen inflammation.
These phenomena are associated with the potent activation of the cellular immune
response, with increasing levels of IFN-�, IL-12, and IL-6 and efficient recruitment of Mo,
M�s, and DCs, as well as enhanced M� differentiation toward M1-type cells (87, 93). At
later times of the Brucella infection, once the number of bacteria has diminished in the
neutropenic mice, the amounts of IFN-� decrease, while IL-12, IL-10, and IL-6 increase
and IL-4, IL-1�, and TNF-� remain at background levels. In murine brucellosis, aug-
mented IL-10 is related to the CD25� CD4� T cell function that balances proinflam-
matory and anti-inflammatory cytokines (231). Likewise, the increase of IL-10 and IL-6
cytokines at later times of infection in neutropenic mice is linked to the decrease of
IFN-�. Low levels of IL-10 and large amounts of IFN-� correlate with reduced Brucella
survival, while the opposite connects to the resolution of the infection at later times
(231, 241). The rise of IL-6 at later stages of infection limits recruitment of innate
immune cells, and it is a critical regulatory event in inflammation (242).

Neutropenic infected mice dampen the overall antibody titers and all the immunoglob-
ulin isotype responses against Brucella antigens, a phenomenon that is commensurate with
the recorded robust cell-mediated immunity. Therefore, the enhanced removal of Brucella
in these mice is not due to increased levels of antibodies but to a more efficient cellular
response. The low levels of antibodies correlate with the absence of IL-4 and the rise of the
Th1 response (241). Furthermore, the presence of anti-Brucella antibodies in neutropenic
infected mice did not affect the levels of IFN-�, although they dampen the IL-6, IL-12, and
IL-10 response. Taken together, this indicates that PMNs play a significant role in regulating
adaptive immunity during the infection process (87, 93).
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Under the effect of IFN-� and IL-12 cytokines, CD4� lymphocytes become activated,
promoting Th1 polarization and the differentiation of M�s to M1-type cells, with
increased brucellicidal function (243–245). Since in murine brucellosis, all these factors
increase in the absence of PMNs, then the obvious conclusion is that these leukocytes

FIG 9 The Trojan horse hypothesis and modulation of the Th1 response. (A) After the invasion of Brucella organisms, resident PMNs
phagocytize the bacteria without inducing significant activation or degranulation (1) nor signs of necrosis, oncosis, or NETosis. Infected
PMNs, however, release chemokine CXCL8 and expose phosphatidylserine on the cell surface as an “eat me” signal (in green) (2). Then,
in the primarily affected organs, such as the liver, spleen, and BM, M�s and DCs phagocytize the Brucella-infected PMNs in a
nonphlogistic manner (3). Infected PMNs may have a direct regulatory influence over cells of the adaptive immune response by an
unknown mechanism that may involve lipoxins and other mediators (3). Those M�s colonized by Brucella-infected PMNs control
adaptive immunity by releasing the regulatory cytokine IL-10 (5). This event allows bacterial replication inside mononuclear phagocytic
cells such as M�s, Mo, and DCs (6), opening a window for bacterial dispersion in the target organs (7). Then, the adaptive immune
response begins, with activation of the cell-mediated immunity and release of anti-Brucella antibodies (8), significant quantities of
IFN-� (9), and the subsequent release of IL-12, IL-6, and the regulatory IL-10 (10), promoting a regulated Th1 response (11). The Th1
immune response induces polarization toward M1-type M�s (12), which exert an effective bactericidal action, controlling the infection
(13). (B) In the absence of PMNs, there is no such regulatory function over the immune system, allowing the direct interaction of M�s
with the bacterium (0). The fast activation of M�s and other mononuclear cells narrows the window for the immune system to
respond, favoring an exacerbation of Th1 cell-mediated immunity with very large amounts of IFN-�, IL-12, and IL-6 cytokines, smaller
amounts of antibodies, and increased polarization of bactericidal M1-type M�s. The large amounts of IL-10 control the cytokine storm
and promote the fast resolution of inflammation. As a consequence of this enhanced activation, the number of bacteria in the target
organs decreases, favoring fast resolution of the infection.
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exert modulatory functions on the adaptive immune response (Fig. 8). However, the
hyperactivation of adaptive immunity, with IFN-� levels that exceed 8,000 pg/ml, is not
without a price, since the neutropenic Brucella-infected mice develop cachexia in the
early phases of the disease (93). Therefore, the physiological removal of infected PMNs
in brucellosis may keep the immune response’s equilibrium, avoiding the cytokine
storm, which may be lethal (see Movie S2 in the supplemental material).

Given the role that PMNs have in controlling many bacterial infections, the inhibitory
effect that these leukocytes have on the immune response against Brucella organisms
is counterintuitive (87, 99, 237–239). In legionellosis, the absence of PMNs, rather than
promoting a Th1 response, led to Th2 skewing and more disease (99). This shift is a
remarkable phenomenon, since IFN-� also plays a central role in the immune response
in legionellosis (246) and the intracellular life cycle of Legionella pneumophila resembles
that of Brucella organisms (247). Likewise, the absence of PMN apoptosis is linked to the
slow activation of naive CD4� T cells in M. tuberculosis infections (88), and the role of
PMNs as antigen-presenting cells in other bacterial infections (92) does not fit with the
inhibitory functions observed in brucellosis. Mechanisms like regulation through PMN
cytokines or the release of ectosomes or exosomes (248) seem unlikely due to the
absence of degranulation and the negligible amounts of regulatory and proinflamma-
tory cytokines released by Brucella-infected PMNs (100, 139, 231).

Despite this, there are inhibitory actions throughout the immune system mediated
by PMNs that offer alternative mechanisms. Activated or dying PMNs hamper the
proliferation of IFN-�-producing T cells by the release of arginase, which, over time,
depletes extracellular L-arginine in a NO-dependent manner (82). Similarly, subsets of
mature and activated PMNs inhibit T cell proliferation through the release of ROS in the
immunological synapse between the PMNs and T cells (94). In cancer patients, activated
PMNs suppress cytokines and inhibit T cell functions through ROS generation (90).
PMNs instructed by Mycobacterium-infected DCs produce IL-10 and shut down Th17
cells through their IL-10 receptor (249). Primed PMNs may compete for the availability
of antigen with DCs and M�s and then hamper antigen presentation in lymph nodes
(85). PMN-mediated T cell regulation in adjuvant immunization may be dependent on
prostanoids. Indeed, adjuvant-primed PMNs control the spread of T cell responses to
distal lymph nodes. This effect depends on prostanoids, since, in neutropenic mice,
there is mobilization of, and an increase in, CD4� T cell response-dependent IL-2 or
IFN-� production (86). Although these mechanisms somewhat fit with inhibitory reg-
ulatory functions, they require fully activated PMNs, which is not the case in brucellosis.

One alternative that deserves attention is the release by PMNs of anti-inflammatory
lipid mediators, such as lipoxins, particularly LXA4 (250). 5-Lipoxygenase mediates the
synthesis and production of lipoxins through a mechanism that involves the interaction
of PMNs with the endothelium and platelets in the vascular lumen or resident tissue
mucosal cells (250). It has been demonstrated that Brucella-infected, 5-lipoxygenase
knockout mice deficient in the synthesis of lipid mediators, such as lipoxin LXA4, release
larger amounts of IFN-� and IL-12 cytokines than infected wild-type mice, promoting
the fastest resolution of inflammation and more efficient removal of bacteria in the
target organs (251). This phenomenon, which is reminiscent of the Th1 modulatory
function exerted by PMNs in murine brucellosis, may be due to the inhibitory action
that lipoxins exert on M�s, Mos, and DCs and on the differentiation of T effector cell
responses as well as T helper activities (250, 252). Therefore, in the absence of PMNs
and the concomitant lower levels of lipoxins, the exacerbation of the Th1 response may
be the anticipated outcome in neutropenic mice.

THE TROJAN HORSE HYPOTHESIS AND MODULATION OF THE Th1 RESPONSE

A comprehensive model of the role of PMNs in the Brucella infection process is
illustrated in Fig. 9A. After invasion through mucous membranes, resident M�s/DCs
and PMNs phagocytize Brucella organisms. While the former are suitable host cells for
Brucella replication (253, 254), the latter leukocytes do not kill the bacterium and avoid
the proinflammatory functions at the onset of the infection. The removal of infected
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PMNs by phagocytic cells occurs mainly in the affected organs, such as the liver, spleen,
and BM. Then, Brucella organisms are delivered inside mononuclear phagocytic cells
through the infected PMNs. Once inside, the bacteria escape to their replicating niche
without significant activation of the host M�s, Mo, or DCs (Fig. 9A). The internalization
of Brucella-infected dying PMNs promotes the release of IL-10 and hampers the
activation of the phagocytic mononuclear cells early in the infection process (255–257).
The regulatory IL-10 cytokine dampens M� effector functions and limits the production
of IFN-� (241). This nonphlogistic process at the onset of infection opens a window for
bacterial dispersion before the adaptive immune system becomes fully activated. Later
in the infection, the Th1 adaptive immunity fully develops with a predominant pro-
duction of IFN-� and other cytokines that promote M� polarization toward M1-type
cells, which are the most brucellicidal cells (243–245). This model does not rule out the
direct influence of Brucella-infected PMNs on immune cells as a complementary mech-
anism (e.g., through lipoxins or other mediators).

In the absence of PMNs, mononuclear phagocytic cells interact directly with free
Brucella organisms that display lower invasion efficiency (Fig. 8B). The direct recognition
and phagocytosis of the bacterial cells promote a faster and more powerful Th1
immune response, with the release of larger amounts of IFN-� and other cytokines and
stronger polarization toward M1-type M�s. The exacerbated immune response readily
eliminates brucellae from the target organs. After that, larger IL-10 and IL-6 amounts
are released by the neutropenic host, modulating the enhanced immune response and
resolving the infection in a shorter period.

A short time after infection, PMN-containing brucellae aggregate around Kupffer
M�s in the liver sinusoids, which then become fully infected with bacteria (12). Likely,
this phenomenon also occurs in other organs of the mononuclear phagocytic system
(42). The replication of Brucella organisms in the primarily affected organs induces
granulomas composed mainly of M�s and DCs (epithelioid cells), many of them heavily
infected, with just a few PMNs present (43). Most PMNs in these granulomatous
inflammations do not harbor bacteria (42), suggesting that phagocytic cells of the
mononuclear phagocytic system remove the infected PMNs.

FINAL REMARKS

Experimental designs related to infectious diseases must fit the realm and reality of
the episodes to unveil the hidden mechanisms behind the disease; otherwise, the
results become a curiosity and are irrelevant in the context and scope of the events
(258). In this direction, the use of neutropenic experimental murine models has
contributed significantly to defining the role of PMNs at the onset of Brucella infection
or in the early phases of the disease, explaining some of the outcomes observed in
human and animal brucellosis. While PMNs are dispensable for combating Brucella,
these infected PMNs dampen the adaptive immune response against brucellosis.
Nevertheless, PMNs are needed to modulate the cytokine storm that risks the lives of
infected animals, as demonstrated by weight loss in neutropenic infected mice (93).
Although PMNs are not critical for bacterial clearance, they still modulate the immune
response to avoid an exacerbated reaction.

Our comprehensive model is compatible with a large number of clinical observa-
tions, which include a lack of overt clinical signs at the onset of infection and a long
incubation period, which in humans and domestic ruminants may last from weeks to
months (31, 259). The absence of neutrophilia in the initial phases and the concomitant
neutropenia in a significant number of long-lasting brucellosis cases suggest the
effective removal of Brucella-infected PMNs by mononuclear phagocytic cells of the
reticuloendothelial system. It is noteworthy that Br-LPS, the molecule that triggers
the premature cell death of PMNs, circulates for several months in mice without being
destroyed (122), a condition that may be associated with the neutropenia observed in
some brucellosis patients.

This scenario is not without precedent. For instance, other microbial pathogens also
use PMNs as Trojan horse vehicles for dispersion (79, 260), and the presence of CD14
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on PMNs and DCs has been related to LPS-induced apoptosis (261, 262). Some of the
strategies followed by Brucella organisms are present in other pathogenic alphapro-
teobacteria related to Brucella, such as Anaplasma and Bartonella. These bacteria also
display furtive strategies used to avoid activation of the innate immune system and the
microbicidal action of PMNs (65, 66, 69, 263). Finally, some investigations have shown
the negative role of PMNs in controlling chronic bacterial infections (97).

Once installed in humans, brucellosis is a long-lasting bacterial infection that is
seldom eliminated by the sole action of the immune system and requires an aggressive
dual antibiotic treatment for several weeks (8, 10, 149). If not treated, the bacteria may
remain in tissues for extended periods and cause relapses, some of them many years
apart (264, 265). Immunized animals with the live attenuated-Brucella vaccines can
mount an efficient cellular adaptive immune response against brucellosis (266), and
activated phagocytic cells can eliminate the pathogenic organisms (254, 267).

The stealthy strategy followed by Brucella organisms opens a window into the
innate immune response and gives the bacteria time to establish and hide within host
tissues before adaptive immunity becomes fully activated (46). This event is a sine qua
non requirement for the development of long-lasting brucellosis. Finally, our model
describing Brucella-infected PMNs as Trojan horse vehicles for bacterial dispersal and as
modulators of the Th1 adaptive immunity in the infection fits with the “Occam’s razor”
principle of parsimony, in which the most straightforward explanation that agrees with
the experimental data is also the most probable one.
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