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G E O P H Y S I C S

Climate controls on erosion in tectonically 
active landscapes
B. A. Adams1*, K. X. Whipple2, A. M. Forte3, A. M. Heimsath2, K. V. Hodges2

The ongoing debate about the nature of coupling between climate and tectonics in mountain ranges derives, in 
part, from an imperfect understanding of how topography, climate, erosion, and rock uplift are interrelated. Here, 
we demonstrate that erosion rate is nonlinearly related to fluvial relief with a proportionality set by mean annual 
rainfall. These relationships can be quantified for tectonically active landscapes, and calculations based on them 
enable estimation of erosion where observations are lacking. Tests of the predictive power of this relationship in 
the Himalaya, where erosion is well constrained, affirm the value of our approach. Our model allows estimation of 
erosion rates in fluvial landscapes using readily available datasets, and the underlying relationship between erosion 
and rainfall offers the promise of a deeper understanding of how climate and tectonic evolution affect erosion 
and topography in space and time and of the potential influence of climate on tectonics.

INTRODUCTION
The capacity of climate to influence tectonics has been of growing 
interest for over a century (1), but the debate has intensified recently 
as datasets and models designed to test this relationship have emerged. 
While it is easy to appreciate how rising mountain peaks might af-
fect local climate and atmospheric circulation, the processes by which 
climate might influence rock uplift are less intuitive. Can climate-
driven erosion trigger enhanced rock uplift via a combination of 
isostasy, changes in crustal rheology, and evolution of fault-system 
dynamics (2)? Before answering such questions, the fundamental 
connection between climate and erosion must be established.

The nature of correlations among climate, topography, and erosion 
rate is central to resolving the elusive question of whether climate 
and tectonics are dynamically coupled (3–5). Given the broad im-
plications and fundamental nature of this problem, studies with a 
range of approaches and scope have been carried out. While global 
studies have provided important insights, they have not demon-
strated a dependence of erosion rate on rainfall conclusively due to 
many covarying and potentially confounding variables that could not 
be isolated (6–8). Ferrier et al. (9) removed most of these confound-
ing issues by focusing on the Hawaiian island of Kaua’i. However, 
they also removed the landscape controls associated with active rock 
uplift in doing so. This may be problematic because nonlinearities 
associated with thresholds of erosion and bedload transportation in-
teracting with the stochastic distribution of storms are critical to the 
link between climate and erosion (5). The findings in Ferrier et al. 
(9) imply that erosion is linearly related to fluvial relief and nonlinearly 
related to rainfall, but global compilations suggest that erosion is non-
linearly related to fluvial relief with no clear dependence on rainfall 
(6, 10). This disparity implies the need for a different approach to 
exploring how climate influences the relationship between erosion 
rate and topography and, therefore, potentially tectonics.

This study complements and improves upon previous work by 
combining the range of relief, rainfall, and erosion rates usually found 
only in a global study with the careful curation of data to ensure that 

only truly comparable, quasi-equilibrium catchments are considered 
that is usually only possible in local studies. We do not separate the 
data by author or study, only by attributes of the catchments. We 
begin by showing clear relationships among observations of rain-
fall, fluvial relief, and erosion that are consistent with, but indepen-
dent of, river incision theory. We then demonstrate how well these 
observations are described by the familiar stream-power model (11). 
We find that the relationship between fluvial relief and erosion rate 
is nonlinear, but linearly modulated by mean annual rainfall. The 
observed nonlinear relationship between erosion and fluvial relief 
has substantial implications for the strength of coupling between 
climate and tectonics around the globe and is consistent with the 
expected influence of erosion thresholds interacting with a stochas-
tic distribution of floods, two factors that are ubiquitous in nature.

Observations from the Himalaya
To circumvent possible confounding factors in global studies, we 
compile a large but carefully curated dataset of new and published 
erosion rates from a single mountain range. Our compilation is re-
stricted to catchments in tectonically active settings with morphologies 
suggestive of spatially uniform erosion rates. Selected catchments 
have drainage areas >9 km2 [to ensure thorough sediment mixing 
(12)] and are free of substantial glacial influence. They exhibit a wide 
range of fluvial relief but a narrow range of rock properties. Rainfall 
varies widely among the catchments. This is the largest dataset 
compiled to date (N = 142) that includes only truly comparable, 
quasi-equilibrium catchments (here defined as river networks whose 
channel profiles are well graded, implying that they do not record 
any temporal or spatial changes in erosion rate).

We focus on testing the sensitivity of the relationship between 
fluvial relief and erosion rate to spatially variable climate in the Bhutan 
Himalaya, which has quickly become one of the most densely sam-
pled mountain ranges for detrital cosmogenic nuclide erosion rates 
(Fig. 1A) (13–15). We have focused on this region because of the 
abundance of erosion rates from quasi-equilibrium basins where a 
broad range of erosion rates and rainfall rates is sampled across a 
broad spectrum of fluvial relief. New (see table S1) and previously 
published erosion rates from quasi-equilibrium, unglaciated catch-
ments in Bhutan range between 22 and 3670 m My−1 (Fig. 1A) (13–15). 
Mean annual rainfall (R) ranges between 0.72 and 5.9 m year−1 

1School of Earth Sciences, University of Bristol, Bristol, UK. 2School of Earth and 
Space Exploration, Arizona State University, Tempe, AZ, USA. 3Department of Geology 
and Geophysics, Louisiana State University, Baton Rouge, LA, USA.
*Corresponding author. Email: byron.adams@bristol.ac.uk

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).



Adams et al., Sci. Adv. 2020; 6 : eaaz3166     16 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 10

(Fig. 1B) within these catchments. The highest rainfall rates, however, 
only occur in a narrow band near the foreland of the range. Most of 
Bhutan (including most of our sample locations; fig. S1) receives less 
than 2 m year−1 of rainfall annually. To more evenly sample across 
the range of mean annual rainfall, we also incorporate samples from 
central-eastern Nepal, which brings to the dataset more samples 
from high rainfall areas (0.99 to 4.2 m year−1) that span a wide range 
of relief and erosion rates (69 to 2122 m My−1) (16–18). Our aim for 
incorporating these data in our analysis is to achieve greater data 
diversity—rivaling that of previous global studies—while preserving 
the ability to firmly constrain key variables in a manner only possi-
ble in a local study. With this dataset, we can test the null hypothesis 
of a single relationship between topographic relief and erosion, which 
would predict that variable rainfall rates across the region would 
have little or no influence on erosion rates.

River incision theory
To assess the influence of rainfall on the relationship between fluvial 
relief and erosion rates, we build on the classical stream-power river 
incision model, which can be written in terms of drainage area or 
discharge (11, 19)

	​ E =  K • ​A​​ m​ • ​S​​ n​​	 (1a)

	​ E = ​ K​ lp​​ • ​Q​​ m​ • ​S​​ n​​	 (1b)

	​ K = ​ K​ lp​​ • ​R​​ m​​	 (1c)

where E is the erosion rate (m year−1); K (units depend on m, when 
m = 1, the units are m−1 year−1) is the coefficient of erosion, often 
referred to as erosional efficiency, which encapsulates the influence 
of environmental conditions such as climate, lithology, and incision 
process (e.g., abrasion and plucking) (19); A is the drainage area (m2); 
R (m year−1) is the rainfall rate averaged over A; Q is the stream 
discharge (A•R, m3 year−1); S is the channel slope (dimensionless); 
and m and n are dimensionless constants related to channel incision 
processes, hydraulic geometry, basin hydrology, and runoff variabil-
ity (11, 19, 20). m is the same in Eqs. 1a and 1b because the relation-
ship between Q and A is assumed to be linear. Klp is a coefficient 
(m−2, for m = 1) that encompasses the effects of bedrock erodibility, 
channel geometry and roughness, incision process, and sediment 
flux but is independent of climate. The influence of mean annual 
rainfall, often subsumed by K (Eq. 1a), is treated explicitly in Eqs. 1b 
and 1c.

In quasi-equilibrium landscapes, stream-power model predictions 
match the empirical observation that erosion rates scale as a power 
function of channel slope and drainage area (21), and channel slopes 
are inversely related to drainage area (22, 23). When local channel 
slopes are normalized for the nonlinear, downstream increase in 
drainage area, the resulting metric, normalized channel steepness 
(ksn, m0.9) allows the comparison of the relief of river channel re-
gardless of the magnitude of the areas they drain

	​​ k​ sn​​ = ​ A​​ ​ • S​	 (2)

where  is a dimensionless constant that measures the concavity of 
a longitudinal river profile (22, 23). We find that  = 0.45 describes 
the concavity of quasi-equilibrium river channels in Bhutan based 
on regressions of slope-area data (24); similar values have been used 
in Nepal (18).

Channel steepness is a robust, purely geometric measure for un-
derstanding the importance of spatial changes in channel slope, or 
channel relief, that can be measured without a priori knowledge of 
specific climate, lithology, or incision processes. Channel steepness 
can be calculated from topographic data where local channel slopes 
can be measured, and  can be estimated from regressions of S and 
A (25), or regressions of elevation and ∫A- (∫A- is referred to as ) 
(26). In quasi-equilibrium landscapes with spatially uniform lithol-
ogy, climate, and rock uplift conditions, plots of elevation and  are 
linear (see fig. S2), and the concavity is equal to the ratio of m and n 
from the stream-power model (i.e.,  = m/n) (19). Because discharge 
events are distributed in space and time, and the shear-stress thresh-
olds required to initiate sediment transport or detach bedrock from 
a river bed are large, a nonlinear relationship between erosion 
rate and channel steepness is expected under quasi-equilibrium 
conditions (10, 27), consistent with observations of river channels 
in tectonically active settings around the globe (6, 10, 27, 28).

The channel steepness index is measured from topographic data 
alone (Eq. 2) and carries no specific climatic information. To incor-
porate climatic data, we calculate a channel steepness metric based 
on a simple proxy for discharge (Q)—the product of drainage area 
and mean upstream rainfall (Eq. 1b) where

	​​ k​ sn​​ ‐q = ​ Q​​ ​ • S​	 (3)
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Fig. 1. Topography, erosion, and precipitation in the Bhutan Himalaya. (A) Digital 
elevation model overlaid by new and previously published cosmogenic nuclide, 
basin-averaged erosion rates (13–15). Black line denotes the border of Bhutan (see 
inset). (B) Mean annual rainfall (R) data (43) overlaid by channel steepness (ksn) data.
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The result is an enhanced channel steepness index we refer to as 
ksn-q (see Materials and Methods). Analogous methods have been used 
to calculate specific stream power and channel steepness (18, 29, 30). 
Our ksn-q metric is a scaled version of the well-known ksn metric; 
therefore, it has a similar response to spatial changes in slope and 
choice of  [see (31) for more discussion]. The calculation of ksn-q 
combines the robust, empirically based channel steepness metric 
(Eq. 2) with the process-based theory of the stream-power model 
(Eq. 1). This can also be seen by substituting Eqs. 2 and 3 into Eq. 1 
and solving for ksn and ksn-q to find

	​​ k​ sn​​ = ​ K​​ −1/n​ • ​E​​ 1/n​​	 (4a)

	​​ k​ sn​​ = ​ (​K​ lp​​ • ​R​​ m​)​​ −1/n​ • ​E​​ 1/n​​	 (4b)

	​​ k​ sn​​ − q = ​​ K​ lp​​​​ −1/n​ • ​E​​ 1/n​​	 (4c)

The theory surrounding the stream-power model and the chan-
nel steepness index makes a few important predictions. First, there 
need not be any correlation between climate metrics and erosion 
rates in quasi-equilibrium landscapes. On the basis of the definition 
of quasi-equilibrium (32), erosion rates will approximately equal 
rock uplift rates regardless of the local climate. In quasi-equilibrium 
landscapes with uniform rock uplift, any spatial variation in climate 
will instead be reflected in the topography (16, 33, 34). Therefore, 
provided uniform rock erodibility, and regardless of spatial varia-
tions in rock uplift rate, any influence of climate on erosion should 
be expressed in the relationship between topography (e.g., ksn) and 
erosion rate (5). The sensitivity of ksn − E relations to rainfall allows 
us to quantify the influence of climate and, thus, to test the predic-
tive capacity of the stream-power model. For example, if incorpo-
rating rainfall into the stream-power model (i.e., ksn-q) adequately 
captures the influence of climate, data collected across a wide range of 
topography, rock uplift rates, and rainfall sample data should collapse 
to a single ksn-q – E relationship, provided that other factors influencing 
K are invariant (i.e., a single value of Klp). The null hypothesis of a 
single relationship between topographic relief and erosion would 
predict that finding a clear ksn-q – E relationship would fail and that 
the ksn-q – E relationship would likely be more scattered than the 
ksn – E relationship.

To explore how channel steepness varies as a function of erosion 
rate, we regress observed data using a power-law relationship of the 
form (see Materials and Methods)

	​​ k​ sn​​ =  C • ​E​​ ​​	 (5)

where C is the power-law coefficient and  is the exponent. The form 
of Eq. 5 is consistent with findings around the world (6, 27, 28, 35) 
and is independent of, but consistent with, the stream-power model. 
All the information contained in Eq. 5 is purely geometric including 
the geometry of landscapes and the shape parameters of regression 
curves. However, by combining Eq. 5 with Eq. 4a, we can show that 
in terms of the stream-power model

	​ C = ​ K​​ −1/n​​	 (6)

	​  = ​ n​​ −1​​	 (7)

Thus, the results of our regression analysis are fundamentally 
linked to the physics of river incision and can be described by the 
stream-power model.

RESULTS
Statistical analysis of observations
As a first approach to assessing how channel steepness responds to 
variation in mean annual rainfall, while also accounting for spatial 
variation in erosion rates, we performed regressions on four rainfall 
bins with similar size and spacing (<1.5, 1.5 to 2.5, 2.5 to 3.5, 
and >3.5 m year−1) so as not to overinterpret how well the influence 
of rainfall on the erosion coefficient can be resolved and to ensure 
sufficient data in each bin (Fig. 2). In our regressions, C and  could 
both vary (Eq. 5), and we also performed regressions with a fixed  
(see table S2 for regression statistics). To assess the goodness of fit 
of our regressions to our observed data when the uncertainties in 
both variables are considered, we calculated the mean square weighted 
deviation (MSWD), where the MSWD ideally should be within the 
range 1 ± 2 (see Materials and Methods) (Fig. 2). While fixing  
may appear restrictive, doing so allows us to analyze comparable C 
values from different rainfall bins. In addition, we find that fixing  
to a reasonable value of n−1, where n = 2.2, produces slightly better 
fits to our observed data (i.e., lower MSWD). We suggest that this 
effect is created by the presence of outliers in our dataset, where a 
few anomalously high erosion rates can drive best-fit analyses to 
more nonlinear relationships when the exponent is a free parame-
ter. The C values found through regressions with fixed  values 
demonstrate that K increases with increasing mean annual rainfall, 
consistent with but independent of Eqs. 1a and 1c.

To explore the relationship between K and mean annual rainfall 
recorded in our observations more rigorously, without knowing 
how data would or should cluster, or introducing bias, we parsed 
our data into rainfall bins of varying size. We divided our sample 
mean annual rainfall range (0.72 to 5.9 m year−1) using 11 different 
bin sizes varying from 0.47 to 5.1 m year−1 (see Materials and Meth-
ods for details), yielding 66 different bins (Fig. 3), and performed a 
regression on each binned dataset. Figure 3 shows the comparison 
of K values based on the regressions of data in each rainfall bin (col-
ored circles) using a fixed n = 2.2 and Eq. 6. While scatter in the 
regression data is expected, K can mostly be described as a continu-
ous and near-linear function of rainfall as predicted by Eq. 1c, pro-
vided that there are enough data points in each bin. For this study, 
we require at least seven data points in each bin to consider the re-
sult robust. This is a conservative estimation designed to ensure ro-
bust regression results, but also to ensure that our results are not 
removing sparse, but vital information from the wetter bins. Some 
rainfall bins especially near the maximum rainfall values are much 
more variable due to the paucity of data at extreme rainfall values 
and the influence of possible outliers (see Fig. 2D). In small bins 
with centers above 4 m year−1, there are fewer samples in each bin, 
which resulted in poor regression fits due to small sample statistical 
issues. Be that as it may, our analysis demonstrates that based on 
observations alone, there is strong evidence that the erosional effi-
ciency of rivers and rainfall in the Himalaya are directly linked 
through an apparently linear relationship.

Figure 2 illustrates the difficulty in constraining n from simply 
regressing binned data, which is critical to understanding how K 
changes with R, as illustrated in Fig. 3. Furthermore, although the 
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regression results in Fig. 3 suggest m = 1, this analysis is for an as-
sumed n = 2.2 ( = 0.45) only. To find plausible and compatible 
regional values of n and m, as well as Klp, which is critical for under-
standing spatially variable K, we turn to the stream-power model.

Combining observations and the stream-power model
Combining our binning approach with the predictions of the stream-
power model provides a mechanism for constraining critical pa-

rameters of landscape evolution based on observations of natural 
landscapes and reduces the sensitivity of regression analysis to pos-
sible erroneous data (see Materials and Methods for more details). 
To calculate regional best-fit values of Klp, n, and m, we test a range 
of possible n values within our mean annual rainfall bin framework. 
For each value of n, we regress each of the 66 rainfall bins with the 
exponent fixed, yielding a K value for each bin (see fig. S3 for exam-
ples of n = 1, 2.2, and 3). For each set of 66 bins, we calculate a mean 
Klp from the bin regressions using Eq. 1c and a value of m = •n, 
where  = 0.45. With these possible Klp-n-m combinations, we use 
Eq. 4b to calculate predicted ksn values for our samples based on 
their observed E and R values. We take the regional best-fit param-
eter combination that minimizes the 2 statistic (see Materials and 
Methods) between observed and predicted ksn values (fig. S4): 
Klp = 2.2 × 10−9, n = 2.2, m = 1 (Fig. 3).

With our regional best-fit parameters, we calculated predicted 
ksn – E relationships using the stream-power model, where R was set 
to the rainfall bin center as a means of comparison with our regres-
sions (Fig. 2). We use the rainfall bin centers in the stream-power 
model in this calculation for simplicity. Figure 2 highlights that the 
predicted stream-power curves are close to the best-fit regression 
curves, and, in all cases, the stream-power model fits the data just as 
well as the regression (i.e., MSWD values are statistically indistin-
guishable). Figure 4A shows that these stream-power model curves 
predict most of the spread we observe in our dataset, suggesting that 
it can be explained by spatial changes in rainfall.
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DISCUSSION
How well does the stream-power model predict observed 
erosion rates?
Our data and analysis show that the relationship between channel 
steepness and erosion is nonlinear (quantified by n). This is consist
ent with the findings from global datasets (6, 10) and with the idea 
that thresholds of erosion and sediment transportation, as well as 
the stochastic distribution of storms, are critical to understanding 
the form and function of active mountain ranges and the possibility 
of climate-tectonic coupling. Our observations are, however, incon-
sistent with recent interpretations from Kaua’i (9), where data point 
to a linear relationship between fluvial relief and erosion rate. This 
disagreement may suggest a distinct set of controls on long-term 
river incision rates in tectonically active landscapes (i.e., the Hima-
laya), as compared to tectonically inactive landscapes (i.e., Hawai’i). 
Our findings suggest a strong limitation to the generality of the in-
terpretation that stream power is linearly related to erosion. More-
over, we find a linear, rather than sublinear, relation between rainfall 
and the coefficient of erosion, K.

Although the nonlinearity of the of ksn – E relationship is expected 
to depend on runoff variability (20) and there is an expected nega-
tive correlation between runoff variability and mean annual rainfall 

(36, 37), there is no evidence that n varies in a meaningful way as a 
function of rainfall in our dataset. This may not be unexpected be-
cause a recent study by Rossi et al. (37) shows that, in the contigu-
ous United States and Puerto Rico, the correlation between mean 
runoff and its variability is weak for mean annual rainfall above 
1.5 m year−1. Similarly, Scherler et al. (38) found minimal differences 
in runoff variability for Himalayan rivers across 800 km along strike 
of the range and spanning a range in mean annual rainfall of 1.5 to 
4 m year−1. This suggests that only the driest rainfall bin in Fig. 2A 
would be expected to have a measurably lower n value than the 
other rainfall bins (5, 38). However, the n value for our driest bin 
(<1.5 m year−1) in regressions with n as a free parameter is higher 
than other wetter bins, implying that n is not influenced by variabil-
ity, or the regression technique is too heavily influenced by scatter 
in the data including possible high-erosion rate outliers to be able to 
resolve an influence of enhanced discharge variability in more arid 
climates.

When n can vary in the wettest bin (Fig. 2D), the best-fit regres-
sion produces a highly unlikely relationship (n = 19 and K = 3 × 
10−46). This excessively nonlinear relationship is strongly influenced 
by a group of low-steepness, high-erosion samples. While these data 
have large uncertainties, they are likely accurate and corroborate 
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independent interpretations of high erosion in southwestern Bhutan 
as evidenced by very young ages of low-temperature thermo-
chronometers (39). It is possible that these low-relief, high-erosion 
landscapes may reflect a greater erodibility of rocks exposed in this 
part of Bhutan. A nearly sixfold increase in Klp (Klp = 1.2 × 10−8 m−2) 
would be required for the stream-power model to fit these data (fig. 
S5). Without more data from southwest Bhutan, it is not possible to 
rigorously test this idea.

When plotted together (Fig. 4A), the stream-power model curves 
from the four rainfall bins illustrate how rainfall can limit the chan-
nel steepness, and thus the overall relief of a mountain range, de-
spite vigorous rock uplift and commensurate erosion rates. The 
spread in these curves provides a good representation of the dis-
persion that we should expect to see in our dataset regardless of the 
possibility of outliers, or complications of lithology, but simply as a 
function of spatial rainfall variation. While a regression curve for 
the entire dataset can be calculated, this curve would be misleading 
because it mixes different populations of data with likely different 
ksn – E relationships. Although a stream-power model curve based 
on the median rainfall value lies very close to the regression of all 
data (Fig. 4A), using the regression results to perform a regional anal-
ysis of erosion based on channel steepness, n, and a single K value, 
assumes a homogenous rainfall rate across all landscapes (Fig. 4B, 
see Materials and Methods), which leads to erroneous predicted 
erosion rates where rainfall rates deviate from 1 m year−1. Figure 4B 
demonstrates that the null hypothesis that there is a single relation-
ship between topographic relief and erosion does not hold for our 
studied region of the Himalaya. We find instead that the relation-
ship is dependent on rainfall, and the effect of variable rainfall is 
reasonably accounted for by the coefficient of erosion.

Our finding that K increases monotonically with mean annual 
rainfall (Figs. 2 and 3) suggests that the influence of rainfall on ero-
sion rates could be effectively captured in ksn-q, the enhanced channel 
steepness metric based on a proxy for discharge rather than simply 
drainage area introduced above (Eq. 3). When ksn-q is plotted against 
observed erosion rates (Fig. 4C), the scatter in the data is much re-
duced, and the nonlinear relationships of individual rainfall bins 
converge toward the stream-power curve, which is a function only 
of our best-fit n and Klp parameters (Eq. 4c). Because it embeds the 
influence of mean annual rainfall, a predicted erosion rate map based 
on ksn-q (Fig. 4D) produces a more complete picture of the regional 
pattern of erosion as compared with the map generated using ksn 
(Fig. 4B). Predictions of erosion rates based on topography alone 
(i.e., interpreting a map of channel steepness) can lead to large 
over- and underestimations across a region with variable rainfall 
(fig. S6).

Implications of the erosion pattern inferred in the  
Bhutan Himalaya
If our analysis sufficiently accounts for the spatial influence of 
rainfall on erosion rates, our erosion rate map provides insight 
into the deformation of the eastern Himalaya, albeit with some im-
portant caveats. While our sampled river basins span a wide variety 
of rock types (40), we are unable to discern any effects of lithology 
within our analysis (see fig. S7). This implies, as others have sug-
gested, that there may be no fundamental difference in the erodibil-
ity of different Himalayan rocks (41) or tectonostratigraphic units 
(16), or that recovering the influence of rock type would require a 
more specific sampling strategy. Our erosion maps are produced 

using modern topography and rainfall, both of which have likely 
varied over time (14, 42)—at best, our map captures the pattern of 
modern erosion rates. Mean annual rainfall rates are based on cali-
brated remote sensing data averaging over 12 years (1998 to 2009) 
(43). The time scales recorded in the topography of the Himalaya 
and cosmogenic erosion rates are considerably longer. However, 
our landscapes do not record any perturbations that would indicate 
a climate change large enough to alter the topography or erosion 
rates, and thus, we conclude that the modern rainfall data are likely 
reflective of long-term patterns and coupled with our erosion and 
topographic observations.

We acknowledge that our analysis does not directly incorporate 
the influences of snowfall. Because the vast majority of precipitation 
in Bhutan arrives as rain in the summer monsoon season, and our 
basins are from lower-elevation, nonglaciated portions of the landscape, 
and only large floods exceed erosion and transport thresholds, 
we do not consider snow melt an important factor in controlling 
channel steepness. Our estimated erosion rates are not accurate in 
landscapes where glaciers have modified topography (see glacial 
landscapes in Fig. 4, B and D) in a manner that is not consistent 
with the stream-power model (44, 45), and erosion rates cannot be 
directly interpreted as reflecting modern rock uplift rates in land-
scapes that include transient signals of tectonic change (14, 46). 
However, once these transient landscapes are masked, leaving only 
quasi-equilibrium portions of the region, robust spatial patterns in 
the predicted erosion rates can be assessed and rock uplift rates can 
be inferred. Previous studies have suggested that basin-averaged 
erosion rates can reveal rock uplift patterns and, thus, underlying 
tectonic architecture in Bhutan (15). However, we assert here that 
such interpretations are only valid in quasi-equilibrium landscapes, 
and caution is warranted as large portions of Bhutan are in dis-
equilibrium, where erosion rates may be up to 10 times slower 
than rock uplift rates (14). While our maps are based on erosion 
rates with millennial-scale integration times, the observed patterns 
may have persisted for much longer. Given that most landscapes 
adjust to changes in erosion rate on million-year time scales (47), 
it is likely that our cosmogenically derived erosion rates reflect 
erosion rate patterns established and sustained on a million-year 
time scale.

The predicted erosion rates in Fig. 4D exhibit a notable change 
around 90°E near the range front (see inset). Because our erosion 
rates are roughly equal to rock uplift rates in our quasi-equilibrium 
landscapes, the exhibited dichotomy must be created by spatial changes 
in tectonic velocities. The two most likely mechanisms are a change 
in convergence rate or change in fault geometry associated with the 
Himalayan sole thrust. It is possible that convergence rates change 
across Bhutan because there is a transfer structure within the Indian 
plate whereby slip rates east of ~90°E have been reduced due to some 
accommodation of Indio-Eurasian convergence across the Shillong 
Plateau. Alternatively, a change in the dip of the Himalayan sole 
thrust where the dip is greater west of ~90°E (i.e., lateral ramp in 
the sole thrust) could create the same pattern without requiring a 
change in convergence rate in the Bhutanese Himalaya. Transfer 
structures between the Himalaya and the Shillong Plateau have 
been proposed (48, 49) based on geophysical evidence. Higher dip 
angles of the Himalayan sole thrust have been suggested in western 
Bhutan, as compared to eastern Bhutan, based on the inversion of 
low-temperature thermochronometers (50). However, our data cannot 
differentiate between these mechanisms, though it can accurately 
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demarcate the important transition zone, which is critical for future 
studies.

CONCLUSIONS
Our study of erosion rates in the Himalaya demonstrates that the 
stream-power model can be readily used to investigate the pattern 
in erosion rates when spatially variable, rainfall-dependent K values 
are incorporated into the analysis, and Klp, n, and m are well con-
strained, as done here for data in Bhutan and Nepal. Our findings 
are broadly consistent with the stochastic-threshold version of the 
stream-power river incision model that predicts a nonlinear (n > 1) 
relationship between erosion rate and channel steepness (10). The 
constraints our study places on the quantitative relationships be-
tween erosion, rainfall, and topography are fundamental to the in-
tegrated landscape evolution-mechanical models that are needed to 
thoroughly test the ideas of climate-tectonic coupling, and the thermo-
kinematic models that are used to test long-term exhumation/landscape 
evolution histories. More generally, the calculation of rainfall-
dependent K is critical for studying how a changing climate modi-
fies Earth’s surface and the time scales over which the modification 
occurs.

There are several fundamental implications of the observed rela-
tionship between erosional efficiency, erosion, and fluvial relief. 
Climate moderation of channel relief in Bhutan is strong enough to 
obfuscate the dominant signal of erosion and rock uplift, as recorded 
in the topography. Although Bhutan boasts the steepest mountain 
front along the Himalayan arc (51), these mountains would be con-
siderably steeper if not for the strength of the monsoon in Bhutan. 
Mountain ranges influenced by orographic precipitation patterns 
around the world likely experience the same effects. The coinci-
dence of high rainfall rates and high rock uplift rates within many 
mountain ranges, including the Himalaya, may explain the proposed 
global limit to channel steepness (8). We suggest that the paucity of 
channel steepness data above 300 m0.9 in Fig. 4A is not a limit of 
fluvial relief or response but simply shows the maximum values that 
can be achieved given the current rock strength, rock uplift rates, 
and rainfall rates in the region. While our findings are based on 
exploring observations of quasi-equilibrium landscapes, they can be 
used in transient solutions of the stream-power model such that 
changes in erosion and topography could be modeled in response to 
temporal changes in mean annual rainfall and rock uplift rates.

MATERIALS AND METHODS
10Be sample preparation
All samples were processed in the School of Earth and Space Explo-
ration at Arizona State University, Surface Processes WOMBAT 
Laboratory. Dried sediment samples were sieved to 250 to 1000 m 
and washed in tap water. Washed sediments were cleaned in a 1:1 solu-
tion of hydrochloric acid (HCl) and nitric acid (HNO3) at room 
temperature for at least 12 hours. Sediments were leached in a 5% 
hydrofluoric acid (HF) and HNO3 solution and rolled on heat for 
24 hours. Feldspars and micas were floated off using a wetting technique. 
Minerals denser than 2.85 g cm−3 were removed via lithium poly-
tungstate (LST) solution separation. During heavily liquid separation, 
water was added piecemeal to further separate target quartz from slightly 
denser and less dense lithic and nonquartz mineral fractions. During 
the quartz purification process, samples were leached at least five times 

with HF and HNO3 solutions on heated rollers. Each leach lasted 24 hours, 
and the final leach was for 7 days. Quartz separates were spiked with 
9Be and digested with HF and HNO3. We removed interfering cations 
and anions using liquid chromatography techniques. Oxidized beryllium 
was mixed with a matrix of niobium and loaded into cathodes for 
analysis on an accelerator mass spectrometer at PRIME Lab, Purdue 
University. Beryllium isotope ratios (table S2) were referenced to 
the isotope ratio standards described by Nishiizumi and others (52).

Basin-averaged erosion rate calculation
We follow the approach of Portenga and Bierman (7) to calculate 
basin-averaged erosion rates to capitalize on the protocols of the 
CRONUS online calculator (53). To accomplish this, we simplified 
the geometry of each basin to a single point by calculating an effec-
tive elevation, latitude, and longitude value of the entire basin. On 
the basis of the Shuttle Radar Topography Mission 30-m resolution 
digital elevation dataset, we calculated a scaled 10Be production rate 
based on the elevation and latitude of each pixel in each basin. To be 
internally consistent with the procedures of the CRONUS calcula-
tor, we calculated the production rate from spallation reactions us-
ing the scheme of Stone (54). We then calculated the mean of all 
total production rates within the basin and found the elevation and 
latitude values corresponding to this mean scaling factor, referred 
to here as the effective elevation and latitude of the basin. Effective 
latitude and elevation, centroid longitude, and calculated 10Be con-
centrations were entered into the CRONUS online calculator (ver-
sion 2.3, accessed April 2018), assuming no topographic shielding 
(55). For CRONUS calculations, the following inputs were used: 
elevation flag = std, thickness = 1 cm, density = 2.7 g cm−3, Be 
standard = 07KNSTD, and Al standard = KNSTD. Because our 
effective latitude and elevation calculations are not time dependent, 
we report output CRONUS erosion rates based on the constant pro-
duction rates determined by the models of Lal (56) and Stone (54) 
(table S2). We have recalculated erosion rates from previous studies 
in Bhutan and Nepal so that the rates in this study are internally 
consistent. However, we have not included samples from glaciated 
terrains, where drainage areas are less than 9 km2, or samples that 
were described as outliers by the authors of those studies to avoid 
the complication that these samples may represent in terms of 
quantifying erosion rates or topographic metrics.

Channel steepness (ksn and ksn-q) calculation
Quasi-equilibrium longitudinal river profiles often have a form set 
by a power-law relationship between channel slope and drainage 
area (Eq. 2). We find that  = 0.45 describes the concavity of quasi-
equilibrium river channels in Bhutan and Nepal based on regres-
sions of slope-area data (24), and thus, we used that value to normalize 
channel slope for the change in upstream drainage area—producing 
a normalized channel steepness (ksn). We made these calculations 
using TopoToolbox (57) and the TAK addon functions (58). To cal-
culate our discharge-based channel steepness (Eq. 3), ksn-q, we used 
TAK to weight A by the mean annual rainfall as estimated from the 
Tropical Rainfall Measuring Mission dataset (43). We calculated 
area- and discharge-based channel steepness values for all positions 
where the accumulation area is greater than 1 km2. To make the ksn 
(Fig. 1B) and ksn-q maps, we used the TAK tool with the “trunk” 
smoothing option and a 6-km smoothing window for channels of 
Strahler order 4 and higher. For orders 1 to 3, the average smooth-
ing length is dictated by tributary spacing and was 1.4 km.



Adams et al., Sci. Adv. 2020; 6 : eaaz3166     16 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 10

Regression calculations
To find the shape parameters for relationships between channel 
steepness and erosion rates, we carried out least-squares estima-
tions (59). It is commonplace to log-transform power-law related 
data to use a linear, least-squares regression. While this may be con-
venient for data without associated uncertainties, it can be problem-
atic for data with uncertainties, as these uncertainties are difficult to 
propagate in log space. Furthermore, the inclusion and improper 
weighting of uncertainties can create biased regressions within data 
that are nonuniformly distributed in x and y, or have uncertainties 
that scale with the mean value, both of which are true in our study. 
Our regression protocol was designed with three primary objectives: 
(i) incorporate uncertainties in x and y; (ii) equally weight un-
certainties in x and y (i.e., ensure that high erosion rate data with 
higher uncertainties are not preferentially ignored); and (iii) quan-
tify how well the model relationship calculated from the regression 
fits all observations used in the regression, including the influence 
of the uncertainties in x and y.

To accomplish these goals, we started with the equations of York 
(59) to perform least-squares estimations. We circumvent the issue 
of log-transforming uncertainties by using a Monte Carlo protocol, 
creating synthetic populations of x and y data pairs based on the 
mean values and associated uncertainties on those means. We then 
regressed these data with uniform, synthetic uncertainties in x and 
y (i.e., x and y = 1). These synthetic uncertainties equally weight 
each sample and ensure that the regression minimizes residuals or-
thogonal to the regression (60). Thus, the regression is not biased to 
one variable (i.e., x or y) that is inherently more precise than the 
other. With these synthetic populations, we calculate 106 regressions 
on a randomly selected x-y pair from the synthetic distribution of 
each sample. The mean slope of the 106 regressions yields the expo-
nent of the nonlinear regression (). After the slope exponent has 
been calculated, and in the case when it is prescribed, the best-fit 
preexponential coefficient (C) is calculated by regressing all 106 syn-
thetic points with the best-fit slope.

While it may be a common practice to use the coefficient of de-
termination (R2) as a goodness-of-fit parameter for linear and non-
linear regressions, we do not find this statistic suitable for our needs. 
R2 does not include the influence of uncertainties of observations. 
Furthermore, the R2 value of data perfectly fit to a nonlinear model 
can exceed one (61), suggesting that high R2 values can be mislead-
ing (i.e., R2 values approaching 1 may be far from perfect). Instead 
of R2, we calculate the MSWD (62) of our modeled regressions. The 
MSWD is a form of the reduced chi-squared statistic)

	​ MSWD  = ​   ​​​ 2​ ─ N − d ​​	 (8)

where N is the number of observations, d is the degrees of freedom, 
and
	​​ ​​ 2​ =   ​r​​ 2​ W​	 (9)

where r is the residuals, and the weights (W) are determined by

	​ W  = ​   1 ─ 
​∂ F _ ∂ x ​ ​​x​ 2​ + ​∂ F _ ∂ y ​ ​​y​ 2​

 ​ ​	 (10)

where F is the function relating x and y, and x and y are the 1 
uncertainties on x and y, respectively. The 1 uncertainty on the MSWD 
is given by (62)

	​  = ​ √ 
_

 ​  2 ─ N − d ​ ​​	 (11)

For well-fit models, the MSWD should approach 1 ± 2 (62).

Calculation of best-fit Klp, n, and m
Our conceptual model suggests that the regressions of our observed 
erosion rates and channel steepness are fundamentally connected to 
the stream-power model, and therefore, we seek to evaluate how well 
the predictions of the stream-power model match our observations. 
We seek a method to determine the unknown variables within the 
stream-power model that satisfy our observations. One way of achiev-
ing this is to find values of Klp, n, and m that minimize the difference 
between ksn values predicted by the stream-power model (Eq. 4b) 
and observed ksn values. We set m = •n, where  = 0.45 [see the 
“Channel steepness (ksn and ksn-q) calculation” section for discussion 
of ]. Because the units of Klp depend on m, and thus on n, each 
value of m will be associated with a best-fit Klp value. To determine 
plausible Klp values for our dataset based on varying m and n, we use 
regressions of E versus ksn for catchments that have binned accord-
ing to mean annual rainfall to determine K as a function of R and 
calculate Klp. Without imposing any constraints on the best-fit n value, 
or knowing a priori what are reasonable rainfall rate groupings 
within our dataset, we tested 21 different n values between 1 (linear 
ksn – E relationship) and 3 (highly nonlinear ksn – E relationship) 
across a distribution of possible rainfall-based subgroups. We created 
66 rainfall bins of varying size and bin center that cover the range of 
rainfall values from 0.47 to 5.1 m year−1, based on observed values 
in Bhutan and Nepal.

For each n value, we calculated 66 regression-based K values (with 
a fixed exponent  = 1/n for each simulation), and then calculate 
Klp (Klp = K/Rm; Eq. 1c) for each bin, where R was the bin center. We 
then calculated the mean Klp value for each tested n value for all bins 
with seven or more samples per bin using Eq. 1c. Using the result-
ing Klp-n-m triplets, we calculate predicted ksn values using Eq. 4b. 
Our best-fit Klp-n-m was found by reducing 2 value between pre-
dicted and observed ksn values where

	​​ ​​ 2​ =   ​ 
​(​k​ sn​​ (predicted ) − ​k​ sn​​ (observed ))​​ 2​

   ────────────────────  
 ​(​k​ sn​​ observed)​​ 2​

  ​​	 (12)

Similar to what has been found in many previous studies, a broad 
suite of combinations of Klp, n, and m yields plausible fits to channel 
steepness and erosion datasets (fig. S4) (6). The best-fit value n is 
2.2, m is 1, and Klp is 2.2 × 10−9 m−2. Our finding of n = 2.2 is in line 
with theory (20) and other studies (6, 10, 27), but we do not suggest 
that this represents a universal n value. We emphasize that using 
other n values around 2 would not change the conclusions or inter-
pretations of this study.

Predicted erosion rate map calculation
To produce the predicted erosion rate maps based on the stream-
power model in Fig. 4 (B and D), we first created spatially continuous 
ksn and ksn-q maps, by averaging channel values over a 5-km-radius 
moving window. We then used these spatially continuous data and 
our best-fit parameters to calculate erosion rates at each pixel.

For the erosion rate map based on ksn (Fig. 4B), we calculated an 
erosion rate at each pixel using
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	​ E =  K • ​​k​ sn​​​​ n​​	 (13)

where K = 3.2 × 10−9 m−1 year−1 and n = 2.2. We calculated K from 
the regression of all data (Fig. 4A), where K = C−n. For the erosion 
rate map based on ksn-q (Fig. 4D), we calculated an erosion rate at 
each pixel using

	​ E = ​ K​ lp​​ • ​k​ sn​​ − ​q​​ n​​	 (14)

where Klp = 2.2 × 10−9 m−2 and n = 2.2. We only need to use Klp in 
the equation as R is included in ksn-q.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/42/eaaz3166/DC1
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