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Abstract

Seizure detection is a major goal for simplifying the workflow of clinicians working on EEG 

records. Current algorithms can only detect seizures effectively for patients already presented to 

the classifier. These algorithms are hard to generalize outside the initial training set without proper 

regularization and fail to capture seizures from the larger population. We proposed a data 

processing pipeline for seizure detection on an intra-patient dataset from the world’s largest public 

EEG seizure corpus. We created spatially and session invariant features by forcing our networks to 

rely less on exact combinations of channels and signal amplitudes, but instead to learn 

dependencies towards seizure detection. For comparison, the baseline results without any 

additional regularization on a deep learning model achieved an F1 score of 0.544. By using 

random rearrangements of channels on each minibatch to force the network to generalize to other 

combinations of channels, we increased the F1 score to 0.629. By using random rescale of the data 

within a small range, we further increased the F1 score to 0.651 for our best model. Additionally, 

we applied adversarial multi-task learning and achieved similar results. We observed that session 

and patient specific dependencies were causing overfitting of deep neural networks, and the most 

overfitting models learnt features specific only to the EEG data presented. Thus, we created 

networks with regularization that the deep learning did not learn patient and session-specific 

features. We are the first to use random rearrangement, random rescale, and adversarial multitask 

learning to regularize intra-patient seizure detection and have increased sensitivity to 0.86 

comparing to baseline study.
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Appendix
The full code repository and scripts used to run the experiments is kept on https://github.com/Saqibm128/eeg-tasks.
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I. Introduction

Epilepsy, a disease where patients suffer repeated seizures, is a major condition that affects 

more than 3 million US citizens [1]. Epilepsy can be caused from a variety of conditions but 

the resulting seizures are characterized by prolonged abnormal electrical activity in the brain 

which interferes with normal brain function and therefore normal function of the individual 

[2, 3]. A seizure can be caused by many root causes, such as concussions, fevers, photic 

stimulation or other possibly unknown factors [3]. These multiple factors interact and affect 

epilepsy and its prognosis, as shown in a recent study linking Sudden Unexpected Death in 

Epilepsy (SUDEP) with other top diagnostic codes from an insurance claims dataset [4]

Causes of epilepsy can vary, which can make treatment difficult, but a first diagnostic step is 

to use an electroencephalogram, also called an EEG, to view electrical activity through a 

series of electrodes placed on the scalp [2]. EEGs can reveal the specific location of a 

seizure, what the patterns of spread and retreat throughout a seizure episode are, how the 

seizure moves between different areas of the brain, and unique patterns before a seizure (i.e. 

pre-ictal) as well as during a seizure (i.e. ictal) [2]. Seizures can vary significantly from 

patient to patient, with various different structures, from focal spikes in patient-specific 

channels, to multiple spikes spreading across all channels being possible indications of 

seizure activity [5]. Though clinicians are trained to identify these markers, interrater 

agreement is near 46% on EEG, with sensitivities of 0.6 to 0.7, and between 4 to 8 false 

alarms per day [6]. Ultimately, only clinical observation of the patient in addition to EEG 

readings can prove a seizure versus a seizure-like state [5].

Seizure detection is a clinically relevant task due to the need for accurate algorithms capable 

of correctly identifying seizures in patients. Clinicians need to collect hours of EEG data for 

epileptic patients but have to annotate it in clinical practice to identify the best segments for 

further human analysis to inform future treatment [2]. When a seizure is automatically 

detected for patients, clinicians can intervene and prevent sudden unexpected death during 

the episode [7], which provides additional value. There has been interest in developing 

detection algorithms for these goals in the past. Consequently, a wide variety of human-

engineered signal markers have been developed for automatic seizure detection, including 

entropy [8], coherence [9], and frequency and wavelet based features [10].

Besides signal markers, data-driven seizure detection has been explored in literature using 

various tools, including deep learning. Deep learning approaches with a 13 layer deep 

convolutional neural network (CNN) were able to achieve accuracies above 88%, with a 

sensitivity of 0.95 and specificity of 0.9 [11]. However, the researchers used a dataset of 

only 15 patients, which could mean that the model will not generalize to the larger populace 

[11]. Other researchers claimed results with sensitivity near 0.308 and a false alarm rate of 7 

per day on the Temple University Hospital EEG Corpus (TUSZ) [12]. The authors claimed 

this dataset to be more challenging due to many hundreds more patients, lower signal to 

noise ratio (SNR), and more EEG channels per patients [12]. The study showcased the use 

of CNNs combined with a recurrent neural network (RNN) long short-term memory 

(LSTM) network and was shown to be applicable to other datasets as well.
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In particular, seizure detection is challenging due to class imbalance and the relative 

uniqueness of the seizure phenotype between patients [13]. The relative rareness of events 

may increase false alarm rates, and in clinical environments, any alarm which has a high 

false alarm rate may be deemed useless and ignored. Additionally, for intra-patient seizure 

detection, varying seizure phenotypes may reduce the sensitivity of the algorithm since key 

biomarkers for detecting seizure in one patient of the testing set may not exist in the training 

set.

There has been significant work on seizure detection algorithms trained with the same set of 

patients compared to a different set of patients. In general, due to unique patterns and 

properties of EEG for each patients, creating an algorithm that can generalize to other 

groups can be challenging [13]. EEG tasks are harder to generalize between patients due to 

highly patient and session-specific patterns contained in the extremely data-dense EEG 

which can cause machine learning algorithms to fail. One work has suggested that subjects 

account for “32% of the variance, systems for 9% of the variance, and repeated sessions for 

each subject-system combination for 1% of the variance” in EEG records [14]. This means 

that previous best approaches have worked best with preexisting patient data.

Researchers in the past have circumvented issues around dependencies on patient and 

session bias on the data by creating patient-specific predictors that require previous data 

from patients. Researchers for one study were able to showcase that a patient-specific SVM 

predictor using hand-engineered features for a limited cohort of 16 patients could decrease 

false alarms to below 0.2 per hour for a seizure prediction task [10]. While patient specific 

predictors are clearly the state of the art, these models cannot be applied for patients not part 

of the initial train set.

Approaches that attempt intra-patient seizure detection explicitly have used multiple 

techniques to create an effective classifier. EEG researchers for many tasks have used data 

augmentation and regularization methods such as the addition of Gaussian noise and the use 

of overlapping windows [13], as well as the use of norm penalties on classifiers [15]. 

Regularization is an important tool for other EEG research fields as well. Researchers 

showcased the use of an adversarial multitask learning strategy for an EEG biometrics task 

to reduce session bias for patient identification [16], though there are no similar tasks for 

seizure detection in literature. Other researchers have used data augmentation by swapping 

hemispheres of channels symmetrically to create new examples [17].

In this work, we will compare different models and propose a novel deep learning 

framework for generalizable intra-patient seizure detection. We will use features 

automatically extracted primarily for seizure detection to create a session identification 

model and use its performance as a proxy for overfitting. In the past, we have already 

researched deep learning neural network for processing temporal dataset [18]. In this work, 

we extended this to continuous EEG waveform data. From literature and our first neural 

network project, generalization to patients outside of the train set is a hard task. We will 

tackle this challenge using unique strategies to reduce overfitting by targeting this unwanted 

bias. To our knowledge, this is the first use of random rescale, random rearrange, and 

adversarial learning for seizure detection in an intra-patient population.
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We organize the paper as follows: in section 2, we introduce the Temple University Hospital 

EEG data set. In section 3, we discuss our preprocessing analysis, the initial setup for simple 

services, and the more in-depth strategies we applied for training our neural network. In 

section 4 and 5, we showcase results of both our traditional machine learning and deep 

learning experiments, a neural network without any regularization, and the results of our 

regularization techniques. In section 5 and 6 we discuss broader issues of why performance 

increased for certain approaches and how we plan to continue work.

II. Dataset

The Temple University Hospital EEG Corpus (TUSZ) is “the largest publicly available 

unencumbered dataset of EEG recordings”, containing thousands of EEGs in various 

reference systems [19]. This dataset consists of 592 patients, with 1185 collective EEG 

recording sessions. All EEGs were recorded with the 10-20 system, which is a 21-channel 

electrode format shown in Figure 1; each channel was sampled at 250, 256, or 512 Hz. The 

seizure corpus subset of the dataset includes labels which annotate each file over time for 

seizure sessions.

The Temple University Hospital EEG Corpus includes seizures from a variety of patients 

and is presented in a hierarchical format, as shown in Figure 2. Individual patients may come 

in multiple times to the hospital for multiple recording sessions, which are then split into 

consecutive non-contiguous token files of 20 to 60 minutes of recorded signal. With each 

token file, the dataset provides a time-indexed annotation labeling seizure and non-seizure 

events. Our approach included all the seizure types given within the dataset (generalized, 

focal, simple partial, complex partial, absence, tonic, clonic, tonic-clonic, atonic, and 

myoclonic). For this work, nevertheless, we simplify our scope to only detect seizure vs non-

seizure classes, though there is a wide diversity of seizure phenotypes in the dataset.

EEG data has unique challenges to preprocess correctly, accentuated by the scale of our 

dataset. Extracranial EEG data signal is usually within the range of 20 to 100 μV [20], a 

much lower range than other bio-signals, which allows other noise to easily disrupt the 

signal. The relatively weak signal is susceptible to low frequency muscle artifact noise and 

higher frequency line noise [21]. In addition, the separation of the electrodes from the source 

of the voltage by layers of tissue, skull, and meninges prevents high frequency signal above 

50 Hz from accurately measurement with extracranial electrodes [20].

III. Methodology

A. Preprocessing

Voltage is a difference of potential between points, so different specific baseline references 

can define different “montages” of EEGs. The TUSZ presents data from separate montage 

systems, including a linked-ear reference and an average reference system. We chose the 

average reference system due to its large volume of records existing in this set, more than 

the other reference sets available. We resampled all records to 250 Hz, which, by Nyquist 

Theorem, meant that we would be limited to frequencies below 125 Hz. The frequency of 

the EEG signal lies between 1Hz and 50 Hz, with line noise at 60 Hz and low frequency 
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muscle and heart artifacts (EMG and ECG) interfering near 1 Hz [20]. Accordingly, we 

filtered out noise from below 1 Hz and above 50 Hz with a fifth order Butterworth bandpass 

filter.

We then segmented each file into either 1-second or 4-second segments of non-overlapping 

data from the record and assigned values of seizure or non-seizure based on the annotations. 

Segments immediately before or after a signal were removed due to possible information 

leaking or ambiguity of the signal, as shown in Figure 3.

We also chose to define train, validation sets from the already existing train set in the TUSZ 

(0.80, 0.20 proportions, respectively), since there was no existing validation set in the data. 

We used the predefined test set from the TUSZ as the test set for both the traditional ML and 

the deep learning approach.

B. Traditional Machine Learning Approach

We used random forest, XGBoost, and logistic regression for our traditional ML approach. 

We trained on hand-engineered features generated from the entirety of the 4-second 

segments such as frequency power from the Fast Fourier Transform (FFT), entropy, and 

coherence. Frequency power from the FFT was generated by gathering the total powers of 

sets of frequency ranges corresponding to alpha, beta, theta, and delta waves [22, pp. 10–

13]. Coherence was chosen from pairs of channels to determine the overall sum of 

coherences. For our traditional approach, we used a random search of the hyperparameter 

space, with the best hyperparameters chosen based on the validation set.

C. Deep Learning Approach

We trained deep learning algorithm on 4-second segments only. We used multiple layers of 

CNNs followed by a Long Short-Term Memory layer (LSTM) followed by feedforward 

layers with dropout. We also added Gaussian noise of 2 μV as a standard data augmentation 

technique and applied re-referencing to each 4-second segment, which we found was similar 

to other previous approaches [13]. We remove outliers that are defined as a standard 

deviation of more than 100 μV. These outliers are too noisy to have detectable EEG patterns. 

Because we only have 21 channels, we also used max pooling only over the time segments 

to avoid removing information about channels that could have been used in upper layers of 

the CNN. In other words, we did not reduce the channel dimension during feature extraction 

while still reducing the time dimension. We used early stopping of 20 epochs and saved the 

best model based on the validation F1 score.

We used random down-sampling as part of the pipeline for the traditional machine learning 

algorithms to balance seizure classes; positive 4-second seizure segments made up by only 

12% of the training set. Then for each epoch, we only kept 24% of the total data (12% 

seizure to 12% non-seizure). Regarding neural networks, we randomly resampled each 

epoch for class balance, while still presented as many examples as possible to the network.
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D. Session Identification

CNN layers are known for extracting highly complicated features, which cause overfitting 

similar as other networks. We discovered that there existed significant overfitting on the 

data. Based on previous literature, we attempted to confirm whether the features extracted by 

the CNN specifically fitted to a patient/session/system combination unique to a specific 

recording session [14]. Then we added a session identification layer on a parallel neural 

network that shared the same CNN feature extraction layers as in the original neural 

network. We did a one out of 550 session identification on all sessions from the training set 

with this layer. We used sessions instead of patients because a patient may come in for a 

recording session to multiple wings and departments of a hospital, which could represent 

additional bias. However, a session is a unique combination of a patient at a specific time 

with a specific hospital department and could capture more of these over-specific biases. 

Layers for the session identification network were “frozen” except for the final identification 

layer. This was to prevent the shared feature extraction layers from updating and interfering 

with the seizure detection task. As a result, feature extraction should be primarily driven by 

the main network, while the secondary network would measure the incidental overfitting of 

the features. We directly measure if the feature set created by the neural network could be 

used to predict exact sessions from the training set as the network trained. Extremely high 

session identification indicates a failure to learn generalizable seizure detection features; if 

so, this could signify that we had extracted features geared more towards a specific patient 

population, instead of generalizable to a patient population outside of the training set. We 

presented all the final train session identification accuracy for each model in our results.

E. Regularization through Random Rescale and Random Rearrangement of Minibatch

Based on our initial CNN/LSTM experiment, we randomly shuffled the channels for each 

minibatch with our deep learning model. Because the order changed on each minibatch, 

there was no set order of channels that neural network could depend on to memorize. This 

also forced the network to learn multiple combinations of spatial features instead of a 

specific combination from a single ordering of EEG channels.

We then randomly scaled EEG channels on each minibatch within a fixed scale to create 

additional data as another experiment. We take a number within this specified range, defined 

as 1/x to x, and multiply all data in the minibatch to create new examples scaled to this 

random number.

We used these experiments to test whether data augmentation could provide additional data 

to assist the network generalize to a broader independent test set, and whether these methods 

would increase or decrease performance for patients not in the train set. An increase in 

performance would indicate effective regularization by targeting an aspect of EEG that is 

specific to patients and sessions while a decrease would indicate that we were targeting an 

aspect of EEG data that was already generalizable throughout the population.

F. Adversarial Multi-Task Learning

We created an adversarial multitask learner by attaching a layer for session identification 

with negative weight to the original neural network for seizure detection, as shown in Figure 
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4. This layer was updated with weights shared from the parallel non-interfering session 

identification network for each minibatch but then negatively back-propagated throughout 

the network, creating adversarial training on each mini-batch for seizure detection and 

against session identification for the feature extraction CNN layers. We attempted multiple 

different seizure and negative session weightings to see whether we could reduce overfitting 

experienced by the network. We wanted to test if there with differences in how extracted 

features would generalize for seizure detection in comparison to how much they had fit on 

the know train set session specific features.

A higher seizure weight ratio should lessen the adversarial effect, while a lower weight ratio 

should emphasize feature extraction that cannot incidentally identify sessions. Our paper is 

the first to attempt this on seizure detection, against patient-specific features to try to 

generalize to a broader patient set.

IV. Traditional Learning Results

We decided to use a 1-second segment first for our traditional learner and compared to a 4-

second segment for the seizure detection task, as shown in Table I and Table II. We chose the 

classifier with the best F1 score and extracted feature importance in Figure 5.

There was surprisingly little to no change in the traditional classifiers when presented with 

features extracted from the 4-second segments. The inability of the classifiers to learn higher 

granularity features and the reliance of features over the entire segment instead of smaller 

events within the segment caused lower performance. A more complicated algorithm for 

longer segments is likely necessary to capture the additional detail. XGBoost is still superior 

in performance for the 4-second data but degrades with respect to F1 score from 1-second 

data.

V. Deep Learning Results

We used a CNN-2D LSTM model, as shown in Figure 6 for all classifiers. We also include 

the final session identification for training sessions in our train set as an indication of 

overfitting of the model. Results without regularization were disappointing due to 

overfitting, as shown in Table III. As shown in Figure 7, the classifier overfits with very little 

increase in validation accuracy. The final training session identification accuracy, as shown 

in Table III, was 0.62, which further suggests that this model overfit. Our experiments 

afterwards attempted to target session identification as a proxy for overfitting. If we were 

able to decrease it, we would expect the F1 score to increase as well.

A. Randomly Rearranging Minibatch

Using random rearrangement can increase F1 scores in a test set. Only when we attempt to 

randomly rearrange the order of the channels did we create a classifier which could approach 

the traditional classifier with respect to F1 score. The training curve increases monotonically 

to an extremely high F1 score in Figure 8, while the validation curve appears to increase 

somewhat monotonically until epoch 10, unlike in Figure 7.
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As shown in Table IV, final train session identification accuracy has decreased by 40% from 

the network without random rearrangement, which further indicates that we were able to 

regularize efficiently. Furthermore, sensitivity increased by 0.24, and AUC increased by 0.07 

though specificity decreased by 0.09.

B. Randomly Rearranging Minibatch + Random Rescale Each Minibatch

We also used a random rescale on each minibatch in a range limited between 1/ (rescale 

factor) to (rescale factor). We use this range such that higher factors represent more extreme 

deviations from the original data. We do this to minibatches as a whole and samples to keep 

relative relationships between channels. We present results for a neural network using both 

random rescale on each minibatch and a randomly rearranged channel in Table V.

The best classifier in terms of F1 score was a classifier with a rescale factor of 1.5, which 

meant that each mini-batch was altered for each epoch by a random rescale factor ranging 

from

1-(1/1.5) to 1.5. However, this classifier also had the lowest specificity, which would 

increase false alarm rates in patients. For a classifier using both randomly rearranged 

channels for each minibatch, and a randomly rescaled signal, we found a learning curve with 

a validation F1 score which increases rapidly before settling on chaotic behavior after 10 

epochs, in Figure 9.

We also considered what may have caused an increase of random rescale factor from 1.5 to 2 

to decrease F1 score performances. As shown in Figure 10, the neural network may begin to 

have overfit again, as evidenced by the increase in session identification accuracy.

With both random rescale and random rearrange on each minibatch, there is a small but clear 

increase in performance with a rescale factor of 1.5 (minibatches scale randomly between 

1/1.5 and 1.5). This represented the best model we were able to train.

C. Adversarial Multitask Learning

As another investigation into whether it would be possible to reduce overfitting through 

regularization, we also attempted an adversarial multitask learning task, with results in Table 

VI. We attempted various combinations of loss weights for session identification and seizure 

detection to see if there were major differences in seizure detection performances. The 

adversarial model was able to use stronger relative adversarial weight (negative session 

weight) to reduce session identification. This is reflected in the table as the session 

identification accuracy decreasing as the relative weighting of the adversarial main task to 

the seizure detection task increases. However, F1 score did not appear to increase as much 

with our approach as with randomly rearranging the channels on each minibatch. There is 

one result at a seizure weight of 10 and session weight of −1 which has a high F1 score that 

may represent an optimal balance. This may mean that the network may use the data 

augmentation from random rearrangement more effectively than with an adversarial 

multitask model.
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D. Adversarial Multitask Learning with Randomly Rearranged Channels

We also used adversarial multitask learning while using a randomly rearranged channel, as 

shown in Table VII. The two techniques together appeared to temper the effect of adversarial 

training and increase session identification even though both approaches were used. Even 

though session identification in the train set does not go below 0.3, the F1 score in the test 

set does not degrade much for many of our experiments.

Using random rearrangement shows improvements to seizure detection F1 score for every 

combination of seizure weight and adversarial session identification weight. However, 

session identification accuracy increases more than if random rearrangement or adversarial 

training were used separately. Furthermore, the F1 score does not increase beyond our best 

classifier using only random rescale and random rearrange, though specificity shows a clear 

improvement.

E. Adversarial Multitask Learning with Randomly Rearranged, Randomly Rescaled 
Channels

Finally, we also used both random rescaling and random rearrangement of channels on each 

minibatch to change F1 score performance as shown in Table VIII. Using an adversarial 

multitask learning system does not dramatically increase or decrease performances. There 

are only small changes in overall results depending on the weightings of seizure detection 

and adversarial session identification. For some sample learning curves, there appears to be a 

period where session identification can remain relatively suppressed, as shown in Figure 11. 

We found that the feature set extracted by the CNN layers does eventually increase the 

session identification score as the network converges. In fact, the network with the highest 

F1 with all three regularization strategies had a session identification accuracy of 0.482.

VI. Discussion

Our work is the first, to our knowledge, to attempt several new techniques with regards to 

seizure detection:

• Use of session identification to measure overfitting from patient and session 

specific biases

• Use of random rearrange as a form of data augmentation

• Use of random rescale as a form of data augmentation

• Use of adversarial multitask learning to target session identification

We used traditional learners to set a baseline for seizure detection F1 scores and to find the 

most important features. The results of the traditional learner in the literature suggested that 

coherence between pairs of channels could indicate seizure, as an unhealthy correlated state 

of certain brain areas [9]. These are spatial features dependent on channels, which represent 

interactions between physical brain areas separated throughout space. We also found that 

ensemble methodologies such as RF and XGBoost easily outperformed linear 

methodologies such as Logistic Regression, as well as our non-randomly rearranged CNN 

and could approach high F1 scores of our other CNN models. Ensemble learners are known 
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for reducing overfitting through weak learners trained on subsets of the data, which may 

explain the performance increase.

Based on our initial deep learning experiment, we were surprised to see that the CNN could 

extract features for a 1 of 550 session identification task, despite being explicitly trained for 

seizure detection. Our result indicated that generalization to another set outside of the train 

set would be a key challenge for CNN feature extraction layers. For example, our first 

baseline network in Figure 7 failed to generalize because it extracted session and patient 

specific features not generalized seizure detection features. We saw both a high session 

identification accuracy of 0.602 and a dismal performance for seizure detection with an F1 

score of 0.56 in Figure 7. The high training session identification was a target to reduce 

overfitting and helped inform later approaches.

Session identification training was an important tool to leverage throughout our experiments 

for reducing the type of overfitting we saw with the first neural network. Traditionally, 

overfitting can be detected for deep networks when the validation curve stopped rising, but 

for the TUSZ, due to the approach we took, we could see overfitting immediately after even 

a few batches. We believe that reusing the same sessions and generating multiple 4-second 

segments from each may have caused overfitting within a batch. The network can be 

presented many multiple examples of the same session taken at differing times but with 

similar identifying features. Even if the segments were non-overlapping and could represent 

different aspects of EEG overtime, segments from the same session were not independent.

Many of our most performant experiments had lower session identification in exchange for 

better generalization for seizure detection. We could see that for these models, as shown in 

Figure 8, the validation score can increase more with each additional epoch compared to 

with no technique targeting session identification. To accomplish this goal, we reduced 

session identification capability for the extracted feature set using techniques such as 

random rearrange and random rescale. In addition, we found that adversarial multitask 

learning is an important tool for directly affecting session identification. Such techniques 

aimed to identify the signal that could have been used to uniquely identify EEG segments 

specific to a session. We were especially interested in seeing whether seizure detection 

performance would suffer if we altered an EEG with these methods.

We first directly changed the data to regularize the network. We began with an approach of 

random rescaling and random rearrangement of the channel input to partially “destroy” 

aspects of input data that caused overfitting, such as a maintained channel order and a 

maintained EEG magnitude. Intuitively, directly increasing random aspects of the signal 

should reduce performance for both seizure detection and session identification. Instead, we 

found experimental results that we forced the network to consider new examples not in the 

original dataset, while removed identifying features that could correlate with any specific 

session. This increased seizure detection sensitivity and F1 score.

The significant decrease of session identification accuracy from Table III to Table IV 

suggests that random rearrangement is clearly the most performant regularization strategy 

due to its presentation of spatial features that may not be originally represented in the 
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unchanged data. A single patient may only have seizures localized as a series of patterns in a 

few distinct channels, but random rearrangement helps replicate this pattern in multiple 

combinations that can generalize to other patients with seizures in completely different 

channels. This increases sensitivity of seizure detection classifiers in our test set, which is 

the primary driver of increase in our F1 score.

We based randomly rescaling minibatches as another form of regularization in combination 

with random rearrange that uses data augmentation. Our F1 score for seizure detection 

increased from 0.63 to 0.65, suggesting that the two approaches increased regularization 

together (at a rescale factor of 1.5). Furthermore, we reduced session identification to 0.08 

with this rescale factor. However, the session identification and seizure detection 

performance are highly sensitive to the rescale factor used. For example, with a rescale 

factor of 2, (which allows minibatches to be randomly scaled between 0.5 and 2 for every 

epoch), the train session identification appears to have increased to 0.541 compared to lower 

values of rescale, while decrease seizure detection F1 score of 0.62. This may mean that 

features for seizure detection may have been affected more than features for session 

identification, which may have caused the network to extract the latter.

We applied random rescale and random rearrange as effective means to reduce overfitting by 

extracting spatially and session invariant features from the input data. On the other hand, our 

adversarial learning approach attempted to extract patient-invariant and session-invariant 

features to improve generalization. Instead of directly manipulating the input data, we 

affected the process by which the neural network trained by penalizing increases in session 

identification. We originally believed that all these regularization methods could help 

increase F1 seizure detection scores, but we found that F1 scores remained close to 0.6 for 

most of our choices of hyperparameters. However, adversarial multitask learning did 

increase specificity compared to use of random rescale and random rearrange, without 

drastically reducing F1 score.

Our regularized seizure detection models are competitive in sensitivity and F1 score. We 

choose the work from Golmohammadi as a baseline, as they worked on the same task with 

the same dataset. The researchers claim that models trained on the TUSZ have lower 

performance compared to other datasets due to issues in the data “representative of common 

clinical issues”, so a comparison to their results is most appropriate [11]. The researchers 

could only achieve a sensitivity of 0.30 when they optimize for the highest specificity of 

0.97 and achieved a sensitivity of 0.39 when they allowed a lower specificity of 0.76 [11]. 

Our processing pipeline and application of regularization could increase sensitivity in the 

intra-patient seizure detection to 0.86 compared to this baseline. Unfortunately, our 

specificity is not as competitive, which means that our models will output more false alarms 

than some of the approaches in literature. This decrease in specificity may be due to increase 

in sensitivity for such a rare event. This lower specificity compared to other models may also 

be due to using only 4-second segments instead of longer segments. Accordingly, we believe 

that we can increase this in future experiments.

We believe further investigation into other labels in the dataset describing key aspects of the 

seizure events, such as the seizure subtype and the text clinical notes could help provide 
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further approaches in the future to combat overfitting and to continue work with remaining 

challenges. There needs to be further consideration on what would be the best approach for 

increasing specificity and therefore decreasing false alarms for patients outside the train set, 

as well as what is practically possible for intra-patient seizure detections. Future work shall 

also include more data augmentation and regularization methods to improve generalization, 

other segment sizes instead of just 4 seconds, and additional preprocessing to further clean 

data. Additional analysis on spatial dependencies is needed to investigate features learned 

and extracted by a CNN classifier. To be more specific, features learned and extracted from 

fixed order channels shall be compared against randomly rearranged channels on each 

minibatch of the input data. We suggest that such an experiment will confirm if overfitting 

occurs if features are uniquely identifiable to single or groups of patients only in the train 

set.

Nonetheless, we were able to create performant seizure detection algorithms, despite 

numerous challenges. We processed hundreds of EEG signals from various patients and 

applied both hand engineered and CNN features to various models to work towards seizure 

detection. We also used new regularization methods to solve our models’ failure to 

generalize to other patients. We saw that spatial features could be important for seizure 

detection in traditional ML algorithms but could also be overfit on with deep learners. We 

found and tackled intra-patient variation from patients we could not train on by using the 

session identification score of patients we did train on and used random rearrange, random 

rescale, and adversarial training to reduce it.

VII. Conclusion

We showed that spatial dependencies are among the most important features learned by 

traditional ML techniques for EEG seizure detection analysis. However, these features could 

cause overfitting in a deep neural network by becoming associated with a specific patient. 

Session identification during training helps provide an additional view into overfitting on 

session specific features but is not the only cause of overfitting. We also used regularization 

beyond measuring the session identification. We created spatially and session invariant 

features by enforcing our networks to rely less on exact combinations of channels and signal 

amplitudes, but instead to learn new dependencies towards seizure detection. We are the first 

to use random rearrangement, random rescale, and adversarial multitask learning to 

regularize intra-patient seizure detection, and have increased sensitivity to 0.86 from a 

baseline study with a slightly lower specificity. We discovered that combining random 

rescale could further increase performance. However, we also found that adversarial learning 

was not effective in combination with the other regularization methods. Further analysis 

remains as future work.

Our experiments confirm findings from literature that the increased noise and the high inter-

session variability can cause the deep neural network to easily overfit on feature-rich data. In 

particular, the TUSZ is among the more challenging datasets sourced from a real-world 

environment. Thus, proper use of regularization can help mitigate many issues and increase 

sensitivity for seizure detection.
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Figure 1: 
An example 20 second record of a patient undergoing generalized seizure. The data is a 

highly dense, highly sampled time series of 21 interrelated channels; both spatial and 

temporal dependencies are important factors to consider.
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Figure 2: 
A simplified view of the hierarchy of structures that we read from. This hierarchy splits data 

by the reference system used to gather the data, followed by a train test set, followed by 

patients, then sessions, then individual token files.
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Figure 3: 
All EEG files came with time-based annotations to identify if/when a seizure occurred in the 

segment, which we alter slightly.
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Figure 4: 
Adversarial multi-task learning approach for seizure detection. We used two neural networks 

with two task, weights that shared and updated between the networks, and “frozen” layers 

forced to remain the same after each minibatch update to create a multi-task adversarial 

network. A) The first network attempts to update the feature extraction for seizure detection 

and against session identification without updating the weights for the final session 

identification layer. B) The second network updates session identification weights by 

predicting positively for sessions, without changing the other weights.
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Figure 5: 
Feature importance extracted for all features from the best 1 second XGBoost classifier. 

Coherence measurements were among the most important features for predicting seizures in 

this classifier
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Figure 6: 
Architecture of our CNN2D/LSTM. We ran multiple architectures but found that the 

following had consistently strong results. We used ADAM with an initial learning rate of 

0.0005. We found in practice that our networks were most likely to converge if we also 

applied a learning rate decay of 0.9 each epoch. We used an RELU activation function 

except for the final layer, where we used softmax. The network trains in parallel another 

session identification dense layer (not shown), which connects to the feature extraction 

layers of the network and which is prevented from updating weights to the network.
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Figure 7: 
Training/Validation F1 Score for a baseline neural network. Session identification accuracy 

increases while valid seizure F1 fails to increase.
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Figure 8: 
Training/Validation F1 Score for a neural network with randomly rearranged channels on 

each minibatch. We found that our CNN2D/LSTM model was able to generalize somewhat 

to a set of patients outside of the training set.
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Figure 9: 
Training/Validation F1 Score for a neural network with randomly rearranged channels on 

each minibatch and a random rescale factor of 1.5. These learning curves show that 

validation seizure F1 score increases rapidly before showing overfitting. Interestingly, the 

session identification accuracy increases before decreasing.
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Figure 10: 
Training/Validation F1 Score for a neural network with randomly rearranged channels on 

each minibatch and random rescaling on each minibatch of 2. There is a monotonically 

increasing training session identification again.
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Figure 11: 
Training/Validation F1 Score for a neural network with randomly rearranged channels on 

each minibatch and random rescaling on each minibatch of 2 with a seizure weight of 25 and 

patient weight of −1.
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Table I.

Results for 1-second segments using a variety of Traditional Learning techniques

AUC Sensitivity Specificity F1
Score

Random Forest 0.6954 0.2955 0.9551 0.4331

Logistic Regression 0.4070 0.2848 0.5286 0.2833

XGBoost 0.7299 0.5769 0.8435 0.6347
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Table II.

Results for 4-second segments using a variety of Traditional Learning techniques

AUG Sensitivity Specificity F1
Score

Random Forest 0.6534 0.7154 0.6532 0.5588

Logistic Regression 0.4028 0.7428 0.1273 0.3840

XGBoost 0.7518 0.5019 0.9064 0.5803
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Table III.

Results for 4-second segments using a CNN/LSTM

AUC Sens. Spec. F1 Score Session
Identification

0.716 0.544 0.874 0.556 0.620
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TABLE IV.

Results for 4-second segments using a CNN/LSTM w/ Randomly Rearranged Channels

AUC Sens. Spec. F1 Score Session
Ident.

0.785 0.782 0.786 0.629 0.224
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TABLE V.

Results for 4-Second Segments Using Random Rearrange and Random Rescale

Rescale
Factor

AUC Sens. Spec. F1
Score

Session
Ident.

1.05 0.732 0.709 0.830 0.625 0.261

1.1 0.718 0.765 0.785 0.619 0.179

1.5 0.758 0.866 0.695 0.652 0.082

2 0.726 0.727 0.814 0.622 0.541
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Table VI.

Results for 4-second segments using an Adversarial Multitask CNN/LSTM

Seizure
Weight

Session
Weight

AUC Sens. Spec. F1
Score

Session
Ident.

50 −1 0.701 0.547 0.858 0.543 0.637

25 −1 0.687 0.440 0.884 0.483 0.251

10 −1 0.713 0.604 0.849 0.575 0.097

5 −1 0.717 0.578 0.864 0.571 0.059
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Table VII.

Results for 4-second segments using an Adversarial Multitask CNN/LSTM with Randomly Rearranged 

Channels Each Minibatch

Seizure
Weight

Session
Weight

AUC Sens. Spec. F1
Score

Session
Ident.

50 −1 0.726 0.727 0.815 0.623 0.483

25 −1 0.757 0.674 0.872 0.644 0.499

10 −1 0.716 0.717 0.805 0.608 0.461

5 −1 0.716 0.730 0.799 0.611 0.368
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Table VIII.

Results for 4-second segments using an Adversarial Multitask CNN/LSTM with Randomly Rearranged, 

Randomly Rescaled Channels Each Minibatch

Seizure
Weight

Session
Weight

AUC Sens. Spec. F1
Score

Session
Ident.

50 −1 0.711 0.712 0.800 0.601 0.545

25 −1 0.746 0.719 0.844 0.644 0.482

10 −1 0.755 0.596 0.894 0.613 0.437

5 −1 0.718 0.662 0.832 0.598 0.358
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