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ABSTRACT
Breast cancer is one of the most prevalent cancers in women worldwide. Through the regulation of 
many coding and non-coding target genes, oestrogen (E2 or 17β-oestradiol) and its nuclear receptor ERα 
play important roles in breast cancer development and progression. Despite the astounding advances in 
our understanding of oestrogen-regulated coding genes over the past decades, our knowledge on 
oestrogen-regulated non-coding targets has just begun to expand. Here we leverage epigenomic 
approaches to systematically analyse oestrogen-regulated long non-coding RNAs (lncRNAs). Similar to 
the coding targets of ERα, the transcription of oestrogen-regulated lncRNAs correlates with the activa
tion status of ERα enhancers, measured by eRNA production, chromatin accessibility, and the occupancy 
of the enhancer regulatory components including P300, MED1, and ARID1B. Our 3D chromatin archi
tecture analyses suggest that lncRNAs and their neighbouring E2-resonsive coding genes, exemplified by 
LINC00160 and RUNX1, might be regulated as a 3D structural unit resulted from enhancer-promoter 
interactions. Finally, we evaluated the expression levels of LINC00160 and RUNX1 in various types of 
breast cancer and found that their expression positively correlated with the survival rate in ER+ breast 
cancer patients, implying that the oestrogen-regulated LINC00160 and its neighbouring RUNX1 might 
represent potential biomarkers for ER+ breast cancers.
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Introduction

Breast cancer is the most common malignancy and the second 
most common cause of death of cancer in women [1]. Up to 
70% of total breast cancer cases are oestrogen-receptor α 
(ERα) positive, making ERα the most important target for 
breast cancer endocrine therapy [2]. Oestrogen and ERα 
play a crucial role in regulating the cell proliferation, survival 
and apoptosis in ERα+ breast cancer [3,4]. Tamoxifen, 
a selective oestrogen-receptor modulator (SERM), is com
monly administered in the adjuvant therapy for ERα+ breast 
cancers. However, up to 50% of breast cancer patients with 
metastatic disease do not respond to adjuvant tamoxifen 
treatment, and many initial responders acquire resistance 
[5,6]. In order to develop novel therapeutic strategies, new 
therapeutic targets and specific biomarkers that predict ther
apeutic response to different therapies need to be identified.

Upon binding to 17β-oestradiol (E2), ERα translocates 
from the cytoplasm to the nucleus and binds predominantly 
to distal enhancer regions containing oestrogen response 

elements (EREs) to regulate a variety of ERα-dependent 
genes [7,8]. Enhancers are essential distal DNA regulatory 
elements that control temporal- or spatial-specific gene 
expression patterns during development and other biological 
processes [9]. Like other enhancers, ERα enhancers (enhan
cers bound by ERα)exhibit several common genomic fea
tures/signatures, such as open chromatin architecture, 
a common set of histone modifications (e.g. H3K4me1/2 
and H3K27ac), and the binding of chromatin remodelling 
complexes (e.g. ARID1A/B) and co-activators (e.g. p300/ 
CBP and the mediator complex) [10]. More recently, it’s 
found that many enhancers are bound by RNA polymerase 
II and are actively transcribed, generating noncoding enhan
cer RNAs (eRNA) [11–13]. eRNAs are short transcripts of 
approximately 50 to 2000 nucleotides in size and often tran
scribed bi-directionally transcription, and can serve as 
a robust marker of active enhancers and are widely used to 
indicate enhancer activity and target gene induction [14–16]. 
The binding of ERα onto enhancers requires cis-binding 
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pioneer TFs (e.g. FOXA1) that bind to their own DNA bind
ing motifs in close proximity to ERE and open chromatin for 
ERα to localize onto ERE, followed by the recruitment of 
epigenetic cofactors [17–21]. We have previously identified 
a new category of ERα TF ‘co-activators’, MegaTrans TFs, 
which are recruited by ERα through protein-protein interac
tions (trans-binding) to active ERα enhancers containing 
oestrogen response element (ERE) to control the transcrip
tion of downstream target genes [8,22]. In addition to pro
tein-coding targets, oestrogen signalling regulates various 
classes of non-coding RNAs [13,23,24].

Over 90% of the human genome is transcribed into non- 
protein coding RNAs (ncRNAs) [25], which can be divided 
into two major groups: small non-coding RNAs (sncRNAs) 
with size < 200 nt (e.g. miRNA, piRNA, snRNA and 
snoRNA) and long non-coding RNAs (lncRNAs) with size ≥ 
200 nt [26,27]. According to the latest release of Gencode 
project, there are 19,957 protein coding genes, 7,576 small non- 
coding RNA (SncRNA) genes, and 17,952 long non-coding 
RNA (lncRNA) genes in a total of 60,662 genes in the human 
genome [28]. The large number of lncRNA genes indicates the 
biological importance of lncRNAs. Over the past years, a wealth 
of lncRNAs have been found to play a pivotal role in transcrip
tional regulation [29], and abnormal expression of lncRNAs is 
involved in the invasion, metastasis and chemoresistance of 
multiple cancer types [30–32]. Multiple lncRNAs, such as 
UCA1, DSCAM-AS1 and HOTAIR, are associated with tamox
ifen sensitivity in ER+ breast cancers [23,33,34]. lncRNAs are 
also found to be involved in E2-induced rapid transcriptional 
regulation in an ER+ breast cancer cell line [13].

Building on previous studies that have begun to under
stand the role of lncRNAs in breast cancers [13,23,24,35], we 
set out to perform a systematic analysis at the epigenomic 
level on oestrogen-regulated lncRNAs. We employed genome- 
wide epigenomic strategies including GRO-seq and ATAC- 
seq and identified lncRNAs that are either up- or down- 
regulated in response to oestrogen treatment in breast cancer 
cells. The transcription of these oestrogen-regulated lncRNAs 
correlates with the open chromatin state and the presence of 
enhancer complex on their neighbouring ERα enhancers. Our 
findings in both MCF7 and T47D ER+ breast cancer cell lines 
suggest that some of these oestrogen-regulated lncRNAs and 
their neighbouring E2-resonsive coding genes might be coor
dinately regulated as a 3D structural unit through the enhan
cer-promoter interactions inside this unit. Furthermore, we 
revealed a positive correlation between the survival rate in ER 
+ breast cancer patients and the levels of an oestrogen- 
regulated lncRNA LINC00160 and its neighbouring E2- 
responsive coding gene RUNX1, indicating that estrogen- 
regulated lncRNAs might be applied as prognosis biomarkers 
for ER+ breast cancers.

Results

Identification of lncRNAs transcriptionally regulated by 
oestrogen signalling in ER+ breast cancer cells

In order to identify lncRNAs that respond to E2 stimulus, we 
analysed our RNA-seq data [8]to capture differentially 

expressed lncRNAs in MCF7 cells with or without E2 treat
ment. We used DESeq2 1.14.1 to call differentially expressed 
genes and set the threshold as fold expression change ≥ 1.4 
and padj ≤ 0.01 [36]. We identified 90 and 160 lncRNAs that 
were up and down-regulated respectively upon E2 stimulus 
(Fig. 1A and Supplementary Table 1). As RNA-seq measures 
changes in the steady-state level of a given RNA, it reflects the 
combined effect of RNA transcription, processing and degra
dation. To evaluate changes specifically at transcriptional 
level, we analysed our global run-on sequencing (GRO-seq) 
datasets [8] to measure nascent RNAs that are transcribed 
from chromatin-associated RNA polymerase II. Our GRO-seq 
identified 253 E2-activated lncRNAs and 96 E2-repressed 
lncRNAs that are transcriptionally regulated by the oestrogen 
signalling (Fig. 1B and Supplementary Table 1). To narrow 
down the E2-responsive candidate lncRNAs, we compared the 
lncRNAs identified from RNA-seq and GRO-seq by plotting 
the GRO-seq-identified genes to the RNA-seq data and vice 
versa (Fig. 1C,D). A total of 47 E2-regulated lncRNAs, includ
ing 33 E2-activated and 14 E2-repressed lncRNA genes, were 
found overlapped between the RNA-seq and GRO-seq data
sets (Supplementary Table 1), as demonstrated by Venn dia
grams and heatmap (Fig. 1E,F).

Among the 47 E2-responsive lncRNA genes, LINC01016 
and LINC00160 have been previously shown to respond to E2 
stimulus in MCF7 and T47D ER+ breast cancer cells [26]. 
PVT1 is a well-studied oncogenic lncRNA in breast cancer 
and it was found to regulate the level of its neighbouring 
oncogene MYC by either directly stabilizing MYC protein 
[37] or competing for the engagement of enhancers [38]. 
Interestingly, lncRNA SOCS2-AS1, whose expression was 
reported to be activated by androgen in androgen receptor 
(AR) positive LNCaP prostate cancer cells [39], was repressed 
upon E2 treatment (Fig. 1F and Supplementary Table 1). In 
addition, other disease-related lncRNAs, such as MIR17HG, 
a lncRNA that promotes tumorigenesis and metastasis in 
colorectal cancer [40], were also subjected to E2 regulation 
(Fig. 1F and Supplementary Table 1). Overall, combining 
RNA-seq and GRO-seq approaches, we have identified 
lncRNAs that are transcriptionally regulated by oestrogen 
signalling in breast cancer cells.

Expression of oestrogen-regulated lncRNAs correlates 
with eRNA production of neighbouring ERα enhancers

The biological effects of oestrogen are mediated by its binding 
to oestrogen receptors, which then bind to ERE-containing 
enhancers to regulate gene expression [41]. We therefore 
sought to understand the relationship between ERα enhancers 
and these E2-regulated lncRNAs in ERα+ breast cancer. We 
retrieved published H3K27ac ChIP-seq data [42] and searched 
for ERα enhancers located within the region ±40kb from each 
of the 47 E2-responsive lncRNA genes based on the chromatin 
occupancy of ERα and H3K27ac profile. We identified 151 
and 54 ERα enhancers associated with the 33 E2-activated and 
the 14 E2-repressed lncRNAs respectively (Supplementary 
Table 2), implying that the transcription of these lncRNAs 
might be controlled by ERα enhancers. The presence of ERα 
enhancers approximate to E2-regulated lncRNA genes is 
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exemplified by ERα and H3K27ac ChIP-seq peaks on the 
genomic loci of E2-activated LINC00160 and E2-repressed 
SOCS2-AS1 (Fig. 2A,B), as well as PVT1 and MIR9-3HG 
(Fig. S1A-B).

We next asked if the ERα enhancers associated with E2- 
responsive lncRNAs are active enhancers and how they 
respond to oestrogen signalling. As GRO-seq captures all 
RNAs that are being produced by active RNA polymerase, 
it can be used to study the transcription of RNAs both from 
the gene bodies and from enhancers simultaneously. eRNAs 

are often bi-directionally transcribed and have been used as 
a robust marker for active enhancers [14–16]. We found that 
the 151 ERα enhancers associated with the 33 E2-activated 
lncRNAs had strongly increased eRNA production upon E2 
treatment (see GRO-seq data from two replications in Fig. 
2C), whereas the 54 enhancers related to the 14 E2-repressed 
lncRNAs showed a slight reduction in eRNA transcription 
(see GRO-seq data from two replications in Fig. 2D). These 
E2-induced changes in eRNA generation can also be exem
plified by the neighbouring enhancers of representative 
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Figure 1. Identification of lncRNAs transcriptionally induced/repressed by oestrogen signalling in ER+ breast cancer cells.
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lncRNAs, including LINC00160, PVT1, SOCS2-AS1 and 
MIR9-3HG (Fig. 2A,B and S1A-B). These data suggest that 
in response to E2 stimulus, ERα binds to and activates 
enhancers containing ERE, which subsequently activate the 
lncRNAs that are up-regulated by E2. However, for the E2- 
repressed lncRNAs, their neighbouring enhancers become 
less active in response to E2. This is consistent with 
a recent study showing that binding of ERα to basally active 
oestrogen-repressed (BAER) enhancers recruits KDM2A, 
which then brings NEDD4 to BAER enhancers to ubiquity
late and dismiss RNA Pol II from the enhancers to repress 
target gene expression [43]. Therefore, similar to the 

protein-coding targets of oestrogen signalling pathway, the 
lncRNA targets might be also subject to the regulation of 
ERα enhancers.

Transcription of oestrogen-regulated lncRNAs is 
associated with the presence of enhancer complex

Having shown the correlation between the expression of E2- 
responsive lncRNAs and the eRNA level of their neighbouring 
ERα enhancers, we next explored the components of enhancer 
complex on these enhancers. We first analysed ERα ChIP-seq 
data [44] and found that the binding of ERα on both groups 
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Figure 2. Expression of oestrogen-regulated lncRNAs correlates with eRNA production of neighbouring ERα enhancers.
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of enhancers associated with either E2-activated or E2- 
repressed lncRNAs was dramatically increased upon E2 treat
ment (Fig. 3A). We also checked the ChIP-seq data of 
H3K27ac, a histone modification that labels active enhancers. 
Notably, H3K27ac was present on these ERα enhancers prior 
to E2 stimulation and its level remained unchanged upon E2 
treatment (Fig. 3B). This is consistent with the previous report 
that H3K27ac signals on ERα enhancers remain unchanged 
upon E2 treatment [42]. As H3K27ac is a well-recognized 
marker for active enhancers, these data suggest that ERα 
enhancers might be prepared before the presence of 

oestrogen, allowing rapid responses upon oestrogen stimula
tion. We next used our previous ChIP-seq data [8] to examine 
the occupancy of enhancer co-activators, including the his
tone acetyltransferase p300/CBP and mediator MED1. For the 
151 enhancers associated with E2-activated lncRNAs, the 
binding of p300 was greatly enhanced in E2-treated breast 
cancer cells. In contrast, the binding of p300 on the 54 
enhancers associated with E2-repressed lncRNAs was reduced 
upon E2 treatment (Fig. 3C). MED1 is known to promote the 
looping between enhancer and promoter and is involved in 
the transcription of nearly all RNA polymerase II-dependent 
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Figure 3. Transcription of oestrogen-regulated lncRNAs is associated with the presence of enhancer complex.
A-F.Aggregate plots showing the change of normalized tag density of the ChIP-seq data of ERα (A), Η3Κ27ac (B), P300 (C), MED1 (D), ARID1B (E), and ATAC-seq data 
(F) upon E2 stimulation for the 151 ERα enhancers associated with E2-activated lncRNAs sites (left panel) or the 54 ERα enhancers associated with E2-repressed 
lncRNAs sites (right panel). The results show although the binding of ERα was significantly enhanced on both two groups of enhancers upon E2 stimulation, the 
enhanced binding of epigenetic cofactors P300, MED1 and ARID1B were only found for the 151 ERα enhancers associated with E2-activated lncRNAs sites.The E2- 
enhanced chromatin accessibility detected by ATAC-seq was also only found for the 151 ERα enhancers associated with E2-activated lncRNAs sites.G-H.Genome 
browser views of ChIP-seq signals for ERα, Η3Κ27ac, P300, MED1, and ARID1B and of ATAC-seq signals on one representative E2-activated gene LINC00160 (G) and 
one representative E2-repressed gene SOCS2-AS1 (H). 
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genes [45]. We found that the occupancy of MED1 on the 151 
enhancers, but not on the 54 enhancers, was enhanced in E2 
treated cells (Fig. 3D).

To further investigate the ERα enhancers associated with 
E2-regulated lncRNAs, we performed ChIP-seq for ARID1B 
and investigated itsbinding on these enhancers. ARID1A and 
ARID1B are mutually exclusive subunits of the BAF sub- 
family of SWI/SNF chromatin remodelling complex that con
trols accessibility at most promoters and enhancers [46,47]. E2 
treatment greatly induced the binding of ARID1B onto the 
151 enhancers, but did not affect its binding on the 54 
enhancers (Fig. 3E). Finally, we carried out ATAC-seq to 
examine the chromatin accessibility in the genomic regions 
of the enhancers associated with E2-responsive lncRNAs. We 
detected enhanced chromatin accessibility on the 151 enhan
cers in response to E2 treatment, whereas the accessibility on 
the 54 enhancers remained unchanged (Fig. 3F). The E2 
effects on the enhancer status described above are also 
demonstrated by the representative enhancers associated 
with LINC00160, PVT1, SOCS2-AS1 andMIR9-3HG (Fig. 
3G,H and S2A-B). The differences between the two groups 
of enhancers (151 enhancers associated with E2-activated 
lncRNAs vs the 54 enhancers associated with E2-repressed 
lncRNAs) in their responses to oestrogen signalling might 
account for the different effects (activation or repression) on 
their lncRNA target genes. Overall, these data show that the 
transcription of E2-regulated lncRNAs is tightly linked to the 
status of their neighbouring ERα enhancers, further support
ing the notion that both protein-coding and non-coding tar
gets of oestrogen signalling pathway are regulated by ERα 
enhancers.

LINC00160 and RUNX1 are co-regulated by E2 and are 
located within one TAD

As stated above, we have shown that the transcription of 
oestrogen-regulated lncRNAs correlate with the open chro
matin state and the presence of enhancer complex on their 
neighbouring ERα enhancers (Fig. 2, S1, 3, and S2). This is 
similar to our previous findings on the regulation of E2- 
responsive protein-coding genes by ERα enhancers [8,22], 
and prompted us to ask whether these lncRNAs and the 
protein-coding targets are co-regulated. Through genome- 
wide searching, we found that E2-responsive lncRNAs often 
locate in a close proximity to an E2-responsive coding gene 
and both lncRNAs and coding genes were activated coordi
nately by oestrogen, exemplified by the LINC00160-RUNX1 
pair and the PVT1-MYC pair (Fig. 4A and S3A). This coor
dinate activation of LINC00160 and RUNX1 by E2 was also 
demonstrated by our qPCR data for LINC00160 and RUNX1 
in both MCF7 and T47DER+ breast cancer cell lines (Fig. 
S3B-C). These results suggest that oestrogen may co-regulate 
a lncRNA and its neighbouring coding gene within a 3D 
structural unit on the chromatin.

RUNX1 is a transcription factor involved in luminal devel
opment [48] and frequently found to be involved in ER+ 
breast cancer progression [49].Thus, we next sought to study 
the chromatin architecture regulation mechanism underlying 
the coordinate induction of LINC00160 and RUNX1 by 

oestrogen. The ChIP-seq and ATAC-seq epigenomic data 
revealed that there were at least two ERα enhancers within 
the LINC00160 gene body (Fig. 4A). We employed the pub
lished ChIA-PET Pol II data [50] from MCF7 cell line to 
investigate the 3D chromatin interactions between 
LINC00160 and RUNX1. ChIA-PET Pol II data revealed 
frequent looping events between the enhancers on 
LINC00160 and the RUNX1 promoter (Fig. 4A). To further 
confirm the spatial relationship between LINC00160 and 
RUNX1, we performed Hi-C to measure any potential interac
tions near the LINC00160-RUNX1 loci in T47D ER+ breast 
cancer cell line. We found that the interaction between 
LINC00160 and RUNX1 was enhanced by the treatment of E2 
(Fig. 4B). Our Hi-C data also demonstrated that LINC00160 
and RUNX1 were organized in a 3D structural unit, as they 
were located within a topologically associating domain (TAD) 
revealed by Hi-C (Fig. 4B). Altogether, our findings suggest that 
some of these oestrogen-regulated lncRNAs might be tran
scribed together as a whole unit with their neighbouring E2- 
resonsive protein-coding genes through 3D spatial chromatin 
looping.

The levels of LINC00160 and RUNX1 correlate with the 
disease outcome in ER+ breast cancer patients

Given the transcriptional regulation of LINC00160 and 
RUNX1 by oestrogen signalling, we asked if their expression 
has a prognostic potential in breast cancer patients. We first 
performed the bodymap analyses using GEPIA website [51]. 
We found that LINC00160 was predominantly expressed in 
mammary gland, and the expression level of LINC00160 was 
significantly elevated in breast tumours compared to paired 
normal tissues (Fig. 5A). To further confirm bodymap results, 
we took advantage of the RNA-seq data from TCGA and found 
a notable upregulation of LINC00160 in breast tumors when 
compared to normal tissues (Fig. 5B), suggesting the biological 
relevance of LINC00160 in breast cancer oncogenesis.

As LINC00160 and its neighbouring coding gene RUNX1 
are co-regulated by oestrogen and they reside within a 3D 
structural unit on chromatin (Fig. 4 and S3), we next exam
ined the relationship between both of their expression and 
their different roles in ER+ vs ER- breast cancer subtypes. We 
analysed the expression levels of LINC00160 and RUNX1 in 
the four subtype of breast cancer using TCGA datasets. 
Comparing with ER- breast cancer subtypes, including basal 
and HER2+ subtypes, the expression of both LINC00160 and 
RUNX1 was significantly higher in ER+ luminal subtypes, 
particularly in luminal A subtype (Fig. 5C). Consistently, the 
expression correlation analyses demonstrated significant posi
tive correlation of LINC00160 and RUNX1 with each other in 
ER+ breast cancer patients (p = 4.4e-16, R = 0.23) (Fig. 5D), 
suggesting these two E2-regulated genes may both be involved 
in the oncogenesis of ER+ breast cancer.

Finally, we analysed the relationship between the expression 
levels of LINC00160-RUNX1 and the survival rate of ER+ breast 
cancer patients. When we analysed TCGA data from annotated 
and transcriptionally profiled ER+ breast cancer samples, we 
found that the group with high LINC00160 level had a better 
overall survival rate than the group with low LINC00160 level. 
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Figure 4. LINC00160 and RUNX1 are co-regulated by E2 and are located within one TAD.
A. The genome browser views of Pol II ChIA-PET signals and various epigenomics-based sequencing data for the chromatin region that contains both LINC00160 and 
RUNX1. Top: Schematic diagram showing the promoter-enhancer interactions between regions around the LINC00160and RUNX1 measured by Pol II ChIA-PET (n = 2, 
biological replicates).Bottom: The ChIP-seq data of ERα, Η3Κ27ac, P300, MED1, ARID1B as well as the ATAC-seq, GRO-seq and RNA-seq data around the LINC00160 
(marked with yellow shadow) and RUNX1 (marked with green shadow) loci in MCF7 cell line. The results demonstrate a coordinated E2-induction for both LINC00160 
and RUNX1 andstrong interactions between the RUNX1 promoter and several ERα enhancers located inside LINC00160 gene. B. Heatmap (top) and schematic 
diagram (bottom) representing chromatin interactions within 500kb regions covering LINC00160 and RUNX1 measured by Hi-C experiments in the T47D cell line (+- 
E2). The Hi-C results suggest that oestrogen enhances the promoter-enhancer interactions between LINC00160 and RUNX1 and these two genes are regulated as 
a 3D structural unit supported by a TAD domain that containing both LINC00160 and RUNX1 loci. 
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Similarly, the group with high RUNX1 expression displayed an 
improved survival rate when compared to the group with low 
RUNX1 level (Fig. 5E). This correlation between the overall 
survival rate and the expression levels of LINC00160 and 
RUNX1 is in agreement with the notion that higher levels of E2- 
responsive LINC00160 and RUNX1 may indicatea higher sensi
tivity to endocrine therapies and a better prognostic outcome.

Overall, consistent with our finding that LINC00160 and 
RUNX1 are coordinately regulated by oestrogen signalling in 
ER+ breast cancer cell lines, these analyses on clinical datasets 
suggest that LINC00160 and RUNX1, a pair of oestrogen- 

regulated non-coding and coding targets, might represent 
potential prognostic biomarkers in ER+ breast cancer.

Discussion

In this study, we identified oestrogen-activated and - 
repressed lncRNAs in breast cancer cells through genome- 
wide epigenomic strategies. Similar to protein-coding targets, 
the transcription of these lncRNA targets correlates with the 
open chromatin state and the occupancy of enhancer com
plex on their neighbouring ERα enhancers. We have then 

Figure 5. The levels of LINC00160 and RUNX1 correlate with the disease outcome in ER+ breast cancer patients.
A. The bodymap of LINC00160 expression levels in the paired normal(left) vs tumour tissues(right) for different organs. B. The comparison of LINC00160 expression 
between normal and tumour tissues in different cancer types using TCGA dataset, showing the higher expression of LINC00160 in breast cancers. C. The expression of 
LINC00160 and RUNX1 in different subtypes of breast cancer using TCGA dataset, demonstrating both LINC00160 and RUNX1 express at higher levels in ER+ luminal 
breast cancers. D. Correlation of LINC00160 and RUNX1 expression in breast cancer. E. Negative correlation between the expression level ofLINC00160 or RUNX1 and 
the survival rate of ER+ breast cancer patients.TCGA RNA-seq data from breast cancer samples were used in the analyses. The results in A, D, and E were generated 
with GEPIA website [51]. 
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focused on one of the lncRNA targets delineated the conco
mitant regulation of LINC00160 and RUNX1 by oestrogen 
signalling. Moreover, by performing ChIA-PET Pol II and 
Hi-C, we demonstrated that LINC00160 and its neighbouring 
RUNX1 coding gene were organized within one TAD domain 
and the several ERα enhancers locating on LINC00160 had 
a strong chromatin spatial interaction with the promoter of 
RUNX1, and such interaction was augmented by E2. Finally, 
we revealed a correlation between disease outcome and the 
levels of LINC00160 and RUNX1, indicating that they might 
be applied as prognosis biomarkers for ER+ breast cancers.

E2-responsive lncRNAs are regulated by ERα enhancers

Oestrogen/ERα signalling pathway plays a crucial role in breast 
cancer tumorigenesis and progression. Upon ligand stimula
tion, ERα regulates coding target gene expression by binding to 
distal enhancers. On ERα enhancers, cis-binding pioneer TFs 
(such as FOXA1) open chromatin for ERα to localize onto 
ERE, followed by the recruitment of epigenetic cofactors 
including histone acetyltransferase p300 and mediator MED1 
[17–21], resulting in a global increase in eRNA transcription on 
enhancers adjacent to E2-upregulated coding genes [42]. 
Additionally, we have previously demonstrated that a new 
category of ERα TF ‘co-activators’, termed as MegaTrans TFs, 
was selectively recruited to the most active ERα enhancers to 
regulate coding target gene expression [22]. Despite the 
advance in our understanding on the protein-coding target 
genes of this pathway, the regulation and function of non- 
coding targets remain largely unknown. To understand how 
these non-coding targets are regulated, we searched for ERα 
enhancers associated with the E2-activated and -repressed 
lncRNAs and investigated how they respond to oestrogen sig
nalling. Like ERα enhancers that regulate coding genes, these 
lncRNA-associated ERα enhancers recruit ERα upon E2 stimu
lus. For the enhancers associated with E2-activated lncRNAs, 
we detected increased ATAC-seq signals, elevated occupancy of 
enhancer complex such as p300, MED1 and ARID1B, as well as 
enhanced eRNA transcription in cells treated with E2 (Fig. 2 
and 3). However, the enhancers associated with E2-repressed 
lncRNAs showed different responses to E2: unchanged occu
pancy of chromatin remodelling factor ARID1B accompanied 
with unaltered chromatin accessibility, reduced binding of epi
genetic co-activators p300 and MED1, and slightly reduced 
eRNA production. The difference between the two groups of 
enhancers in the responses to oestrogen might account for the 
opposite effects (activation or repression) on the target 
lncRNAs. Notably, a recent study has shown that binding of 
ERα to oestrogen-repressed enhancers recruits KDM2A and 
NEDD4 to modify and dismiss RNA Pol II from the enhancers 
to repress target coding gene expression [43]. It’s not clear 
whether the same KDM2A-mediated repression strategy is 
utilized to repress non-coding target gene expression. 
Regardless, our data has suggested that, similar to the protein- 
coding targets of oestrogen signalling pathway, lncRNA targets 
are regulated by ERα enhancers, and that the regulation of the 
lncRNA targets also involves enhancer chromatin opening, 
enhancer complex recruitment and eRNA production.

Co-regulation of lncRNAs and adjacent coding genes 
within a TAD

The chromosomes of mammalian cells are hierarchically orga
nized into hundreds of megabase-sized topologically associated 
domains (TADs) and the cell-type-specific enhancer-promoter 
contacts take place within the TAD scaffold, leading to signal- 
regulated gene expression pattern [52]. Although LINC00160 
and RUNX1 have been individually implied in breast cancers 
[24,49], they had not been linked to each other previously. For 
the first time, we revealed that LINC00160 and its neighbour
ing RUNX1 were co-activated by oestrogen in several different 
ER+ breast cancer cell lines (Fig. 4 and S3). Interestingly, 
LINC00160 and RUNX1 appear to reside within the same 
TAD chromatin 3D domain, and two ERα enhancers are 
located within LINC00160 gene (Fig. 4A). We therefore spec
ulate that these ERα enhancers regulate both LINC00160 and 
RUNX1 through looping to both LINC00160 and RUNX1 
promoters. Our ChIA-PET Pol II and Hi-C data demonstrated 
strong chromatin spatial interactions between these ERα 
enhancers and the promoter of RUNX1 and showed that 
such interactions could be enhanced by E2 treatment (Fig. 4). 
Unfortunately, current Hi-C resolution is not sufficient to 
detect the interactions between these enhancers and 
LINC00160 promoter due to the small spatial distance. Future 
studies are needed to functional test the regulatory role of each 
individual ERα enhancer located in LINC00160 gene by delet
ing each enhancer with CRISPR/Cas9 and measuring the 
expression levels of LINC00160 and RUNX1. As many 
lncRNAs are known to function as regulatory elements gene 
expression regulation, it will be interesting to knockdown 
LINC00160 or to delete its promoter with CRISPR/Cas9 and 
test if LINC00160 lncRNA itself is involved in enhancer- 
promoter looping and gene regulation in this TAD domain.

LINC00160 and RUNX1 as potential prognostic 
biomarkers

Our analyses on clinical data showed that LINC00160 is pri
marily expressed in breast tissue and is expressed at a higher 
level in breast tumours than the paired normal breast tissues 
(Fig. 5). Among all different ER+ or ER- breast cancer sub
types, LINC00160 and its neighbouring coding gene RUNX1 
were significantly up regulated in ER+ luminal breast cancer, 
especially luminal A. The higher level of both LINC00160 and 
RUNX1 in luminal A subtype is probably due to the higher 
expression of ERα in Luminal A subtype [53]. These clinical 
data are in agreement with the co-regulation of LINC00160 and 
RUNX1 by oestrogen in ER+ breast cancer cell lines, and 
suggest that as E2/ERα-regulated downstream target genes, 
LINC00160 and RUNX1 may mediate oestrogen signalling to 
promote the early stage oncogenesis of ER+ breast cancers. 
Interestingly, our prognosis analyses showed that high expres
sion of both LINC00160 and RUNX1 was associated with high 
overall survival rate in ER+ breast cancer patients. This might 
be because that higher levels of E2-responsive LINC00160 and 
RUNX1 in ER+ breast cancer patients could render higher 
sensitivity to endocrine therapies, and subsequently a better 
prognostic outcome. Similarly, in a previous study, another E2 
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/ERα-regulated target GREB1 was found to mediate oestrogen 
signalling to promote breast cancer oncogenesis, but high level 
of GREB1 was found to correlate with better prognostic out
come [54]. This finding is also consistent with a previous report 
that overexpression of RUNX1 inhibited the proliferation and 
growth of breast cancer stem cells and thus resulting in a better 
survival rate in breast cancer [55]. Therefore, the oestrogen- 
regulated LINC00160 and its neighbouring RUNX1 might 
represent potential biomarkers for ER+ breast cancers. Future 
studies to dissect the in vivo function of LINC00160 and 
RUNX1 will help to evaluate their roles as prognostic biomar
kers and therapeutic targets.

Materials and methods

Cell culture studies

MCF7 and T47D cell lines were obtained from ATCC. MCF7 
cells were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM) supplemented with 10% FBS and penicillin/strepto
mycin. T47D cells were cultured in Roswell Park Memorial 
Institute (RPMI) 1640 Medium supplemented with 10% FBS 
and penicillin/streptomycin. Both cell lines were grown in 
a humidified incubator with 5% CO2. For E2 stimulation, 
cells were hormone stripped for 3 days in phenol-free media 
with 5% charcoal-stripped FBS before receiving 100 nM 17β- 
oestradiol (E2) (Sigma) or ethanol vehicle control treatment 
for 1 hour or 6 hours for oestrogen signalling induction.

ChIP-seq

ARID1B ChIP-seq was performed as previously described [22] 
with slight modification. Briefly, cells were cross-linked with 
1% formaldehyde for 10 min at room temperature.For 
selected ARID1B ChIP experiments, cells were double cross- 
linked with 2 mM DSG (CovaChem) for 45 min followed by 
secondary fixation with 1% formaldehyde for 10 min. Cross- 
linking was quenched with 0.125 M glycine for 5 min. Cells 
were successively lysed in lysis buffer LB1 (50 mM HEPES- 
KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 
0.5% NP-40, 0.25% Triton X-100, 1x PI), LB2 (10 mM Tris- 
HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1x 
PI), LB3 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM 
EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5% 
N-lauroylsarcosine, 1x PI) (Note: after passing through buf
fers LB1 and LB2, the pellet becomes nuclear fraction and will 
be lysed in LB3 lysis buffer for sonication). Chromatin was 
sonicated to an average size of ~200-500 bp using QSonica’s 
Q800 R sonicator system (20% amplitude, 10 s on and 20 s off 
for 10 min). A total of 3–6 μg of antibody was added to the 
sonicated chromatin and incubated overnight at 4°C. 
Subsequently, 50 μl of Dynabeads Protein G (Invitrogen) 
were added to each ChIP reaction and incubated for 4 hours 
at 4°C. Dynabeads were washed with RIPA buffer (50 mM 
HEPES pH 7.6, 1 mM EDTA, 0.7% Na-Deoxycholate, 1% NP- 
40, 0.5 M LiCl) 6 times, and once with TE. The chromatin was 
eluted, followed by reverse cross-linking and DNA purifica
tion. ChIP DNA was resuspended in 10 mM Tris-HCl pH 8.5. 
The purified DNA was subjected to qPCR to confirm target 

region enrichment before moving on to deep sequencing 
library preparation. For sequencing, the extracted DNA was 
used to construct the ChIP-seq library using KAPA Hyper 
Prep kit (KK8504), followed by deep sequencing with the 
Illumina’s HiSeq 3000 system according to the manufacturer’s 
instructions.

ATAC-seq

ATAC-seq library prep was performed as previously described 
[56]. Briefly, 20,000 cells were washed three times with cold 
PBS, collected by centrifugation then lysed in lysis buffer 
(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% NP-40). After purification of nuclei, transposition was 
performed with Tn5 transposase from Nextera DNA Library 
Prep Kit (Illumina, catalogue # FC-121-1030). Purified DNA 
was then ligated with adapters, amplified and size selected for 
sequencing. Libraries were sequenced with Mid 75 bp PE on 
Illumina NextSeq 500.

RNA isolation and quantitative RT-PCR

Total RNA was isolated with RNeasy Mini Kit (Qiagen) 
according to the manufacture’s protocol and 1 μg RNA was 
used to convert to cDNA using iScript Select cDNA Synthesis 
Kit (Bio-Rad) in the presence of both oligo (dT) and random 
primers. qPCR was conducted with SsoAdvanced Universal 
SYBR Green Supermix (Bio-Rad) using CFX384 Real-Time 
PCR Detection System (Bio-Rad) according to the manufac
turer’s instructions. Relative expression of RNAs was deter
mined by the ΔΔCT method using GAPDH as an internal 
control for quantification analyses of gene targets. The pri
mers used for qPCR are listed. Primer sets used in qPCR are 
as follows:

GAPDH: F: ACATCATCCCTGCCTCTACTGG, R: 
GTTTTTCTAGACGGCAGGTCAGG; LINC00160: F: 
CCCAACCTCAGCCATTCTTG, R: GTGGCCCAGGAGT- 
GACTTTA;RUNX1: F:CAGGTTTGTCGGTCGAAGTG, R: 
TGATGGCTCTGTGGTAGGTG.

RNA-seq data analysis

The sequencing reads were aligned to human genome (hg19) 
with STAR 2.5.2b. Gencode v19 was used as the transcriptome 
annotation model, and read counts for each gene were con
ducted by featureCounts package with default parameter 
[57,58]. DESeq2 1.14.1 was used to call differentially expressed 
genes with fold expression change ≥ 1.4 and padj ≤ 0.01 as the 
cut-off[36].

GRO-seq data analysis

GRO-seq reads were aligned to human genome (hg19) using 
bowtie with ‘–best – strata – m 1 – v 2’ parameters. 
Duplicated reads were eliminated for subsequent analysis. 
To balance the clonal amplification bias and total useful 
reads, only three reads at most were allowed for each unique 
genomic position. When measuring the expression level of 
genes, mapped reads from the first 30 kb of gene body were 
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counted, excluding promoter-proximal region (transcription 
start site (TSS) to 1000 bp downstream of TSS; if the length of 
a gene is shorter than 10 kb, then the reads mapped to the 
first 10%*length regions were excluded). If the length of 
a gene is shorter than 30 kb, then the mapped reads from 
the whole gene were counted, excluding promoter-proximal 
region and gene end (500 bp upstream of transcription termi
nation site (TTS) to TTS). Differential expression analysis was 
then performed by DESeq2 with a fold change threshold of 
1.4 and FDR≤0.01.

ChIP-seq data analysis

Reads were aligned to human genome (hg19) using bowtie 
with ‘–best – strata – m 1’ parameters [59]. Only uniquely 
mapped and non-duplicated reads were selected for subse
quent analysis. MACS2 was employed to call peaks with 
default parameters and a q-value cut-off of 1e-5 [60]. For 
H3K27ac, the broad mode of MACS2 was switched on. The 
peaks overlapping with the blacklist regions from UCSC were 
removed. All the ERα peaks within 40kb from the gene body 
of the E2-regulated lncRNAs were designated as the potential 
regulatory elements.

ATAC-seq data analysis

Cutadapt 1.11 was used to trim adapters in ATAC-seq reads, 
which were then aligned to human genome (hg19) using 
bowtie with parameters ‘–best – strata – m 1 – v 2’[61]. 
Aligned reads with the same genomic position and orientation 
were collapsed to a single read. The reads were extended to 
200bp and normalized to a sequencing depth of 10 million 
reads for each library.

Clinical data analysis

The bodymap of LINC00160 expression level in normal and 
cancer tissues, the correlation of LINC00160 with RUNX1, 
and the relationship between expression of LINC00160- 
RUNX1 with survival rate were all performed and visualized 
in GEPIA website [51].

Deep sequencing data visualization

All the genome browser viewers were visualized in WashU 
Epigenome Browser [62]. The two saturated replicates of Pol 
II ChIA-PET interaction data were retrieved from the browser 
website. ChIP-seq and GRO-seq samples were normalized to 
10 million mapped reads per experiment, while RNA-seq 
samples were normalized to 1 million reads.

Hi-C experiment and data analysis

TCC (tethered chromatin conformation, a modified Hi-C 
protocol) data for T47D (vehicle treatment vs 1-hour E2 
treatment) have been deposited in GEO under accession 
number GSE119890 [63]. The data were mapped to hg19 
human genome with bowtie2 [64], filtered and normalized 

by HiC-Pro [65]. Then the loops were called by Fit-Hi-C [66] 
with the cut-off of FDR < 0.1.

Deep sequencing data availability

The ATAC-seq data and ChIP-seq data of ARID1B generated 
for this paper have been deposited in the Gene Expression 
Omnibus (GEO) under accession code GSE144927. The RNA- 
seq and GRO-seq data were retrieved from published 
GSE125606 and GSE125607, respectively. The ChIP-seq data 
of H3K27ac, P300, MED1 and ERαwere retrieved from pub
lished GSE45822, GSE60270, GSE125594, and ERR011973 
respectively. Deep sequencing datasets are summarized in 
Supplementary Table 3.

Statistical analysis

The RT-qPCR experiments were performed with at least three 
independent biological replicates and three technical repli
cates for each reaction. Results are reported as mean ± SEM 
of three independent experiments. Data were analysed and 
statistics were performed using unpaired two-tailed Student’s 
t-tests or one-way ANOVA (Prism 5 GraphPad). Significant 
differences between two groups were noted by asterisks (* 
P < 0.05, ** P < 0.01, *** P < 0.001).
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