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ABSTRACT
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains
high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithe-
lial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes
involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent
studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the
proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the
mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better
understanding of ncRNA biology will provide novel targets for future therapeutic development.
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Introduction

Colorectal cancer (CRC) is the third most common cancer world-
wide. Each year, there are over 100,000 newly diagnosed cases and
greater than 50,000 relatedmortalities in theU.S. alone [1]. CRC is
an adenocarcinoma originating from the epithelial cancer stem
cells of the colon or rectum with pluripotency and self-renewal
capabilities [2]. CRC initiation is characterized by the acquisition
of genetic mutations in common signalling pathways, such as the
wingless-typeMMTV integration site (Wnt) and the transforming
growth factor-beta (TGFβ) pathways, allowing for the bypass of
cell cycle checkpoints [3–5]. Subsequent activation of the epithe-
lial-to-mesenchymal transition (EMT) program is a critical step
towards progression to invasive cancer and metastasis [6], which
is a major cause of CRC-related mortality.

Recent high-throughput genomics efforts have identified
a vast number of non-coding RNAs (ncRNAs) aberrantly
expressed in CRC, fuelling a growing appreciation for their
diverse roles in CRC initiation, growth and metastasis [7,8].
ncRNAs consist of two subgroups based on RNA length: the
small non-coding RNAs (sncRNAs; less than 200 nucleotides)
and the long-noncoding RNAs (lncRNAs; greater than 200
nucleotides). microRNAs (miRNAs) of the sncRNA family
and diverse members of the lncRNA family are well studied
in CRC and therefore form the major focus of this review.

General mechanisms underlying ncRNAs regulations
of gene expression

sncRNAs and lncRNAs can form unique secondary and/or
tertiary structures [9–11], enabling them to interact with diverse
DNA, RNA, or protein partners to modulate processes at the
levels of chromatin, transcription, translation and/or signalling
transduction (Fig. 1A). miRNAs is the largest subset of sncRNAs
known to be involved in CRC. miRNAs are ~22-nucleotides in

length and are processed from the introns or exons of coding or
non-coding transcripts [12]. By recruiting the RNA-induced
silencing complex (RISC) to specific RNA targets through
sequence complementarity, miRNAs control RNA degradation
and/or protein translation [13]. miRNAs are counter-regulated
by lncRNAs through three mechanisms (Fig. 1B). At the miRNA
biogenesis step, lncRNAs can fine-tune miRNA processing and
maturation [14]. LncRNAs can also act as ‘miRNA sponges’ [15]:
by base complementarity, lncRNAs can bind to specific miRNAs
and sequester them away from their canonical targets. Lastly,
base pairing between lncRNA and mRNAs can physically limit
miRNA access to their targets [16].

In addition to controlling miRNA biogenesis and function,
lncRNAs that are abundantly found in the nucleus can interact
with chromatin DNA and regulate gene transcription (Fig. 1C).
For instance, active transcription at ncRNA locus residing on
regulatory elements such as enhancers and/or repressors can
promote changes in the local chromatin architecture, resulting
in activation or repression of nearby genes and/or the proper
splicing of their transcripts [17]. Nuclear lncRNAs can also act
in trans. By either base pairing with chromatin DNA to form
RNA-DNA duplexes and/or tethering with DNA-binding tran-
scription factors, lncRNAs can regulate chromatin accessibility
and transcription of distal genes [18]. In the next section, we
will discuss how many of these mechanisms underly ncRNA
contribution to health and tumorigenesis in the intestine.

ncRNAs in epithelial proliferation checkpoints

Healthy intestinal epithelial cells (IECs) have a short life span of
3–5 days [19]. Mature IECs are replenished by newly differen-
tiated cells derived from the transient amplifying cells residing at
the base of intestinal crypts [19]. A main driver for epithelial
turnover is Wnt signalling [20]. Wnt ligands binding to cell
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surface receptors promote the translocation of β-catenin into the
nucleus and the transcriptional activation of the cell proliferation
program [21]. Normally, the Wnt and β-catenin pathway is
tightly regulated to prevent aberrant epithelial growth by the
adenomatous polyposis coli (APC) protein complex. The APC
complex targets β-catenin for proteasome-mediated destruction,
putting a brake on epithelial growth [22]. In addition to the APC
complex, tumour suppressor p53 also holds epithelial prolifera-
tion in check [23]. p53 activates the transcription of CDKN1A
and PTEN to promote cell cycle arrest and facilitate apoptosis
[24]. Loss of the APC and p53 checkpoints coupled with aber-
rant growth factor stimulation trigger tumorigenesis in humans
and mice [25–28].

p53 is known to upregulate ncRNAs with potent anti-tumour
activities, including miR-145, lincRNA-p21, and the growth
arrest-specific transcript 5 (GAS5). miR-145 helps to dampen the
expression ofMYC, which encodes a one of the driver of epithelial
proliferation [29]. LincRNA-p21 helps to shut down global gene
transcription by recruiting the heterogeneous nuclear ribonucleo-
protein K (hnRNP-K)-containing repressive complex onto chro-
matin DNA, halting CRC cell cycle progression [30]. When
overexpressed, lincRNA-p21 attenuates the self-renewal capacity
of CRC cancer stem cells by blocking Wnt/β-catenin signalling
[31]. The p53-dependent lncRNA GAS5, encodes a cluster of
small nucleolar RNAs (snoRNAs), is implicated in cell cycle arrest
[32–34]. In response to growth factor stimulation, the insulin
receptor substrate-1 (IRS-1) and AKT signalling triggers p53 ubi-
quitination and degradation, promoting epithelial proliferation.
Under homoeostasis, miR-203a-3p and miR-126 negatively reg-
ulate IRS-1 and β-catenin transcripts to limit AKT-induced degra-
dation of p53 and prevent aberrant proliferation [35,36].

ncRNAs in CRC growth and EMT

Tumour cells upregulate a unique set of lncRNAs with oncogenic
activities to bypass the APC and p53 checkpoints, thereby driving

cancer cell proliferation and EMT. At the transcription level, two
well-studied examples include the nuclear lncRNAs DUXAP10
and CCAT1-L. LncRNA DUXAP10 is a transcriptional silencer.
By forming a complex with the histone demethylase lysine-
specific demethylase 1 (LSD1) complex, DUXAP10 shuts down
the expression of p53 target genes, including CDKN1A and
PTEN [37]. CCAT1-L is a 5200 nt lncRNA that is also highly
upregulated in CRC [38]. It is transcribed 515 kb upstream of the
MYC locus. CCAT1-L acts as a transcriptional regulator ofMYC
by binding to CTCF proteins and enhancing the interaction
between the MYC promoter and its distal enhancers [38].

At the post-transcriptional level, CRCs hijack a diverse set of
ncRNAs to evade cell cycle checkpoints. Several snoRNAs,
ranging from 60 to 170 nucleotides in size, have been impli-
cated in CRC (summarized in Table 1) [32,33,39–43]. Ectopic
expression of SNORA42 strengthens CRC proliferation, inva-
sion, and migration, while the inhibition of SNORA42 by
CRISPR-Cas9 suppresses cell proliferation and invasion capa-
cities [34]. The small nucleolar RNA host genes (SNHGs)
encoding multiple snoRNAs are also involved in CRC. For

Figure 1. General principles and mechanisms underlying ncRNA functions. A. ncRNAs interact with diverse partners. B. LncRNAs counter regulate miRNAs by: i)
modulating pre-miRNA processing, ii) direct sequestration, iii) competition for same target RNAs. C. LncRNAs regulate gene expression by i) modulating chromatin
architecture of nearby genes in cis; ii) complexing with transcription factors or iii) forming RNA-DNA duplexes to regulate transcription of distal genomic loci.

Table 1. ncRNAs involved in epithelial growth and transformation.

Target Pathway LncRNAs miRNAs snoRNAs

PI3K/AKT/MYC CCAT [38]
GHET1 [59]

miR-203a-3p [60]
miR-126 [61]
miR-145 [29]

SNORD126 [32]
SNHG15 [42]

WNT/beta-
Catenin

lincRNA-21 [31]
CCAL [62]
CTD903 [63]
CASC11 [64]
TINCR [65]

miR-101 [66]
miR-34 [67]
miR-224 [68]
miR-146a [69]
miR-490-3p [70]
miR-17-5p [71]

SNHG1 [39,40]

p53/p21/PTEN DUXAP10 [37]
ZFAS1 [72]
MEG3 [73]
BANCR [74]
lincRNA-p21 [30]

miR-21 [75] GAS5/SNORD44 [33]
SNHG1 [41]

EMT AB073614 [76]
TUG1 [77]

miR-200s [78] SNHG6 [43]
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instance, SNHG1 is a lncRNA encoding 8 snoRNAs, and is
significantly upregulated in CRC [43]. SNHG1 sequesters miR-
145/miR-154-5p [44,45] to promote MYC expression and cell
cycle progression [40,41]. CRCs also overexpress miR-21 to
target CDKN1A and PTEN transcripts for degradation [46].

EMT in CRCs is initiated by ZEB proteins [47,48]. ZEB1
transcripts are targeted for degradation by members of the
miR-200 and miR-26a families in healthy epithelium [49,50].
miR-200 and miR-26a can be counteracted by lncRNAs, H19
and lncRNA-ATB acts as sponges for miR-200 to prevent
ZEB1 transcript degradation and promote EMT and cancer
progression [51–57]. And lncRNA SNHG6 counteracts miR-
26a through similar mechanism to drive CRC invasion,
migration and EMT [58]. Future studies will be needed to
elucidate the exact molecular mechanisms underlying their
contributions to CRC.

ncRNAs and inflammation

CRC is tightly associated with inflammation [79]. Patients
with inflammatory bowel diseases (IBD) are at a higher risk
of developing CRC [80]. Elevated immune-modulatory cyto-
kines not only influence the function of immune populations
infiltrated to the lesion, but also act directly on cancer cells to
promote disease progression. Known CRC-related cytokines
and their regulation by sncRNAs and lncRNAs are summar-
ized in Table 2. The contributions of miRNAs to inflamma-
tory cytokine expression have been extensively reviewed
elsewhere and beyond the scope of this review [81]. In the
next section, we will summarize lncRNA regulation of pro-
inflammatory cytokines involved in CRC [82], including
interleukin-6 (IL-6), tumour necrosis factor (TNFα), and
interferon-gamma (IFNγ) (Fig. 2).

Increased expression of IL-6 is linked to advanced stages of
CRC and decreased patient survival [98,99]. IL-6 activates the
STAT3 signalling cascade [100] and turns on gene programs
involved in CRC proliferation, migration, and angiogenesis
[101–103]. In addition, IL-6 promotes the recruitment and
expansion of immunosuppressive myeloid-derived suppressor
cells (MDSCs) and inhibits the maturation of human dendri-
tic cells in the tumour environment [104,105]. Neutralization

of the IL-6 receptor as well as the genetic ablation of IL-6 and/
or STAT3 reduces tumorigenesis in mouse models of CRC
[102,106]. IL-6 expression is regulated by multiple lncRNAs.
LincRNA-Cox2 and lncRNA NEAT1 promotes IL-6 expres-
sion via distinct mechanisms. LincRNA-Cox2 is induced by
Toll-like receptor ligands and partners with the heterogeneous
nuclear ribonucleoproteins hnRNP-A/B and hnRNP-A2/B1 to
drive Il6 transcription in the nucleus [107,108]. LncRNA
NEAT1, on the other hand, acts further upstream and
potentiate IL-6 expression by promoting the activation of
the JNK1/2 and ERK1/2 signalling cascades [109].

Other lncRNAs can limit IL-6 expression through negative
feedback loops to prevent exacerbated inflammation. For
example, the Toll-like receptor-induced lncRNA Mirt2 associ-
ates with TRAF6 in the cytoplasm and blocks its ubiquitina-
tion. Loss of TRAF6 ubiquitination diminishes the activation
of NFκB and MAPK, putting a brake on Il6 transcription
[110]. In the nucleus, three additional lncRNAs help to keep
Il6 transcription in check. LncRNA Lethe acts as a decoy
partner for NFκB and blocks its recruitment on the Il6 pro-
moter [111]. Lnc-IL7R promotes the deposition of trimethyla-
tion on lysine 27 of histone H3 and sets up a repressive
chromatin environment at the Il6 locus [112]. Lastly,
LncRNA-EPS represses IL6 expression by partnering with
hnRNPL to reduce chromatin accessibility [113].

Another CRC promoting inflammatory cytokine is TNFα
[114]. TNFα signalling leading to the activation of NFκB
drives CRC survival, proliferation, invasion, and metastasis
[115]. Genetic ablation of the TNF receptor protects mice
against chemical-induced colon tumour [114] and limits
liver metastasis of transplanted CRC in mouse models [116].
Human IBD and CRC patients treated with anti-TNFα had
less intestinal inflammation and decreased tumour burden
[117,118]. TNFα expression is regulated by three lncRNAs.
The TNFα and hnRNPL–related immunoregulatory lincRNA,
THRIL, works together with hnRNPL to promote TNF tran-
scription [119]. Lnc-13 and lncRNA-CD244 negatively regu-
late Tnf expression in mice and humans, respectively, through
distinct mechanisms. Lnc-13 associates with hnRNPD to
recruit the histone deacetylase, HDAC1, to remove the activa-
tion marks on the Tnf promoter [120]. In contrast, lncRNA-
CD244 turns off TNF transcription by partnering with the
enhancer of zeste homolog 2 (EZH2)-containing complex to
deposit repressive tri-methylation marks on lysine 27 of his-
tone H3 on the TNF locus.

Similar to IL-6 and TNFα, IFNγ also promotes CRC patho-
genesis [121]. IFNγ signalling induces expression of immune
checkpoint molecules, including PD-L1 [122], which promotes
evasion from anti-tumour immune responses [123].
Transcription of the Ifng gene is regulated by lncRNA NeST,
also known as Ifngas1 or Tmevpg1 [124]. The NeST locus is
associated with an IBD susceptibility related SNP, rs7134599.
Accordingly, elevation of NeST expression in ulcerative colitis
patients positively correlates with enhanced IFNγ levels [125].
However, the link between rs7134599 and NeST to CRC has not
been clearly demonstrated [126]. Mechanistically, NeST works
together with the methyltransferase WDR5 to promote tri-
methylation on lysine 4 of histone H3 and transcriptional activa-
tion of the Ifng gene [124]. Together, lncRNAs and their

Table 2. ncRNAs involved in inflammatory cytokine expression.

Inflammatory cytokines LncRNAs miRNAs

IL-6 Lethe [111]
LincRNA-Cox2 [108]
LincRNA-EPS [113]
Lnc-IL7R [112]
MARCKS [83]
Mirt2 [110]
NEAT1 [109]
ROCK1 [83]

miR-21 [84]
miR-24 [85]
miR-26a [86]
miR-124 [87]
miR-147 [88]

TNF Lnc13 [120]
THRIL [119]

miR-24 [85]
miR-124 [87]
miR-147 [88]

IFNγ LncRNA-CD244 [89]
NeST [124]

miR-29 [86]
miR-155 [90]

IL-8 NEAT1 [109]
PANDA [91]

miR10a [92]
miR200 [93]
miR203 [94]
miR302 [95]

IL-1β LSINCT5 [96]
Mirt2 [110]

miR-233 [97]
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associated transcription factors and epigenetic modifiers are
critical regulators of inflammatory cytokine expression. Future
studies will be needed to fully assess each of their contribution to
CRC in vivo.

Emerging tools for studying ncRNAs

ncRNAs accomplishes a diverse range of biological
functions by interacting with other RNAs, proteins, and
chromatin DNA (Fig. 1). However, we have limited under-
standing of how these interactions contribute to ncRNA
biology in the context of health and diseases. Emerging
tools are now allowing researchers to tackle these chal-
lenges in the field. For instance, RNA–RNA interactions
can be mapped using the MS2-tagged RNA affinity purifi-
cation (MS2-TRAP) system in vitro as well as the cross-
linking [127], ligation, and sequencing of hybrids (CLASH)
assay in vivo [128]. Protein partners of ncRNAs can be
elucidated using the comprehensive identification of RNA-
binding proteins by mass spectrometry (ChIRP-MS) [129],
click chemistry-assisted RNA-interactome capture
(CARIC) [130], and the crosslinking and immunoprecipi-
tation (iCLIP/eCLIP) assays [131,132]. ncRNA-DNA
interactions on the chromatin can be revealed using the
chromatin-associated RNA sequencing (ChAR-seq) [133]
and the in situ global RNA interactions with DNA cap-
tured by deep sequencing (GRID-seq) approaches [134].
Furthermore, ncRNA secondary and tertiary structures are
important determinants for the specificity and affinity of
ncRNAs for their interaction partners. Future studies will
need to better elucidate ncRNA structural information
inside living cells with approaches such as the selective 2ʹ-
hydroxyl acylation analysed by primer extension and
sequencing (SHAPEseq) [135]. Together with cryogenic
electron microscopy, researchers will soon be able to gain
new lights on additional general principles underlying
ncRNA biology.

Discussion

The human and mouse genome is estimated to have over 2,000
miRNAs [136], 50,000 lncRNAs [137], and 1,000 RNA-binding
proteins [138]. However, only a handful has been characterized in
the context of CRC. For instance, we know relatively little about
the involvement of ncRNAs in the production of anti-
inflammatory cytokines, such as IL-10 and TGFβ, which are
known for negative regulating intestine inflammation [139,140].
In addition, there are several other families of ncRNAswith newly
defined roles in CRC, such as the tRNA and tRNA-derivatives
(reviewed in [141]). But the mechanistic details of their contribu-
tion remained to be elucidated. To close these knowledge gaps,
high-throughput gain and loss of function screens, including the
use of the latest CRISPR-Cas9 technologies [142], will be critical
in future studies. Molecular insights can be revealed using
a combined molecular, biochemical, genetic and genomic
approach. Future studies should also evaluate whether the
ncRNA mechanisms of action thus far are conserved or unique
in different cell types under steady state and across different
disease conditions. And, better understanding of how ncRNAs
contribute to the crosstalk between tumour cells and their local
environmental cueswill facilitate the development of novel targets
against inflammation-driven tumorigenesis.
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regulated by lncRNA NeST. B. In humans, Il6 transcription is negatively regulated by Lnc-17R and ROCKI. In mice, Il6 transcription is negatively regulated by lncRNA
Mirt2 and Lethe. Lnc13 interacts with hnRNPL to block the transcription of Tnf. LncRNA-CD244 recruits EZH2 to deposit repressive histone marks and shut down
transcription at both the TNF and IFNG loci.
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