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ABSTRACT
Transfer RNAs (tRNAs) play critical roles in human cancer. Currently, no database provides the expression
landscape and clinical relevance of tRNAs across a variety of human cancers. Utilizing miRNA-seq data from
The Cancer Genome Atlas, we quantified the relative expression of tRNA genes and merged them into the
codon level and amino level across 31 cancer types. The expression of tRNAs is associated with clinical
features of patient smoking history and overall survival, and disease stage, subtype, and grade. We further
analysed codon frequency and amino acid frequency for each protein coding gene and linked alterations of
tRNA expression with protein translational efficiency. We include these data resources in a user-friendly data
portal, tRic (tRNA in cancer, https://hanlab.uth.edu/tRic/ or http://bioinfo.life.hust.edu.cn/tRic/), which can be
of significant interest to the research community.

ARTICLE HISTORY
Received 26 June 2019
Revised 21 July 2019
Accepted 15 August 2019

KEYWORDS
tRNA; codon; amino acid;
cancer; codon usage

Introduction

Transfer RNAs (tRNAs) play critical roles in protein translation
by delivering amino acids to initiate and elongate peptide chains
[1]. Transcription of tRNAs is mediated by RNA polymerase III,
and aberrant tRNA expression contributes to disease [2,3]. For
example, overexpression of tRNAiMet

CAT (initiator tRNA that
identifies a methionyl translation start codon) can enhance
global protein synthesis and increase endoplasmic reticulum
stress to promote the development of diabetes [4]. Decreased
expression of tRNAGln

CTG promotes progression of
Huntington’s disease in the early stage by increasing the fre-
quency of translational frame-shifting [5]. In human cancers,
enhanced tRNA expression drives mRNA translation and cell
growth [6]. For example, expression of tRNAArg in breast cancer
is positively correlated with codon frequency in oncogenic sig-
natures, suggesting that tRNAArg overexpression may accelerate
the translational efficiency of these oncogenic genes [7–9]. Up-
regulation of tRNAGlu

TTC optimizes EXOSC2 expression to pro-
mote metastatic progression of tumours[10].

The Cancer Genome Atlas (TCGA) project generated multi-
omic data formore than 10,000 patient samples, including exome-
seq, RNA-seq, miRNA-seq, and DNA methylation[11]. It also
collected clinical features, including disease stage and patient
age and overall survival. These rich data provide valuable

opportunities to understand transcriptomic events and oncogenic
pathways [12–16]. Several databases have been developed to ben-
efit the biomedical research community in utilizing this large-scale
dataset. For example, cBioPortal provides a web resource for
exploring, visualizing, and analysing cancer genomic data, espe-
cially for protein-coding genes [17,18]. The Cancer Proteome
Atlas includes protein expressions of ~200 proteins for > 8,000
tumour samples[19]. PancanQTL was developed to explore both
trans-quantitative trait loci (QTL) and cis-eQTL across 33 cancer
types[20]. Several other databases focus on non-coding RNAs. For
example, The Atlas of Non-coding RNA In Cancer focuses on the
functions and clinical relevance of long non-coding RNAs[21],
while SnoRNA InCancer focuses on the expression landscape and
clinical relevance of small nucleolar RNAs[22]. However, there is
still no tRNA database in cancer, likely due to the technical
difficulty of estimating tRNA expression levels accurately from
high-throughput sequencing data[23]. Recent studies used
miRNA-seq to quantify the relative expression level of tRNAs in
multiple organisms, including E.coli, yeast, and humans [24–32].
In particular, we used a similar computational pipeline to quantify
the relative expression levels of tRNAs from TCGA[33]. We
further built a user-friendly database, tRNA In Cancer (tRic), the
first comprehensive database for tRNAs in cancer, which can
significantly benefit cancer research.
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Results and discussion

Data preparation

We collected clinical information, including stage, grade, sub-
type, patient survival, and smoking history, from ~10,000
patients across 31 human cancers (Figure 1a). We obtained
miRNA seq files for these samples and quantified their expres-
sion profile at tRNA, codon and amino acid level as described
in our previous study (method and Figure 1b)[33]. We also

calculated frequency of codon and amino acid for each coding
gene throughout human genomes (Figure 1b). These datasets
were deposited in our database.

Database infrastructure

The web interface is based on traditional HTML, CSS, and
JavaScript with modern libraries, such as Bootstrap and
JQuery. The backend of the data portal is based on R and data
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Figure 1. Data processing and web design of tRic. a. Summary of clinical information across 31 human cancer types in tRic. Full names of cancer type are
listed in Table 1. b. Data collection and processing of tRic dataset, including miRNAseq, tRNA annotation and human coding sequences (CDS). QC denotes
quantify control. c. Interface and infrastructure of tRic.
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manipulation libraries, such as Tidyverse. The Django web fra-
mework is adopted to connect the backend and frontend of the
database (Figure 1c). Users can browse or query items of interest
on the user-friendly web pages. We established two mirrored
links for tRic at https://hanlab.uth.edu/tRic/ or http://bioinfo.
life.hust.edu.cn/tRic/). We will continue to support the database
for possible updates.

Functional modules and examples

tRic has four functional modules: tRNA level, codon level,
amino acid level, and codon usage (Figure 2a). In the ‘tRNA
level’ module, users can query expression level of tRNAs in
a specific cancer type and/or subgroup. tRic will return the
expression level of tRNAs and differentially expressed tRNAs
between tumour and normal samples if there were more than 5
paired samples. For example, tRNA-His-GTG-1–9 is differen-
tially expressed between tumour and normal samples in LUAD

(Figure 2b). Users can also choose to perform comprehensive
analysis for tRNAs associated with clinical features. For exam-
ple, tRNA-Arg-TCG-5–1 is associated with patient survival in
KIRC (Figure 2c). Expression at tRNA level was merged into
codon level and amino acid level. tRic also provides similar
query functions in module ‘codon level’ and module ‘amino
acid level’ to ‘tRNA level’. For example, tRNAArg(CGT) is
differentially expressed among KIRC stages (Figure 2d), while
tRNAArg(AGA) is differentially expressed among BRCA sub-
types (Figure 2e), tRNAGlu is differentially expressed among
patients with different smoking histories in LUSC (Figure 2f),
and tRNALeu is differentially expressed among LIHC grades
(Figure 2g).

tRNAs play important translation roles in initiating and
elongating peptides[1]. Therefore, the expression alterations of
tRNA may impact translational efficiency. The module ‘codon
usage’ aims to pinpoint potential effects of tRNA expression on
protein translation. Users can search a protein-coding gene for
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Figure 2. Overview of tRic database. a. Four modules in tRic: expression of tRNs at tRNA level, codon level, and amino acid level, respectively, as well as codon
usage. b. Differentially expressed tRNAs between tumour and normal samples. c. Expression of tRNA associated with patient survival. d. Differentially expressed
codons among different stages. e. Differentially expressed codons among different subtypes. f. Differentially expressed amino acids among patients with different
smoking histories. g. Differentially expressed amino acids among different tumour grades. h. Amino acid frequency of human SRSF2 gene.
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its codon frequency and amino acid frequency. For example,
Arg frequency in SRSF2 (23.8%) is significantly higher than the
average genomic level (5.5%), suggesting that tRNAArg over-
expression may increase the translational product of SRSF2
(Figure 2h). Users can also search the gene list with high
frequency for specific codons or amino acids.

Data download

Expressions at tRNA, codon, and amino acid levels, as well as the
codon and amino acid frequency for all protein-coding genes are
available on tRic download pages (https://hanlab.uth.edu/tRic/
download/ or http://bioinfo.life.hust.edu.cn/tRic/download/).

Conclusion

We have developed the first comprehensive database for
tRNA expression in more than 10,000 tumour samples across
31 cancer types. We provide the tRNA expression profile,
differential expression between tumour and normal samples
and among different groups of samples (e.g., subtypes, stages)
at tRNA, codon and amino acid levels. We also provide the
codon frequency and amino acid frequency for all protein-
coding genes in the human genome, which may unveil poten-
tial connections between tRNA expression and the usage bias
of gene translation. Our database will provide the biomedical
research community with insights in functional discoveries of
tRNAs in cancer.

Materials and methods

Clinical information for TCGA samples

The clinical information of TCGA samples was obtained from
TCGA data portal (https://portal.gdc.cancer.gov/). Clinical
information for each cancer type, including stage, grade, sub-
type, and patient survival and smoking history, is summarized
in Figure 1a.

Quantification of tRNAs

We downloaded and processed 16,591 miRNA-seq data from
TCGA data portal (https://portal.gdc.cancer.gov/) as we pre-
viously described[22]. In brief, we filtered out duplicated samples
and low-quality samples with quality control-passed reads < 50%
or readsmapped rate < 80%.After quality control, 10,594 samples,
comprising 9931 tumour samples and 663 normal samples, were
included in our study (Table 1, Figure 1b, left panel).

We quantified tRNA expression levels as previously described
[33]. In brief, we downloaded tRNA annotations from UCSC
Genome Browser (http://hgdownload.soe.ucsc.edu/) and filtered
out those without clear anticodon and amino acid information.
In total, we collected 604 tRNAs decoding 52 anticodons
(codons) and 21 amino acids. We then mapped TCGA miRNA-
seq reads to tRNA annotations and normalized tRNA expression
using the trimmed mean of M values (TMM) method [34,35].
We defined tRNAs that have relatively high expression value
(average TMM > 1) as detectable tRNAs. These tRNAs were

categorized into 52 codon groups and 21 amino acid groups
according to the codon and amino acid information (Figure 1b,
middle panel).

Estimation of codon frequency and amino acid frequency

The human coding sequences with complete open reading
frames were downloaded from Ensembl database (www.
ensembl.org/). For each coding gene, we estimated the fre-
quency for each codon and each amino acid based on the
sequence information. At the codon level, we calculated the
total number of codons (N) and then calculated the total
number of each specific codon (n). The codon frequency is
calculated as N divided by n. We used a similar approach to
calculate the amino acid frequency (Figure 1b, right panel).

Statistical analyses

All statistical tests were performed using R. We used the
Student’s t-test to examine the differential expression between
tumour and normal samples. The analysis of variance test was
used to test differentially expressed tRNAs among different
stages, subtypes, grades, and smoking history groups. The

Table 1. Summary of tRic data for each cancer type.

Abbreviation Cancer type

No. of
tumour
samples

No. of
normal
samples

ACC Adrenocortical carcinoma 80 0
BLCA Bladder urothelial carcinoma 397 16
BRCA Breast invasive carcinoma 1077 104
CESC Cervical squamous cell carcinoma

and endocervical adenocarcinoma
295 3

CHOL Cholangiocarcinoma 36 9
COAD Colon adenocarcinoma 433 1
DLBC Lymphoid neoplasm diffuse large

B-cell lymphoma
47 0

ESCA Oesophageal carcinoma 184 11
HNSC Head and neck squamous cell

carcinoma
523 44

KICH Kidney chromophobe 66 25
KIRC Kidney renal clear cell carcinoma 516 71
KIRP Kidney renal papillary cell

carcinoma
290 34

LGG Brain lower grade glioma 512 0
LIHC Liver hepatocellular carcinoma 372 50
LUAD Lung adenocarcinoma 513 46
LUSC Lung squamous cell carcinoma 476 45
MESO Mesothelioma 87 0
OV Ovarian serous cystadenocarcinoma 466 0
PAAD Pancreatic adenocarcinoma 178 4
PCPG Pheochromocytoma and

paraganglioma
179 3

READ Rectum adenocarcinoma 160 0
PRAD Prostate adenocarcinoma 483 52
SARC Sarcoma 246 0
SKCM Skin cutaneous melanoma 447 2
STAD Stomach adenocarcinoma 409 37
TGCT Testicular germ cell tumours 150 0
THCA Thyroid carcinoma 510 71
THYM Thymoma 124 2
UCEC Uterine corpus endometrial

carcinoma
538 33

UCS Uterine carcinosarcoma 57 0
UVM Uveal melanoma 80 0
Total 9931 663
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univariate Cox model was used to test if tRNA expression
correlated with patient survival.
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