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ABSTRACT
Pancreatic cancer is a major cause of mortality with a poor diagnosis and prognosis that most often
occurs in elderly patients. Few studies, however, focus on the interplay of age and pancreatic cancer at
the transcriptional level. Here we evaluated the possible roles of age-dependent, differentially expressed
genes (DEGs) in pancreatic cancer. These DEGs were used to construct a correlation network and
clustered in six gene modules, among which two modules were highly correlated with patients’ survival
time. Integrating different datasets, including ATAC-Seq and ChIP-Seq, we performed multi-parallel
analyses and identified eight age-dependent protein coding genes and two non-coding RNAs as
potential candidates. These candidates, together with KLF5, a potent functional transcription factor in
pancreatic cancer, are likely to be key elements linking cellular senescence and pancreatic cancer,
providing insights on the balance between them, as well as on diagnosis and subsequent prognosis
of pancreatic cancer.
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Introduction

Cellular senescence was first discovered by Leonard Hayflick and
Paul Moorhead when they described the finite proliferative capa-
city of cultured normal human fibroblasts [1]. Cellular senescence
is a complex progressive process that can be triggered as a defence
mechanism for various stressors, including telomere shortening,
DNA damage response, oncogenic activation, oxidative stress and
ageing [2–4]. Senescent cells generally manifest as an irreversible
cell cycle arrest, positive staining of senescence-associated β-
galactosidase (SA-β-gal), upregulation of p16INK4a (CDKN2A),
secretion of senescence-associated secretory phenotype (SASP)
and formation of senescence-associated heterochromatin foci
(SAHF) [5,6]. At the molecular level, in addition to p16-RB upre-
gulation, cellular senescence is also accompanied by activation of
the p53 pathway in multifarious human cell strains [7]. These two
pathways can function either collaboratively or independently in
senescence progression in different microenvironments.

Pancreatic cancer is a malignant tumour with ineffective
treatment choices and high mortality rates. The four major
driver genes of pancreatic cancer are KRAS, p16INK4a

(CDKN2A), p53 and SMAD4 [8]. Pancreatic cancer has an over-
all 5-year survival rate of <7%, and almost all survivors are
patients undergoing surgical resections, with survival rates of
15–25% [8,9]. Pancreatic ductal adenocarcinoma (PDAC) is the
most common type of pancreatic cancer. PDAC arises from
non-invasive precursor lesions, accompanied by microscopic
non-invasive epithelial proliferations within the pancreatic

ducts, termed pancreatic intraepithelial neoplasias (PanINs)
[10,11]. PanINs, believed to be the precursors of the cancer,
were divided into three stages, PanINs 1–3, with higher stages
manifesting similar genetic changes to those in PDAC [12].

As both senescence effectors and tumour suppressors,
p16INK4a and p53 are involved in pancreatic cancer as driver
genes, indicating that senescence might function as a tumour
suppressive mechanism and represent significant barriers to
malignant tumour progressions [4,13]. In oncogene-induced
senescence, these tumour suppressors were activated, trigger-
ing senescence in response to oncogenic signalling [14]. In
addition to these canonical protein-coding factors, non-
coding RNAs have emerged as crucial regulators in numerous
processes [15], including nuclear organizations [16], epige-
netic regulations [17,18], and cancer progressions [19–22].
Among them, some long non-coding RNAs (lncRNAs) with
lengths exceeding 200 nucleotides have been well studied, as
exemplified by the imprinted H19 in both cancers [23,24] and
senescence [25], Malat1 in both cancers [26,27] and senes-
cence [28,29], and Neat1 in the paraspeckle [30,31].

Senescence is likely to occur during the earliest stages of
PDAC [4]. Other researchers demonstrated that senescent
cells staining positively for senescence markers (p16, Dec1
and DcR2) were detected within early grade PanINs lesions,
but not in normal ducts or PDAC [4,9]. Moreover, coopera-
tively genetic deficiency of p16INK4a/Arf and activation of Kras
triggered an early PanIN lesions and accelerated invasive and
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metastatic PDAC [32]. These data implied that senescence is
a barrier against PDAC progression. Nevertheless, pathologi-
cal processes are always complicated. Accumulating evidences
revealed that senescence, as a proinflammatory process,
secretes a prolonged or deregulated SASP to promote tumor-
igenesis [33,34]. Indeed, overexpression of IL-1a, a SASP com-
ponent and a target downstream of Kras, correlated with Kras
mutation, NF-kB activity and poor survival in PDAC [35].

In the highly inflammatory context of pancreatic cancer,
the exact regulatory interplay between senescence and PDAC
at the transcriptional level is still unclear, especially for
lncRNAs. Of note, pancreatic cancer is likely to be age-
dependent, with most cases occurring in older patients
[10,36], strengthening the value of studying this interplay.

In this study, we used RNA-Seq to profile the transcriptomes
of BALB/c and C57 mouse embryo fibroblast (MEF) cells, inte-
grating different published datasets, including ATAC-Seq and
ChIP-Seq, using multi parallel analyses, and illustrated the inter-
play between senescence and pancreatic cancer at transcriptional
regulation and post-transcriptional levels.

Results

Identifying differentially expressed genes in proliferating
and senescent MEFs

We chose MEF as a cellular replicative senescence model to
study senescence mechanisms. We isolated MEF cells from
pregnant BALB/c and C57 mice and in vitro sub-cultured iso-
lated cells until they lost the ability to proliferate. Cells from
passage 2 (P2) and passage 8/9 (BALB/c: P8 and C57: P9) were
defined as proliferating and senescent cells, respectively. High
senescence-associated β-galactosidase activity (SA-β-gal), which
is a traditional senescence marker [7], was detected in senescent
cells, but not in proliferating cells (Fig. 1(A), Figure S1).

RNA-Seq of eight MEF samples (two replicates of prolif-
erating and senescent MEFs from BALB/c and C57 mouse
separately) revealed 3,405 differentially expressed genes
(DEGs, 2,626 protein-coding and 779 non-coding RNAs) in
senescent C57 MEFs and 1,887 DEGs (1,547 protein-coding
and 340 non-coding RNAs) in BALB/c (p-value<0.05 and abs
(log2FC)>1 (FC, Fold Change); Fig. 1(B,C)). In both MEFs,
the numbers of up-regulated DEGs were approximately equal
to the down-regulated ones. Canonical senescence markers
changed significantly in senescent MEFs, such as p16INK4a

(Cdkn2a) and Lmnb1 (Fig. 1(D,E)).
In senescence processes, genes in various pathways are

altered and respond to intracellular and extracellular environ-
mental changes, so we selected these DEGs for functional
enrichment analyses. KEGG pathway and Network of
Cancer Genes (NCG) enrichments were performed with
geneSCF [38], based on p-value<0.05. Many genes were
found to participate in senescence, DNA damage and cancer
related pathways (Fig. 1(G,H)). p16IKN4a (Cdkn2a) is essential
in senescence processes [7], and at the same time is an indis-
pensable tumour suppressor gene in cancers [39]. As shown
in Fig. 1(G,H), p16IKN4a participated in cellular senescence
pathway (mmu04218), cell cycle pathway (mmu04110), p53
signalling pathway (mmu04115) and pathway in cancer

(mmu05200). In addition, Myc was involved in cell cycle
pathway (mmu04110), cellular senescence pathway
(mmu04218), transcriptional mis-regulation in cancer path-
way (mmu05202) and pathways in cancer (mmu05200).

Considering senescence-related cancers, we observed three
cancers (pancreatic cancer, colorectal cancer and cholangio-
carcinoma) that were significantly enriched in NCG of the
DEGs in senescent MEFs (Fig. 1(F)). These data suggested
that genes affecting senescence processes are inclined to func-
tion in some cancers, therefore indicating that the develop-
ments and progressions of these cancers may be age-
dependent.

Identifying age-dependent DEGs in pancreatic cancer
patients

We obtained TCGA pancreatic cancer data from UCSC xena
browser GDC hub. Since we focused on pancreatic ductal
adenocarcinoma (PDAC), we filtered the data and retained
187 PDAC patients’ RNA-Seq data. Regarding age-dependent
PDAC, we defined two stages: age less than 50 was defined as
‘young’, and age more than 80 as ‘very old’. According to this
interval division, 915 genes (858 protein coding and 57 non-
coding RNAs) showed age-dependent differential expression
(Fig. 2(A)). Upregulated genes in very old patients were about
1.4 times the number of down-regulated genes. Further we
checked the expression levels of these 915 DEGs in PDAC
patients aged between 51 and 79 (‘middle-aged’). Taking the
average expression levels as indicators, these 915 DEGs exhib-
ited gradually upregulations or downregulations from ‘young’
to ‘very old’ (Fig. 2(B,C)).

For 57 differentially expressed non-coding RNAs, cut-off
thresholds were determined by Q4 versus Q1 quartile to
define high and low expression, which were then subjected
to survival analyses. In total, two long non-coding RNAs
(lncRNAs) were significantly (p-value<0.05) associated with
the patients’ survival status (Fig. 2(D,E)). Low expression of
AL139287.1 and AP001324.1 lncRNA both significantly
decreased patients’ survival probabilities (Fig. 2(D,E)). Thus,
these two lncRNAs were likely to act as regulators in PDAC
development and progression.

Identifying gene modules highly correlated with clinical
traits

For the 915 age-dependent DEGs, we employed the WGCNA
package [40] to construct a weighted correlation network. For
network construction, we selected power 6 as the soft threshold
with R-square more than 0.85 and mean connectivity less than
100 (Fig. 3(A,B)). In the network, DEGs were assigned to six
gene modules based on their interaction patterns, indicated by
different colours (Fig. 3(C)). Genes classified in one gene mod-
ule, indicated by one colour, had similar expression profiles. We
next calculated correlations between gene modules and clinical
traits to discover genes highly associated with PDAC clinical
traits (Fig. 3(D)). Since the input genes were age-dependent, the
gene modules and ageing were relatively highly correlated.
Beyond that, the blue module, with 182 genes, was highly asso-
ciated with patients’ survival time and neoplasm histologic grade
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Figure 1. Characterization of RNA-Seq data from proliferating and senescent MEFs RNA-Seq data. (A) β-gal staining of proliferating (P2) and senescent (P8) BALB/c
MEFs. Senescent MEFs presented β-gal staining positivity. (B, C) Volcano plots of differentially expressed genes (DEGs) of BALB/c (B) and C57 (C) MEFs. The red dots
stand for significant DEGs based on the thresholds, indicated by dotted lines. X-axis stands for log2(fold change) and y-axis stands for -log10(p-value). (D, E) Expression
patterns of senescent marker p16INK4a (D, left) and Lmnb1 (E, left), modified from the WashU epigenome browser [37]. The bar plots presented in RNA-Seq show the
quantification and differential analysis results of p16INK4a (D, right) and Lmnb1 (E, right). (F) Network of Cancer Genes (NCG) enrichments of significant terms in two
MEF datasets, indicated by different colours. X-axis stands for -log10(p-value). (G, H) KEGG enrichment results of BALB/c (G) and C57 (H) DEGs demonstrated the
interfaces of cellular senescence, DNA damage, cancers and their related pathways, as well as genes involved in the complex network. Links in different colours
connected different pathways and genes involved. We selected pathways related to senescence, DNA damage and cancers, to complete the figure. All pathways
presented were significantly enriched, with p-value<0.05.
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(Fig. 3(D)). This was the same case for the greenmodule, with 98
genes, which was also highly associated with patients’ survival
time and vital status (Fig. 3(D)). These results revealed two gene
modules associated with survivals, one of which was associated
with PDAC histologic grade.

Identifying regulatory transcription factors in PDAC

We next obtained high-throughput ATAC-Seq data of pancrea-
tic control and cancer samples from SRP102442 (GSE97008)
[41] to elucidate potential transcription factors (TFs) controlling
the gene modules. After aligning sequencing reads to the UCSC
human genome (hg38), we evaluated genome-wide differential
chromatin accessibility, either different accessible status or

differential accessible levels. We discovered a total of 95,782
differential open chromatin regions, with 4,604 (about 4.81%)
located at promoter-TSS regions (Fig. 4(A)). We then used the
HOMER known motif finding tool [42] and identified 314 TFs
potentially functioning in pancreatic cancer development with
p-value less than 0.05 (Fig. 4(B)), as exemplified by the top six
candidates (Fig. 4(C)). bZIP family proteins were identified as
essential roles, since the top nine candidates all belonged to the
bZIP family and had a highly conserved motif. Focusing on age-
dependent factors, we merged the common genes between
potential TFs and DEGs from either BALB/c or C57 MEFs,
and generated a significative list of 50 TFs (Fig. 4(D)). In addi-
tion, seven of these 50 factors were reported to be related to
PDAC grade (Figure S2) [43]. Of note, Klf5 was significantly

Figure 2. Characterization of TCGA RNA-Seq data of ‘young’ and ‘very old’ PDAC patients. (A) Volcano plots of differentially expressed genes (DEGs) of ‘young’ and
‘very old’ PDAC patients. X-axis stands for log2(fold change) and y-axis stands for -log10(p-value). The red dots represent significant DEGs based on the threshold
(p-value<0.05), indicated by dotted lines. The numbers revealed 533 upregulated genes and 382 downregulated genes in ‘very old’ PDAC patients. (B, C) Line plot (B)
and heatmap (C) exhibited the gradual expression changes of 915 differentially expressed genes in ‘young’ and ‘very old’ patients. Patients aged from 51 to 79 were
defined as ‘middle-aged’. For the 915 genes, average FPKMs from patients in three groups were normalized to z-scores. (D, E) Survival analysis of non-coding RNAs
AL139287.1 and AP001324.1. Low expressions of both non-coding RNAs are significantly associated with decreased survival probability.
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Figure 3. Weighted correlation network analysis of age-dependent DEGs in PDAC. (A) In WGCNA, soft threshold power was determined as the minimum value based
on a scale free topology fit index more than 0.85, which was 6 here. (B) Analysis of mean connectivity in WGCNA for different values. (C) DEGs were clustered into six
gene modules, indicated by different colours. Genes classified in one gene module had similar expression profiles. (D) Heatmap presentation of Pearson correlations
between gene modules and clinical traits. In the clinical traits, age stands for age at initial pathologic diagnosis, gender stands for demographic gender, survival time
stands for days to death of patients, tumour stage stands for tumour stages (e.g. I, II, III, and IV) in diagnoses, histologic grade stands for neoplasm histologic grade
(e.g. G1, G2, G3, and G4), and vital status stands for patients’ survival status.
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downregulated (Fig. 4(E)), and Foxa1 was upregulated in senes-
cent MEFs (Fig. 4(F)), indicating their age-dependent functions
in PDAC development. In addition to the known TFs, new
factors also appeared as promising age-dependent regulators
associated with pancreatic cancer.

Identifying potential targets of TFs in PDAC

UsingChIP-Seq data from the CistromeDB, we found thatKLF5
and FOXA1 bound at no less than 70% of the above mentioned
blue and green module genes (KLF5: 70%, FOXA1: 72%), sug-
gesting their direct regulation of the targets (Fig. 5(A,B)).We also
checked two new factors in PDAC,MAFK and ETS1. We found
thatMAFK bound at over 90% and ETS1 bound at about 38% of
the two module genes (Figure S3). As shown in these figures, the
blue links demonstrated connections between TFs and their
targets in both modules.

To obtain conserved and consistent targets, we merged the
common genes of each gene module andMEFDEGs, generating
a set of 33 genes (Fig. 5(C)). Survival analysis indicated that
expression levels of eight of the 33 genes (PDE5A, RASSF4,
PLXDC1, TEAD2, MID1, EGR2, PCNA, and SCRN3) influenced
patients’ survival with p-values less than 0.1 (Fig. 5(D–K)). The
results demonstrated that these specific genes, targeted by reg-
ulatory TFs (e.g. KLF5, FOXA1), had essential roles in PDAC
developments and affected patients’ survival.

KLF5 regulates potential age-dependent targets in PDAC

To further confirm that the candidate genes and non-coding
RNAs are age-dependent, we collected and analysed RNA-Seq
data from replicative senescence and various induced senes-
cence. Fold changes of each candidate demonstrated their
consistent differential expressions in various types of

Figure 4. Characterization of ATAC-Seq and age-dependent transcription factors (TFs). (A) Classifications of differential accessible chromatin regions in pancreatic
cancer. Different colours stand for different signatures, and NA’s stood for peaks that couldn’t be recognized as the above signatures. (B) Identified TFs and their motif
coverage. X-axis stands for the percentage of target sequences with motif and y-axis stands for -log10(p-value). (C) Presentation of top six significant TFs and their
motifs. (D) Venn plot illustrating the common parts of identified TFs and MEF DEGs, as age-dependent TFs, potentially functioning in both cellular senescence and
pancreatic cancer. (E, F) Differential expressions of Klf5 (E) and Foxa1 (F), two TFs in the common parts in D. Klf5 was significantly downregulated and Foxa1 was
significantly upregulated in senescent MEFs.
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Figure 5. Targets identification of transcription factors (TFs) in pancreatic cancer and corresponding survival analyses. (A, B) ChIP-Seq binding sites presentations of
KLF5 (A) and FOXA1 (B) in pancreatic CFPAC1 cell. The outermost circle is chromosome information, and besides lines and names are the two module genes. The red
circle represents ChIP-Seq binding sites, and the inner black circle represents two module genes’ locations. The blue links are connections between TFs and their
targets in both modules. The red links connected their targets on the same chromosome. (C) Common parts of two module genes and MEF DEGs. Four groups of
genes below were divided into several sub-groups, indicated by black dots in the same row. Y-axis stands for the total gene number, the number above the bar plots
stands for gene number of corresponding sub-groups, black dot stands for a single sub-group, and black line links the sub-groups for further investigations. We
merged the sub-groups of genes indicated in red, a total of 33 genes. (D-K) Survival analyses illustrate eight of the 33 common genes were associated with survival
probability. P-value is indicated in corresponding figures.
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senescence (Fig. 6(A)). MID1, TEAD2 and PCNA were sig-
nificantly downregulated in many types of senescence, while
RASSF4 and EGR2 were significantly upregulated (Fig. 6(A)).
Expressions of the two candidate lncRNAs (AL139287.1 and
AP001324.1) also changed significantly in different types of
senescence (Fig. 6(A)). These results support their age-
dependent roles in senescence processes.

We further applied KLF5 knocking down (KD) data to
further validate the regulation of KLF5 on expressions of
these candidates. RNA-Seq data of KLF5 KD from
GSE88977 [44] revealed that PCNA was significantly down-
regulated, while TEAD2, EGR2, and PDE5A were up-
regulated when KLF5 was knocked down (Fig. 6(B–F)).
These results strongly suggest that, KLF5 directly regulated
the expressions of these candidates, further functioning in
senescence and PDAC progressions.

We next applied Gene ontology (GO) and KEGG pathway
enrichments to analyse the total number of DEGs triggered by
KLF5 KD. Results indicated that these DEGs were involved in
senescence processes, DNA damage-related pathways and
cancer pathways, indicating that KLF5 might not only func-
tion in cancers, but also be an essential factor in DNA damage
processes linking senescence and cancers (Fig. 6(G,H)).

Validating potential targets of TFs in PDAC

Based on the Human Protein Atlas (HPA) database, immu-
nohistochemistry (IHC) staining results were employed to
validate the protein levels of the above identified candidate
genes in normal and pancreatic cancer samples [45,46]. The
HPA database classified the IHC staining as four grades: high,
medium, low and not detected. For visualization, we respec-
tively scored these grades as 3, 2, 1 and 0. For validation,
PDE5A was downregulated in pancreatic cancer (Fig. 7(A)),
relatively consistent with the decreased survival identified in
patients with low PDE5A expression (Fig. 5(E)). Furthermore,
staining positivity of PDE5A decreased in ‘very old’ pancreatic
cancer patients (Fig. 7(B)), consistent with its downregulation
in ‘very old’ PDAC patients identified in TCGA data. Beyond
that, PCNA exhibited opposite changes, manifesting increased
expression both in pancreatic cancer (Fig. 7(C)) and in ‘very
old’ PDAC patients (Fig. 7(D)). Then we presented four
representative figures of PDE5A (Fig. 7(E–H)) from the
HPA database [45,46], as original data of statistical differ-
ences. The data taken together demonstrate that these candi-
dates may be promising linker genes between cellular
senescence and pancreatic cancer, which positively influences
the survival probability of PDAC patients.

AL139287.1 and PDE5A function in pancreatic cancer and
senescence

To address their regulatory functions, we next knocked down
and overexpressed AL139287.1 and PDE5A in Panc1 cells.
After knocking down AL139287.1 in Panc1, we checked expres-
sion levels of senescence, proliferation, and pancreatic cancer
markers (Fig. 8(A)). LMNB1 was upregulated, and PCNA,
a proliferation marker, was also upregulated (Fig. 8(A)).
RAD51, whose overexpression contributed to pancreatic cancer

developments, was upregulated after knocking down
AL139287.1 (Fig. 8(A)). MSLN and VEGFA, both highly
expressed in cancers, were upregulated after knocking down
AL139287.1 (Fig. 8(A)). Differential expressions of these mar-
kers were consistent with the survival analysis showing that
patients with low levels of AL139287.1 had lower overall survi-
val rates. Furthermore, P53 and P21, both senescence markers,
were upregulated (Fig. 8(A)), consistent with the differential
results that AL139287.1 was downregulated in very old patients.
Contrarily, AL139287.1 overexpression exhibited opposite
effects on the differential expression of LMNB1, RAD51,
PCNA, and P21 (Fig. 8(B,C)). In addition to these changes,
HIF1A and WNT7B, both upregulated in pancreatic cancer,
were downregulated (Fig. 8(C)). Besides AL139287.1, after
knocking down PDE5A in Panc1, PCNA, CCND1, and
MKI67 were upregulated (Fig. 8(D)), indicating increased pro-
liferative potential. SMAD4, a tumour suppressor gene, was
upregulated after PDE5A KD, while WNT7B, which was highly
expressed in PDAC cell line, was downregulated (Fig. 8(D)).

We also applied CCK-8 assay to AL139287.1 and PDE5A
KD in Panc1 (Fig. 8(E)) and BxPC3 cells (Fig. 8(F)). Knocking
down AL139287.1 significantly decreased cellular proliferation
in both cells 96 hours after siRNA transfection (Fig. 8(E,F)).
Knocking down PDE5A decreased cellular proliferation in
Panc1, while increased cellular proliferation in BxPC3 cells
about 96 hours after siRNA transfection.

Discussion

To unravel the relationship between cellular senescence and
cancers, we evaluated the possible roles of DEGs in senescent
MEFs. Enrichment analyses revealed that these DEGs parti-
cipated in a complicated network of senescence and cancers,
including pancreatic cancer. Focusing on PDAC, we identi-
fied 915 DEGs in ‘very old’ PDAC patients, including differ-
ential non-coding RNAs and mRNAs. Among the
dysregulated non-coding RNAs, AL139287.1 and
AP001324.1 significantly influenced patients’ survival.
Moreover, in the WGCNA and survival analysis, we eluci-
dated eight age-dependent protein coding genes as highly
essential regulatory elements. Further integrating ATAC-Seq
and ChIP-Seq data, we confirmed KLF5 and FOXA1 as their
upstream TFs. We next confirmed their age-dependent roles
in various types of senescence and their dysregulation in
KLF5 KD data. In total, we established that eight protein
coding genes and two non-coding RNAs as age-dependent
essential elements in linking cellular senescence and pan-
creatic cancer and influencing survival rates, thus serving
as potential diagnostic and prognostic indicators.

Analysis of MEF cells replicative senescence data provided
a hint that parts of age-dependent DEGs were significantly
involved in the pancreatic cancer network. This result implied
a potential link between senescence and pancreatic cancer,
encouraging us to further focus on the roles of age-
dependent DEGs in pancreatic cancer with human TCGA
data. Moreover, the DEGs in MEF cells were overlapped
with those in pancreatic cancer (Figure S5A). DEGs in pan-
creatic cancer shared 53 genes with BALB/c MEF DEGs and
68 genes with C57 MEF DEGs (Figure S5A).
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Figure 6. Expression profiles of candidates in cellular senescence and KLF5 KD data. (A) Expression validations of 10 candidates (8 coding genes and 2 non-coding
RNAs) in various senescence. X-axis stands for various senescence data, publicly available, and y-axis stands for 10 candidates. Pink is upregulation in senescent cells,
while green is downregulation in senescent cells. (B) Expression validations of candidates significantly changed in KLF5 KD data. Expression levels were normalized to
z-scores, indicated by scale bar. Pink label stands for upregulation in KLF5 KD data, while green label stands for downregulation in KLF5 KD data. (C-F) Expression
comparisons of PDE5A (C), TEAD2 (D), PCNA (E) and EGR2 (F) in KLF5 KD data. (G, H) KEGG pathway enrichments (G) and Gene ontology biological process enrichments
(H) of differentially expressed genes in KLF5 KD data. We selected pathways related to senescence, DNA damage and cancers, to complete the figure. All terms are
significantly enriched, with p-value<0.05. X-axis stands for -log10(p-value) and y-axis stands for enriched terms. Different colours of dots stand for different
significances, and different sizes of dots stand for different ratios of enriched genes to all genes in corresponding terms.
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Among the candidates, PDE5A was upregulated in senes-
cent MEFs (Figure S4A), while it was downregulated in ‘very
old’ PDAC patients (Figure S4B). We hypothesized that this
phenomenon was mainly due to the decreased expression
levels in pancreatic cancer. Thus, the decreased expression
of PDE5A triggered by pancreatic cancer may potently reverse
its upregulation triggered by senescence to a very low level in
‘very old’ PDAC patients. Moreover, this opposite effect also
occurred on PCNA, MID1, and RASSF4.

In the knockdown experiments of AL139287.1, the cellular
system maintained a dynamic balance between senescence
and pancreatic cancer. AL139287.1 was downregulated in
very old PDAC patients in TCGA data (Figure S4C).
Knocking down this lncRNA in Panc1 cells triggered changes
in senescent markers towards senescence, e.g. increased P53
and increased P21, consistent with its downregulation in very
old PDAC patients. Meanwhile, low levels of AL139287.1 were
significantly associated with low survivals in PDAC patients.
Knocking down AL139287.1 induced some changes in mar-
kers towards increased proliferations in pancreatic cancer, e.g.
increased PCNA, increased RAD51, and increased MSLN,
contributing to death from cancer. AL139287.1 overexpres-
sion triggered the inverse changes in expression, e.g.
decreased P21, decreased PCNA, decreased RAD51, and
decreased LMNB1. Thus, we hypothesized cells maintained
a dynamic system to cope with the balance between senes-
cence and pancreatic cancer.

Among the predicted TFs from ATAC-Seq, AP1 ranked
at the top place. Indeed, AP1 was previously reported to
rank first among the enriched motifs at enhancer ele-
ments, which played indispensable roles in pancreatic

cancer progression [47]. Moreover, FOXA1 acted as
a key factor to promote the enhancer activation and
cancer metastasis [47]. In addition, AP1 phosphorylation
played an essential role in pancreatic cancer [48]. These
studies provided deeper insights into pancreatic cancer
pathogenesis, which would be a great follow-up study in
the near future.

At the interface of cellular senescence and cancer, DNA
damage is thought to be one of the pivotal linkers [49]. DNA
damage accumulation and decreased capacity for DNA repair
could trigger progressive impairments of functions and ageing
[50], as well as increase the risk of cancer [49]. Eliminating
DNA damage could, however, delay both cancer development
and the ageing process [49]. In our enrichments of MEF
DEGs (Fig. 1(G,H)), cellular senescence, DNA damage and
cancer pathways interaction, supported the belief that DNA
damage is a potential linker between senescence and cancer.
In addition to influencing cellular senescence and cancer-
related pathways, knocking down KLF5 also affected DNA
damage and repair processes (Fig. 6(G,H)). In addition, pre-
vious research has shown that a prolonged or deregulated
SASP, secreted by senescent cells, could promote tumorigen-
esis, since senescence is a proinflammatory process [33,34]. In
our results, inflammatory pathways appeared as an effector
(Figs. 1(G,H) and 6(G,H)). Overall, we provided evidences
supporting these views at the transcriptional and post-
transcriptional level.

In addition, colorectal cancer and cholangiocarcinoma
were also inclined to behave in age-dependent manners
(Fig. 1(F)). VEGFR2 signalling was reported to prevent
colorectal cancer senescence to promote tumorigenesis in

Figure 7. Immunohistochemistry (IHC) quantification results of candidate genes from the Human Protein Atlas (HPA) database. (A) Visualization of PDE5A IHC
positivity in normal tissues and pancreatic cancers. The HPA database classified the IHC staining as four grades: high, medium, low and not detected. For visualization,
we separately scored these grades as 3, 2, 1, and 0. Y-axis stands for scores and x-axis stands for normal tissues and cancers. The significance was tested with Fisher’s
exact test. (B) Average population ages of different PDE5A expression levels. Y-axis stands for ages and x-axis stands for IHC staining grades. The significance was
tested with Fisher’s exact test. (C) Visualization of PCNA IHC positivity in normal tissues and pancreatic cancers. (D) Average population ages of different PCNA
expression levels. (E-H) Four representative IHC staining figures of PDE5A from HPA database. * p-value<0.05, ** p-value<0.01, *** p-value<0.001 by Fisher’ exact test.
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mice and inhibition of VEGFR2 signalling induced color-
ectal cancer cell senescence of both human and mouse
[51]. We believe these results will shed light on future
research regarding the cellular senescence and cancers, as
well as pivotal regulatory coding and non-coding factors.

Materials and methods

Cell isolation and cell culture

We selected 12.5-day pregnant BALB/c and C57 mice as
donors; primary MEFs were isolated from the embryos. The

Figure 8. PDE5A and AL139287.1 expression affected pancreatic cancer cell proliferation and senescence. (A) Knocking down AL139287.1 in Panc1 cells affected the
expressions of proliferation markers (PCNA), pancreatic cancer markers (RAD51, MSLN, VEGFA, and HGFR), and senescence markers (LMNB1, P53, and P21). X-axis stands
for different markers and y-axis stands for fold changes. (B, C) Overexpressing AL139287.1 in Panc1 cells (B) affected the expressions of proliferation markers (PCNA),
pancreatic cancer markers (RAD51, HIF1A, WNT7B, and GLUT1), and senescence markers (LMNB1 and P21, C). X-axis stands for different markers and y-axis stands for
fold changes. (D) Knocking down PDE5A in Panc1 cells affected the expressions of proliferation markers (PCNA, CCND1, and MKI67), pancreatic cancer markers (SMAD4
and WNT7B), and senescence markers (P53). X-axis stands for different markers and y-axis stands for fold changes. (E, F) CCK8-assay tested the cell viability and
proliferation after knocking down PDE5A and AL139287.1 in Panc1 cells (E) and BxPC3 cells (F). X-axis stands for time after siRNA transfection and y-axis stands for
OD450 values. Knocking down PDE5A decreased cellular proliferation in Panc1, while increased cellular proliferation in BxPC3 cells about 96 hours after siRNA
transfection. Knocking down AL139287.1 significantly decreased cellular proliferation in both cells 96 hours after siRNA transfection. * p-value<0.05, ** p-value<0.01,
*** p-value<0.001 by Students’ t-test.
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medium used to culture MEF cells was DMEM (GIBCO)
supplemented with 10% FBS (foetal bovine serum; GIBCO)
and 1% penicillin/streptomycin (GIBCO). Cell culture condi-
tions included a humidified 37°C incubator with 5% CO2. In
order to obtain replicative senescent MEF cells, we in vitro
sub-cultured MEF cells for more than eight passages. Every
time we plated the same amount of MEF cells (1.2x10e6) into
100-mm dishes every 3 days until the cells stopped proliferat-
ing and we finally got senescent MEF cells. Senescence-
associated β-galactosidase activities in MEF cells were assessed
using a detection kit (Beyotime Biotech), following the man-
ufacturer’s protocol.

Panc1 cells followed the same culture conditions as MEFs.
BxPC3 followed the same culture conditions except 1640 med-
ium (GIBCO). CCK8-assay was assessed using a detection kit
(Vazyme).

RNA isolation and high-throughput sequencing

Total RNA of proliferating and senescent MEF cells was
extracted using TRIzol Reagent (Ambion) following the man-
ufacturer’s protocol. For RNA-Seq, rRNAs were removed by
rRNA probes from total RNAs, and remaining RNAs were
used to construct sequencing libraries. Libraries were gener-
ated following the Illumina protocol for preparing samples for
sequencing of mRNA and lncRNAs. After library construc-
tion, library quality was assessed on the Agilent Bioanalyzer
2100 and sequenced on the HiSeq 4000 platform. Sequencing
was performed at GENEWIZ (Suzhou) and Novogene
(Tianjin). The accession number for the sequencing data in
this paper is BIG data center: CRA002300.

Data processing and identifying DEGs

For MEF RNA-Seq data, the raw reads were trimmed by
removing Illumina adapter sequences and low-quality bases.
Clean reads were mapped to the reference genome mm10
using hisat2 [52,53] with default parameters. Quantifications
of gene expression were performed using stringtie [53,54]. For
identifying DEGs, we first filtered out genes with TPM less
than 1 in half of the samples, and differential analyses were
performed with edgeR [55,56] in R environment [57]. Genes
with p-value less than 0.05 and abs(log2(Fold change)) more
than 1 were considered significant.

For the collected RNA-Seq data of human senescence,
sequencing reads were processed following the same proce-
dures and mapped to human genome hg38. Genes with
p-value less than 0.05 were considered significant.

For TCGA RNA-Seq data, quantifications from patients
younger than 50 or older than 80 were considered, and read
counts were processed in edgeR [55,56] for differential analysis.
Genes with p-value less than 0.05 were considered significant.

Gene ontology and KEGG pathway enrichment analysis

Gene ontology and KEGG pathway enrichments were per-
formed with the geneSCF command line tool [38]. In the
enrichment figure demonstrations, we selected biological pro-
cesses or pathways associated with cellular senescence, DNA

damage and cancers, to complete the figure, since there were
many GO terms or pathways involved. GO terms or pathways
with p-value less than 0.05 were considered significant.

ATAC-Seq and ChIP-Seq data processing

For ATAC-Seq data, Bowtie2 (v2.3.4.3) [58] was use
d to align reads to reference human genome hg38 with

default parameters. Peak calling was performed with MACS2
(v2.1.2) [59] with default parameters. For discovering differ-
ential peaks, reads mapped to each peak were counted with
featureCounts [60], and processed in edgeR [55,56].

For ChIP-Seq data, the peak files and targets were directly
downloaded from the Cistrome data browser [61,62]. Targets
were identified based on corresponding gene score no less
than 0.2 in the downloaded files.

Identification of transcription factor binding site motifs

All differential ATAC-Seq peaks were extracted to perform
motif analyses using the HOMER motif finding tool with
default parameters [42]. Motifs with p-value less than 0.05
were considered significant.

Weighted correlation network construction

DEGs from ‘young’ and ‘very old’ PDAC patients were used for
weighted correlation network construction withWGCNA pack-
age [40] in R environment [57]. In network construction, with
a power β (soft thresholding), aij = |cor(xi, xj)|

β represents the
adjacency of an unsigned network, and emphasizes high correla-
tions. βwas chosen based on the criterion of R-squaremore than
0.85 and mean connectivity less than 100. The network was
constructed according to a minimum module size of 30 genes.
Highly interconnected genes are clustered in one gene module.
To obtain gene modules associated with clinical traits, correla-
tions between gene modules and traits were calculated and
displayed with pheatmap package [63] in R [57].

Survival analysis

The clinical data for survival analyses were downloaded from
UCSC Xena TCGA GDC hub. Survival analyses were per-
formed with the survival package [64]. Cut-Off thresholds
were conducted with Q1 versus Q4 quartile for high and
low expression groups of various coding genes and non-
coding RNAs and plots were proceeded with survminer pack-
age [65] in R environment [57].

Data collection

We downloaded expression profiles and clinical traits data of
human pancreatic cancer from UCSC Xena TCGA GDC hub
(https://xenabrowser.net/datapages/), screening from clinic
information of 187 PDAC patients’ data for further analyses.
The ATAC-Seq datasets from SRP102442 (GSE97008) [41],
including one pancreatic control sample and two pancreatic
cancer samples, were downloaded from the EBI (European
Bioinformatics Institute) database (https://www.ebi.ac.uk/).
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For KLF5 and FOXA1 ChIP-Seq data, the peak files and
targets were downloaded from the Cistrome data browser
(http://cistrome.org/db/) [61,62]. The immunohistochemistry
(IHC) staining data were downloaded from the human pro-
tein atlas database (https://www.proteinatlas.org/) [45,46].
Replicative senescence datasets GSE74324 (IMR90) [66],
GSE63577 (IMR90, WI38 and BJ) [67,68] and GSE53356
(IMR90) [69] were employed for senescent validations. Ras-
induced senescence datasets GSE61130 [70] and various other
induced senescence datasets (GSE74620 [71] and GSE60340
[72]) were also used for verifying candidate gene expressions
in senescence, while GSE60340 [72] included replicative
senescence as well. The KLF5 KD dataset GSE88977 [44]
was utilized to confirm its regulatory relationship to candi-
dates. All these datasets were downloaded from GEO (https://
www.ncbi.nlm.nih.gov/geo/) unless otherwise specified.
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