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Key message  Polypoid crop breeders can balance resources between density and sequencing depth, dosage infor-
mation and fewer highly informative SNPs recommended, non-additive models and QTL advantages on prediction 
dependent on trait architecture.
Abstract  The autopolyploid nature of potato and sweetpotato ensures a wide range of meiotic configurations and linkage 
phases leading to complex gene-action and pose problems in genotype data quality and genomic selection analyses. We used 
a 315-progeny biparental F1 population of hexaploid sweetpotato and a diversity panel of 380 tetraploid potato, genotyped 
using different platforms to answer the following questions: (i) do polyploid crop breeders need to invest more for additional 
sequencing depth? (ii) how many markers are required to make selection decisions? (iii) does considering non-additive 
genetic effects improve predictive ability (PA)? (iv) does considering dosage or quantitative trait loci (QTL) offer significant 
improvement to PA? Our results show that only a small number of highly informative single nucleotide polymorphisms 
(SNPs; ≤ 1000) are adequate for prediction in the type of populations we analyzed. We also show that considering dosage 
information and models considering only additive effects had the best PA for most traits, while the comparative advantage 
of considering non-additive genetic effects and including known QTL in the predictive model depended on trait architec-
ture. We conclude that genomic selection can help accelerate the rate of genetic gains in potato and sweetpotato. However, 
application of genomic selection should be considered as part of optimizing the entire breeding program. Additionally, since 
the predictions in the current study are based on single populations, further studies on the effects of haplotype structure and 
inheritance on PA should be studied in actual multi-generation breeding populations.

Introduction

Phenotyping under recurrent selection has been an important 
approach for variety development in plant breeding, with 
substantial success to date. However, this process may take 
a long time for most crops, particularly for clonally propa-
gated crops (Slater et al. 2016). For example, in potato, it 
typically takes an entire year to develop enough tubers from 
botanical seed obtained from crossing nurseries, for experi-
mental trial purposes. This is followed by at least 2 years 
of field evaluation for qualitative traits, with evaluation for 
most quantitative traits in replicated multi-environment trials 
beginning in around year four (Endelman et al. 2018). The 
same can be said for sweetpotato, although cycle times in 
sweetpotato are shorter by about a year due to the fact that 
the crop can be vegetatively propagated via stem cuttings 
(Grüneberg et al. 2009). This represents a stark contrast with 
what can be achieved in cereal and legume crops, where up 
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to 6 generations can be raised within a calendar year (Wat-
son et al. 2018), or in private corn breeding programs based 
in the USA and Europe which can raise multiple genera-
tions per year through the coordinated use of winter nurser-
ies located in both hemispheres such as USA, Puerto Rico, 
Hawaii and Chile. This therefore implies that the estimation 
of parental value based on genetic designs and phenotypic 
evaluation in potato and sweetpotato increases the selection 
cycle time, thereby reducing the rate of genetic gains and 
the speed of delivery of superior, novel genetics to farmers.

The use of genetic markers for selection offers poten-
tial to reduce the breeding cycle time as selection can be 
done at an earlier stage. Previously proposed methods have 
involved identifying quantitative trait loci (QTL) via QTL 
mapping and genome-wide association studies (GWAS), 
but they have had little practical application in the actual 
development of new cultivars through plant breeding to date, 
especially for complex quantitative traits, since identifying 
the causal genes underlying QTL needed to make their appli-
cation practical is costly (Xu and Crouch 2008). Genomic 
selection (GS) offers the ability to select parents within a 
shorter interval and increase selection intensity by predicting 
untested genotypes earlier while enhancing larger starting 
genetic variation. This approach uses genome-wide marker 
data to predict the performance of untested genotypes and 
estimate their breeding values (genomic estimated breed-
ing values; GEBVs), based on a genotyped and phenotyped 
training population (Meuwissen et al. 2001). Genomic selec-
tion is emerging as the approach of choice to circumvent the 
limitations associated with use of QTL for marker-assisted 
selection and to improve the efficiency of phenotypic selec-
tion (Bernal-Vasquez et al. 2014). Good genetic progress can 
be made using GS, as long as factors that affect its predictive 
ability (PA), i.e., the correlation between phenotypic best 
linear unbiased estimators (BLUPs) and GEBVs, are well 
understood. These include trait architecture, the size of the 
training population, the relationship between the training 
and validation populations, heritability of the trait, the qual-
ity of phenotypic efforts, the level of linkage disequilibrium 
(LD), marker density, environmental variances and covari-
ance among traits (Covarrubias-Pazaran et al. 2018).

The application of GS is taking shape in plant breeding 
with more and more crops exploring its utility (Spindel et al. 
2016; Wang et al. 2018; Endelman et al. 2018; Covarrubias-
Pazaran et al. 2018; Faville et al. 2018; Nyine et al. 2018; 
Bhandari et al. 2019). For crops like rice and wheat that are 
normally self-pollinated and have a high incidence of high-
effect QTL (Spindel et al. 2016), faster success is expected 
from applying GS as prediction accuracy depends primarily 
on the factors listed above. However, breeders of autopoly-
ploid, clonally propagated crops like potato and sweetpotato, 
which are normally heterogeneous and heterozygous, have 
to ask themselves additional questions and identify trade-off 

points that enhance the success of GS-assisted breeding 
(Slater et al. 2016; Endelman et al. 2018). Potato and sweet-
potato present a wide range of meiotic configurations and 
linkage phases (Mollinari et al. 2020). In addition to caus-
ing complex gene-action effects, allelic and configuration 
diversity have consequences on genotyping and genotype 
data quality, which consequently affects downstream anal-
ysis for quantitative-genetic parameters required to make 
high-quality breeding decisions. Genotyping-by-sequencing 
(GBS) has currently become a genotyping method of choice 
in plant breeding (Poland and Rife 2012), but it is also prone 
to genotyping errors and a high level of missingness at low 
depth of sequencing, while high sequencing depth has addi-
tional cost implications. Data from polyploid crops are more 
prone to low-quality genotype calls at low sequencing depth 
when compared to diploid crops, because of uncertain allele 
dosages and possibility of non-random inheritance of alleles 
such as in preferential pairing or double reduction (Blischak 
et al. 2016, 2018).

Public sector breeding programs like those conducted in 
centers which are part of the Consultative Group on Interna-
tional Agricultural Research (CGIAR), and in the individual 
National Agricultural Research Systems (NARS) existing 
in many countries, are currently undergoing breeding pro-
gram optimization efforts in order to keep up with the chal-
lenges of climate change and population increase (Cobb 
et al. 2019). Application of GS is one such tool for breeding 
program optimization. In order to develop GS tools to make 
more effective breeding efforts in autopolyploid crops such 
as potato and sweetpotato, we have taken a practical per-
spective within a plant breeding setting to address several 
pertinent questions related to application of GS in autopol-
yploids. We used real data sets from a 380 training-panel 
made up of advanced tetraploid potato clones and a 315-full-
sib family (F1) of hexaploid sweetpotato, both developed by 
the International Potato Center (CIP) and genotyped using 
different platforms, to address the following questions: (i) 
do polyploid crop breeders need to invest more resources for 
additional sequencing depth? (ii) how many genetic markers 
are required to make selection decisions? (iii) does the con-
sideration of non-additive genetic effects add value to pre-
dictive ability (PA) to enhance genetic gains either for pop-
ulation improvement or product development in polyploid 
crops? (iv) given the multiple alleles at loci with diverse 
meiotic configurations and linkage phases, does considering 
dosage, haplotypic or QTL effects offer significant improve-
ment to PA to enhance genetic advances? We also discuss 
other factors that need to be considered while adopting GS 
as a decision support tool in an optimized breeding program.
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Materials and methods

Genetic materials and phenotyping

Sweetpotato biparental population

A wide genetic variability exists in sweetpotato in terms of 
yield, nutritional content and culinary aspects, abiotic stress 
tolerance, biotic stress tolerance, among other attributes 
(Low et al. 2017). Introgression of high β-carotene content 
into locally adapted varieties is a major breeding objective 
especially in sub-Saharan Africa where vitamin A deficiency 
is prevalent. A 315-progeny full-sib family (F1) was devel-
oped by crossing a US-bred high β-carotene variety, ‘Beau-
regard,’ with an adapted, locally preferred, starchy, low 
β-carotene landrace variety, ‘Tanzania,’ at CIP—Peru. These 
two parents differ in additional traits of interest, and the pop-
ulation will henceforth be referred to as the BT population. 
The population was evaluated in six environments of Peru, 
for various quality-related and yield-related traits, between 
2016 and 2017. The design was an 80 × 4 α-lattice with 
two–three replications, depending on location. The infor-
mation about these trials is further described in the publica-
tions by Gemenet et al. (2020) and Pereira et al. (2020), and 
summaries of locations and experimental designs attached 
as Online Resource 1. Additionally, flesh color was evalu-
ated in six environments of Uganda. The design was 80 × 4 
α-lattice with three replications per location, in a 4.8 m2 
plot size, with three locations over two years, as further 
described by Gemenet et al. (2020). The quality-related traits 
measured in the BT population include: dry matter (DM) 

content, measured as a percentage of the laboratory dried 
samples divided by the initial fresh weight of 100 g; Starch 
and β-carotene (BC) content, estimated using near-infrared 
reflectance spectroscopy (NIRS) and flesh color (FC), meas-
ured using internal color scales developed by CIP and part-
ners. All quality-related traits were measured in Peru, but 
only flesh color was measured in Uganda (FC_U). Data are 
further described in Gemenet et al. (2020). For yield-related 
traits, total number of storage roots (TNR), number of com-
mercial storage roots (NOCR), weight of total storage roots 
(RYTHA), weight of commercial storage roots (CYTHA) 
and total weight of foliage (FYTHA), were measured in the 
six experiments of Peru only. Data are further described in 
Pereira et al. (2020). Trait abbreviations are further defined 
in Table 1.

The quality-related traits were analyzed by fitting the fol-
lowing linear mixed model in ASREML:

where yijkl = the vector of phenotypes of genotype i in block 
j within replicate k of environment l, µ = population mean, 
gi = the fixed treatment (genotype) effect, el = the random 
effect of environment l, rk(l) = random effect of replicate k in 
environment l, bjk(l)= random effect of block j within repli-
cate k of environment l, (gei)l= random effect of genotype i 
in environment l (l = 1,..,L), �ijk(l) = random error of the resid-
u a l s ,  a s s u m i n g  el ∼ N

(

0, �2

e

)

 ,  rk(l) ∼ N(0, �2

r(l)
)  , 

bjk(l) ∼ N
(

0, �2

b(l)

)

 , gei ∼ N(0,
∑
�

 with ∑ = variance–covari-
ance matrix of the genotypes across L = 5 environments, 
allowing for heterogeneity of genetic variances and covari-
ances across environments. The best fitting model was 

(1)yijkl = � + gi + el + rk(l) + bjk(l) + (gei)l + �ijk(l)

Table 1   Trait abbreviations and 
their description in sweetpotato 
and potato as used in the current 
study

Crop Trait abbreviation Trait description

Sweetpotato DM Dry matter content
Starch Starch content
BC Beta-carotene
FC_P Flesh color in Peru
FC-U Flesh color in Uganda
NOCR # Commercial storage roots
TNR # Total storage roots
CYTHA Commercial storage root weight
RYTHA Total storage root weigh
FYTHA Total foliage yield weight

Potato LB2014_O Late blight in 2014 in Oxapampa, Peru
LB2016_Y Late blight 2016 in Yunnan, China
PVY_L Potato virus Y in Lima, Peru
AYP_K Average yield per plant in Kunming, China
WMT_K Weight of marketable tubers in Kunming, China
TTW16_Ica Total tuber weight in 2016 in Ica-Peru
TTW16_HLJ Total tuber weight in 2016 in Heilongjiang, China
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chosen by Akaike’s information criterion (AIC) and differed 
slightly for the different traits. For DM, Starch and FC_U, a 
factor analytic model (Piepho 1998) of order 1 was used, and 
for BC a factor analytic model of order 2, to model the vari-
ance covariance matrix ∑. For FC, an unstructured vari-
ance–covariance matrix ∑ was used in the final model. The 
random error of residuals was assumed as �ijk(l) ∼ N

(

0, �2

l

)

 
(Gemenet et al. 2020).

The yield-related traits were also analyzed with linear 
mixed models as described by Pereira et al. (2020) using 
restricted maximum likelihood (REML) in GENSTAT 14 as:

where yijkl = the vector of phenotypes as above, � = popu-
lation mean, gi = the fixed treatment (genotype) effect, 
el = fixed effect of environment l, rk(l) = fixed effect of replica-
tion k in environment l, bjkl = random effect of block j within 
replication k in environment l; bjkl ∼ N

(

0, �2

b

)

 , geil = the 
fixed interaction effect of genotype i and environment l, and 
�ijkl ∼ N

(

0, �2
)

 is the random residual error. The two data 
classes (quality-related traits and yield-related traits) were 
analyzed using different methods because the two analysts 
made different assumptions regarding variance components 
and genotype-by-environment interaction. The models for 
yield-related traits assumed compound symmetry and fixed 
correlation among environments, which may be less realistic 
in estimating the covariance structure of the different traits. 
This could lead to poor estimates of standard errors of dif-
ferences between some means and hence some difference in 
adjusted means. However, such differences are not expected 
to significantly affect the findings from further analyses 
using these adjusted means in the current study. The best 

(2)yijkl = � + gi + el + rk(l) + bjkl + geil + �ijkl

linear unbiased estimators (BLUEs) as obtained by fitting 
the above models to the experimental data with genotypes 
as fixed were then used to estimate GEBVs.

Potato trait observation network population

A 380-genotype panel made up of advanced clones from the 
potato breeding program and representing all breeding popu-
lations at CIP was assembled for a trait observation network 
(TON) in Peru, China and Ethiopia. Henceforth, we shall 
refer to this population as the TON panel. The evaluation of 
the panel was carried out in diverse agro-ecological zones, 
and in subsets of genotypes subject to participating NARS’ 
partner capacity and/or ability to produce enough mini-
tubers for experimentation. The experimental sites, experi-
mental designs and the number of genotypes evaluated per 
experiment are summarized in Table 2. The TON panel was 
evaluated for maturity (bulking) by tuber characteristics at 
three harvest dates where average yield per plant (kg; AYP) 
and weight of marketable tubers per plant (kg; WMT) were 
measured. Additionally, mature tuber weight was evaluated 
by measuring total tuber weight per plant (TTW; kg). In 
Peru, TTW was measured as the average total tuber weight 
across three drought-related treatments: terminal drought 
(irrigation stopped at flowering until harvest; TTW16_TD), 
recovery (partially irrigated after drought stress; TTW16_
REC) and fully irrigated (normally irrigated throughout 
the growth period; TTW16_NI), while random drought 
was used in China, with no controlled treatments. Resist-
ance to potato virus Y (PVY) was evaluated after infection 
with virulent vectors and susceptible spreader rows using 
standard protocols at CIP, while late blight resistance (LB) 
was evaluated by growing the population in endemic disease 

Table 2   Locations, designs and traits measured in the trait observation network (TON) panel of potato

Country Location Agroecology

Peru Lima, La Molina 12.0820° S, 76.9282° W Lowland sub-tropics
Ica, Ica 14.0755° S, 75.7342° W
Pasco, Oxapampa 10.5853° S, 75.4053° W Highland tropics

China Yunnan, Kunming 24.8801° N, 102.8329° E
Mixed agriculture systems, lowland & highland
Heilongjiang, Harbin 45.8038° N, 126.5350° E Temperate (long day)

Trait group Trait Location, country, year Trial design #Genotype

Late blight resistance LB2014_O Oxapampa, Peru, 2014 RCBD 241
LB2016_Y Yunnan, China, 2016 RCBD 336

Virus resistance PVY_L Lima, Peru, 2016–2018 RCBD 341
Bulking-based maturity AYP_K Kunming, China, 2016 RCBD 317

WMT_K Kunming, China, 2016 RCBD 317
Mature tuber weight TTW16_Ica Ica, Peru, 2016 Augmented 269

TTW16_HLJ Heilongjiang, China, 2016 Augmented 300
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pressure and scored using standard protocols at CIP. Trait 
abbreviations are defined in Table 1.

Unlike in sweetpotato where phenotype and genotype 
data were balanced across experiments, (292 + Parents for 
DArTSeq and 315 + parents for GBSpoly), the potato experi-
ments were unbalanced in terms of experimental genotypes. 
For the purposes of this study, we only selected the locations 
with the highest training population per trait. Consequently, 
we used AYP from Kunming (China; AYP_K), WMT 
from Kunming (China; WMT_K), LB from Oxapampa 
(Peru; LB2014_O), LB from Yunnan (China; LB2016_Y), 
PVY from Lima (Peru; PVY_L), TTW averaged across 
three treatments of 2016 in Ica (Peru; TTW16_Ica) and 
TTW in 2016 from Heilongjiang (China; TTW16_HLJ), 
all having number of genotypes indicated in Table 2. The 
experiments were analyzed as single trials, depending on 
the experimental design used as summarized in Table 2. 
A linear mixed model, taking into account the respective 
experimental design, was fitted to the phenotypic data. For 
those traits with different treatments like TTW in Peru, the 
joint adjusted means were additionally obtained across all 
treatments by fitting a linear mixed model. Genotype was 
considered as a fixed effect in these mixed models, so that 
BLUEs for the genotypic means were obtained for each trait 
and used to predict GEBVs.

Genotyping and variant calling

The full 315-progeny of the BT (sweetpotato) population 
was genotyped together with the parents using an optimized 
protocol for hexaploid sweetpotato, ‘GBSpoly’ at North Car-
olina State University (NCSU). Additionally, a subsample 
of 292-progeny and the two parents of the BT population 
were genotyped by DArTSeq™ in Australia, under the col-
laboration between the Integrated Genotyping Service and 
Support (IGSS) platform at the Biosciences east and central 
Africa (BecA) hub in Nairobi, Kenya and DArT. The 380 
genotypes of the TON population (potato) were genotyped 
by GBS at Cornell University.

DArTSeq™ for Sweetpotato

DArTseq™ represents a combination of DArT complexity 
reduction methods and next-generation sequencing plat-
forms (Kilian et al. 2012; Courtois et al. 2013; Raman et al. 
2014; Cruz et al. 2013). Therefore, DArTseq™ represents 
a new implementation of sequencing complexity reduced 
representations (Altshuler et al. 2000) and more recent appli-
cations of this concept on the next-generation sequencing 
platforms (Baird et al. 2008; Elshire et al. 2011). Similar 
to previous DArT methods based on array hybridizations, 
the technology is optimized for each organism and applica-
tion by selecting the most appropriate complexity reduction 

method (both the size of the representation and the fraction 
of a genome selected for assays). Four methods of complex-
ity reduction were tested in sweetpotato (data not presented), 
and the PstI-MseI method was selected. DNA samples were 
processed in digestion/ligation reactions principally as per 
Kilian et al. (2012) but replacing a single PstI-compatible 
adaptor with two different adaptors corresponding to two 
different restriction enzyme (RE) overhangs. The PstI-com-
patible adapter was designed to include Illumina flowcell 
attachment sequence, primer sequence and ‘staggered,’ vary-
ing length barcode region, similar to the sequence reported 
by Elshire et al. (2011). This reverse adapter contained a 
flowcell attachment region and a MseI-compatible overhang 
sequence. Only ‘mixed fragments’ (PstI-MseI) were effec-
tively amplified in 30 rounds of PCR using the following 
reaction conditions: (i) 94 °C for 1 min, (ii) 30 cycles of: 
94 °C for 20 s, 58 °C for 30 s, 72 °C for 45 s and (iii) 72 °C 
for 7 min. After PCR, equimolar amounts of amplification 
products from each sample of the 96-well microtiter plate 
were bulked and applied to c-Bot (Illumina) bridge PCR fol-
lowed by sequencing on Illumina Hiseq 2000. The sequenc-
ing (single read) was run for 77 cycles. Sequences gener-
ated from each lane were processed using proprietary DArT 
analytical pipelines. In the primary pipeline, the FastQ files 
were first processed to filter away poor-quality sequences, 
applying more stringent selection criteria to the barcode 
region compared to the rest of the sequence. This was to 
ensure reliability in the assignments of the sequences to spe-
cific samples carried in the ‘barcode split’ step. Approxi-
mately 2,000,000 sequences per barcode/sample were identi-
fied and used in marker calling. Finally, identical sequences 
were collapsed into ‘fastqcoll files.’ The fastqcoll files were 
‘groomed’ using DArT PL’s proprietary algorithm which 
corrects low-quality base from singleton tag into a correct 
base using collapsed tags with multiple members as a tem-
plate. The ‘groomed’ fastqcoll files were used in the second-
ary pipeline for DArT PL’s proprietary SNP and SilicoDArT 
(presence/absence of restriction fragments in representation) 
calling algorithms (DArTsoft14). For SNP calling, all tags 
from all libraries included in the DArTsoft14 analysis were 
clustered using DArT PL’s C ++ algorithm at the threshold 
distance of 3, followed by parsing of the clusters into sepa-
rate SNP loci using a range of technical parameters, espe-
cially the balance of read counts for the allelic pairs. Addi-
tional selection criteria were added to the algorithm based 
on analysis of approximately 1000 controlled cross popula-
tions. Testing a range of tag counts parameters facilitated 
selection of true allelic variants from paralogous sequences. 
In addition, multiple samples were processed from DNA to 
allelic calls as technical replicates and scoring consistency 
was used as the main selection criteria for high-quality/low 
error rate markers. Calling quality was assured by high aver-
age read depth per locus (> 30X). The SNPs were coded as 
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0 = AA, 1 = BB, 2 = AB and ‘-’= Missing. The sequences 
were not aligned to a reference genome because by the time 
of genotyping, the diploid references (Wu et al. 2018) had 
not been published.

GBSPoly© for Sweetpotato

GBSpoly is an optimized protocol for hexaploid sweetpo-
tato developed at NCSU as part of a project focusing on 
developing genomic tools for sweetpotato improvement. 
The DNA was checked for quality on 1% agarose gel and 
quantified based on the PicoGreen florescence-based assay 
and the concentration was normalized to 50 ng/µl. Initially, 
several optimization efforts regarding restriction enzyme 
pairing were carried out (data not shown) and CviAII-TseI 
was selected to be the best combination for hexaploid sweet-
potato. Therefore, 1 µg of DNA was double-digested using 
five units of CviAII for three hours at 25 °C followed by 
digestion with TseI for another three hours at 65 °C. A new 
England Biolabs (NEB) CutSmart buffer was used to make 
up a total volume of 30 µl. Purification of the digested sam-
ples was done using AMPure XP magnetic beads from Ther-
moFisher™ and quantified with PicoGreen assay. Barcodes 
were designed to account for substitution and indel errors 
and had an 8-bp buffer sequence to ensure that the barcode 
lay within high-quality base call regions of the sequence 
reads. Additional double digests on 64-plex pooled sam-
ples, purification and size selection steps were carried out 
as described by Wadl et al. (2018) before performing 125 bp 
single-end sequencing on a total of 40 sequencing lanes (8 
lanes for each of the 5 libraries) of the Illumina HiSeq 2500 
platform. The resultant FastQ files were aligned to reference 
genomes of two wild relatives of sweetpotato, Ipomoea tri-
fida and Ipomoea triloba (Wu et al. 2018), and variant call-
ing done using the GBSapp pipeline as described by Wadl 
et al. (2018). The SNPs were coded according to the dosage 
of the alternative allele as 0 = AAA​AAA​, 1 = AAAAAB, 
2 = AAAABB, 3 = AAABBB, 4 = AABBBB, 5 = ABBBBB, 
6 = BBBBBB. The variant calling process is summarized in 
Online Resource 2.

GBSCornell for potato

The 380-genotype TON panel was genotyped by Cornell 
University using GBS in 2015. The DNA was digested with 
EcoT221 restriction enzyme, and 48-plex libraries were pre-
pared for sequencing, using customized GBS protocols at 
Cornell. The resultant FastQ files were quality controlled 
and variant calling done using GATK HaplotypeCaller 
option (Poplin et al. 2017), disabling the duplicate read 
filter (this is recommended for GBS data) and using the 
joint genotyping -ERC GVCF mode, as further described in 
Lindqvist-Kreuze et al. (2020). The reads were aligned to the 

potato genome reference sequenced from S. tuberosum group 
Phureja, line DM1-3 516 R44, a doubled monoploid (DM) 
via anther culture by the potato genome sequencing consor-
tium (PGSC). Version PGSC_DM_v4.03 of the reference 
genome was used in alignment. The barcodes were removed 
using stacks, and the ends were trimmed using trim-galore, 
followed by mapping to the reference using BWA. Resultant 
SAM files were processed using samtools and variants called 
using GATK Haplotype caller, targeting biallelic SNPs only. 
The SNPs were coded according to the dosage of the alterna-
tive allele as 0 = AAAA, 1 = AAAB, 2 = AABB, 3 = ABBB 
and 4 = BBBB. The SNP filtering was done using bcftools 
allowing only for those SNPs with MAF of ≥ 3%, call rate 
of ≥ 70%, average genotype quality (GQ) ≥ 30 and minimum 
read depth (DP) ≥ 16 (Lindqvist-Kreuze et al. 2020).

Although estimating allele frequencies in polyploids may 
encounter many challenges as explained by De Silva et al. 
(2005), allele frequencies for the polyploid data (‘GBSpoly’ 
for sweetpotato and ‘GBSCornell’ for potato) in the current 
study were estimated by counting the number of alleles in 
each dosage-based genotype, since quantitative genotyping 
was used for both methods.

Model comparison for predictive ability

We used the AGHmatrix package (Amadeu et al. 2016) 
to develop kinship G-matrices partitioning genetic vari-
ation based on several gene-action models. For the BT 
population DArTSeq markers (sweetpotato) where we did 
not have dosage information, we developed an additive 
G-matrix according to VanRaden (2008), herein referred to 
as Add_2x_DArTseq, and a non-additive-effects G-matrix 
according Vitezica et  al. (2013), herein referred to as 
NonAdd_2x_DArTSeq. For the BT population GBSpoly 
(sweetpotato) and TON population GBSCornell (potato) 
data where we had dosage information, we employed three 
models to develop the G-matrices: (i) modeling only addi-
tive effects, according to VanRaden (2008) herein referred 
to as Add_6x_GBSpoly for sweetpotato and Add_4x_
GBSCornell for potato, (ii) modeling additive plus non-
additive effects, according to Slater et al. (2016) herein 
referred to as Add + Non_6x_GBSpoly for sweetpotato and 
Add + Non_4x_GBSCornell for potato and (iii) a pseudo-
diploidized effect model according to Slater et al. (2016), 
herein referred to as Pseudo_2x_GBSpoly for sweetpotato 
and Pseudo_2x_GBSCornell. The pseudo-diploidization 
collapses all dosage classes between the nulliplex and the 
hexaplex (in sweetpotato), and between the nulliplex and 
tetraplex (in potato) into one heterozygous class, under 
the assumption that all heterozygotes have an equal effect 
which falls in between both homozygotes. In the case of 
potato, the design matrix coding for the pseudo-diploid, 
additive autotetraploid and full autotetraploid was as 
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described by Slater et al. (2016), while that for sweetpo-
tato is shown in Table 3. During kinship matrix develop-
ment, additional filters were applied to the genotype data, 
to have minimum allele frequency (MAF) ≥ 30%, and call 
rate ≥ 90%. We used genomic best linear unbiased predic-
tion (G-BLUP; Clark and van der Werf 2013) to compare 
the predictive ability (PA) of the five models for sweetpo-
tato and three models for potato using the kinship matrices 
as variance–covariance matrices to fit the compressed lin-
ear mixed model (Zhang et al. 2010) and estimate genomic 
best linear unbiased predictors (G-BLUPs). The software 
GAPIT (Lipka et al. 2012) was used in the G-BLUP pre-
diction fitting the following general model:

where y = vector of phenotypic data, 1n is the vector of ones, 
μ = population mean, Z = the known design matrix for geno-
types, u = random genetic effects and ~ N

(

0, �2

a
Kor�2

a+na
K
)

 
with K = kinship matrix, a = additive model, na = non-addi-
tive model, e = vector of residuals ~ N

(

0, �2

e
I
)

.
Cross-validation was done by randomly setting 20% 

of the population to missing phenotypes to be used as a 
validation set. We used 1000 iterations (replications) to 
estimate the predictive ability of the models using both 
simple/oligo traits (quality traits in sweetpotato, disease 
traits in potato) and complex traits (storage root or tuber 
yield and yield component traits in both), as defined in 
Table 1.

The PA was calculated as Pearson’s correlation between 
the observed BLUPs and the genome estimated breeding 
values (GEBVs). Differences in PA among models per trait 
were tested using a simple one-way analysis of variance 
with models as factor. The correlation coefficients per rep-
lication were Fisher Z-transformed and means compared 
on these Z values using a one-way ANOVA with models 
as factor. The average PA was then obtained by back trans-
forming the average of the Z values. Quantitative-genetic 
parameters were tested for the additive model with or 
without dosage by obtaining the additive genetic varia-
tion (�2

a
 ) and random residual effects 

(

�
2

e

)

 from the mixed 

(3)y = 1n� + Zu + e

linear model and calculating narrow-sense heritability (h2) 
for each trait as:

Additionally, we calculated the estimated rate of genetic 
gains from genomic selection per additive model with or 
without dosage for each trait according to Oliveira et al. 
(2019) as:

where ΔGG = rate of genetic gains, i = selection intensity, 
�a = square root of additive genetic variation, PA = predic-
tive ability and L = length of breeding cycle, assuming L = 5 
for sweetpotato following the accelerated breeding scheme 
currently implemented (Mwanga et al. 2017), and L = 8 for 
potato.

How many markers are adequate for prediction?

For the sweetpotato F1 population, we used the original 
GBSpoly data, using different filtering criteria to end up 
with different number of markers. We used three criteria 
(i) total number of SNPs filtered at 10% MAF and ≥ 90% 
call rate, (ii) total number of SNPs filtered at 30% MAF 
and ≥ 90% call rate (used in the analyses above) and (iii) 
a random sample of 15,000 SNPs from the total number 
of SNPs and filtered at 30% MAF and ≥ 90% call rate. In 
potato, the total number of SNPs was filtered using two 
criteria: (i) 30% MAF and ≥ 90% call rate, (ii) 40% MAF 
and ≥ 90% call rate. Predictions were carried out for all 
traits measured using these criteria. To separate the effects 
of allele frequency from the effects of number of markers 
on PA, we also used the original GBSpoly data in sweetpo-
tato, filtered at constant MAF and randomly sampled dif-
ferent number of markers, which we used to compare PA 
in one quality-related simple trait (β-carotene; BC) and one 
yield-related complex trait (total number of storage roots; 

(4)h2 =
�
2

a
(

�2
a
+ �2

e

)

(5)ΔGG =

(

i ∗ �a ∗ PA
)

L

Table 3   Proposed design matrix 
coding for auto-hexaploid 
sweetpotato as adapted from 
Slater et al. 2016

Effects/marker Pseudo_2x Add_6x Add + Non_6x

1 1 1 2 3 4 5 6 7

AAA​AAA​ 0 0 1 0 0 0 0 0 0
AAAAAB 1 1 0 1 0 0 0 0 0
AAAABB 1 2 0 0 1 0 0 0 0
AAABBB 1 3 0 0 0 1 0 0 0
AABBBB 1 4 0 0 0 0 1 0 0
ABBBBB 1 5 0 0 0 0 0 1 0
BBBBBB 2 6 0 0 0 0 0 0 1
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RYTHA). We used 10, 000, 5000, 1000 and 500 SNPs, all 
filtered to MAF ≥ 5%. The model considering only additive 
effects (Add_6x_GBSpoly) was used in comparing the effect 
of allele frequency and number of markers in sweetpotato, 
while all three models were tested between the two filtering 
criteria in potato.

Incorporating haplotypic‑QTL in prediction models 
for sweetpotato

By taking advantage of the fully phased integrated linkage 
map from BT (Mollinari et al. 2020), we tested the predic-
tive ability from QTL-informed models. To achieve this, 
we used the same cross-validation scheme as above, where 
80%:20% random samples were used as training and testing 
populations, respectively, replicated 1000 times. In order 
to detect QTL, we ran our random-effect multiple inter-
val mapping (REMIM) using a sequential forward search 
(Pereira et al. 2020). Using the sequential forward search, 
we used score statistics to test map positions every 2 centi-
Morgans (cM) and added QTL to the random-effect model, 
one QTL at a time, using a relaxed genome-wide signifi-
cance level threshold (α = 0.20). A window size of 20 cM 
was used to avoid selection of another position very close to 

a QTL already in the model. For G-BLUP models, realized 
kinship matrices were based on the haplotype information 
from markers positioned every 2 cM in the genetic map. 
For QTL-BLUP (Q-BLUP), realized kinship matrices were 
based on the haplotypes from QTL-peak marker; if there 
were more than one QTL, their kinship matrices were aver-
aged out; if there were no QTL, we obtained the prediction 
as in G-BLUP. For Q + G-BLUP models, two terms were 
fitted, each with realized kinship matrices based on QTL-
peak markers (like for Q-BLUP) and the remaining markers 
in the linkage map except those selected as QTL.

Results

SNP profiles from the genotyping platforms

DArTseq sequencing of sweetpotato resulted in 13,504 bial-
lelic SNPs (Online Resource 3). The call rates and polymor-
phic information content (PIC) are shown in Fig. 1a, b and 
ranged from about 0.4 (40%)–1.0 (100%), with a mean of 
0.96 (96%) for call rate and from 0 to 0.5 with a mean of 0.37 
for PIC. Stringent filtering at a call rate ≥ 80% and PIC ≥ 0.25 
left 9649 SNPs that were used in AGHMatrix. Additional 
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Fig. 1   Quality attributes of the SNP profiles from DArTSeq (call rate (a) and polymorphic information content; PIC (b)) data in sweetpotato and 
GBSCornell (minor allele frequency; MAF (c) and PIC (d)) in potato. The y-axes in all plots refer to the number of SNPs
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filtering in AGHMatrix at ≥ 80% call rate and ≥ 30% MAF 
resulted in 6015 diploidized, biallelic SNPs being used to 
develop the matrices following additive (Add_2x_DArTSeq) 
and non-additive (NonAdd_2x_DArTSeq) models.

Cornell GBS in potato resulted in 295,401 biallelic SNPs 
at the variant calling step that were then hard-filtered to 3262 
high confidence SNPs by setting MAF ≥ 3%, call rate ≥ 70% 
and average read depth (DP) ≥ 16 (Online Resource 4). The 
3262 SNP profiles are shown in Fig. 1C, D showing MAF 
ranging from 0.03 (3%) to 0.5 (50%), with a mean of 0.15 
(15%) and PIC ranging from 0.0 to 0.5, with a mean of 0.23. 
The 3262 SNPs were used in the AGHMatrix relationship 
matrix development. For a relative comparison of models 
across crops for trait groups, we also filtered the Cornell 
GBS data in AGHMatrix at ≥ 90% call rate and ≥ 30% MAF 
as done for DArTSeq data above, which resulted in 411 
SNPs used to develop the additive (Add_4x_GBSCornell), 
additive plus non-additive (Add + Non_4x_GBSCornell) 
and the pseudo-diploidized (Pseudo_2x_GBSCornell) mod-
els. Examining the relationship matrices indicated that at 
MAF ≥ 30%, the full model (Add + Non_4x_GBSCornell) 
was mainly monomorphic. For potato therefore, we also 
changed the MAF to ≥ 40%, which resulted in 178 SNPs that 
were used to develop a second set of relationship matrices. 
All PA comparisons among traits for potato are based on this 
matrix (MAF ≥ 40%).

For GBSpoly in sweetpotato called according to Wadl 
et al. (2018), the empirical estimation of read depth thresh-
old to ensure high-fidelity SNPs was carried out after par-
alog filtering (Fig. 2). The stability of each genotypic classes 

(nulliplex to hexaploid) was evaluated with increasing read 
depth, which was achieved by resampling reads (without 
replacement) to simulate Illumina sequencing of each locus 
at incremental read depths. SNPs derived from paralogs or 
repetitive sequences were eliminated due to low stability 
even at high read depths (more details in Wadl et al. 2018). 
Figure 3 shows the allele frequency of the GBSpoly data 

Fig. 2   Paralog filtering and empirical estimation of read depth thresh-
old for high-fidelity SNPs in sweetpotato. The plot shows stability of 
each genotypic classes (nulliplex to hexaploid) with increasing read 
depth, which is achieved by resampling reads (without replacement) 

to simulate Illumina sequencing of each locus and at incremental read 
depths. SNPs derived from paralogs or repetitive sequences were 
eliminated due to low stability even at high read depths (more details 
in Wadl et al. 2018)

Fig. 3   Allele frequency density plot for GBSpoly data in sweetpotato
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ranging from 0 to 50%, while expected segregation ratios 
in hexaploid sweetpotato as well as genotype distribution in 
each segregation class after filtering for segregation distor-
tion at unmethylated loci are provided as Online Resource 5. 
Consequently, for sweetpotato, GBSpoly data were filtered 
to this high depth of coverage, with MAF ≥ 5%. This resulted 
in 34,390 high confidence SNPs (Online Resource 6) that 
were used in AGHMatrix to develop the additive (Add_6x_
GBSpoly), additive plus non-additive (Add + Non_6x_
GBSpoly) and the pseudo-diploidized (Pseudo_2x_GBSp-
oly) relationship matrices. The filters in AGHMatrix were 
set to ≥ 90% call rate and ≥ 30% MAF as for the preceding 
data types and resulted in a final 2883 SNPs that developed 
the matrices for model comparison. For comparing the com-
bined effects of number of markers and allele frequency 
on PA, the first filtering criteria of 10% MAF and ≥ 90% 
call rate resulted in 10,358 SNPs, while the third criteria 
based on a random sample of 15,000 SNPs resulted in 1291 
SNPs at ≥ 30% MAF and ≥ 90% call rate that were used in 
PA comparison, based on the model considering additive 
effects only (Add_6x_GBSpoly). To examine the effect of 
markers only, without the compounding effect of allele fre-
quency, 500, 1000, 5000 and 10,000 SNPs were randomly 
selected from the original 34,390 SNPs all at MAF ≥ 5% 
and tested using the model considering additive effects only 
(Add_6x_GBSpoly).

The comparison of models with(out) QTL and use of 
markers per se or haplotypes was carried out only in sweet-
potato, using 30,684 SNPs from the same genotyping 
platform and data set, filtered and processed as described 
by Mollinari et al. (2020), which were used to develop a 
2708.4 cM phased genetic linkage map for sweetpotato, and 
subsequent QTL analyses (Pereira et al. 2020; Gemenet et al. 
2020). The QTL summary tables in sweetpotato as previ-
ously reported by Pereira et al. (2020), Gemenet et al. (2020) 
are provided as Online Resource 7. Sweetpotato BLUEs are 
provided in Online Resource 8, while potato BLUEs are pro-
vided as Online Resource 9.

Genotyping platforms, genetic effects 
and predictive ability

In sweetpotato, the diploidized additive model (Add_2x_
DArTSeq) using data from DArTSeq performed equally 
well or sometimes better than the additive model using high 
confidence dosage data from GBSpoly (Add_6x_GBSpoly), 
depending on trait architecture, for simpler quality-related 
traits (Fig. 4). DM had 0.33 and 0.39, Starch had 0.32 and 
0.34, BC had 0.43 and 0.39, FC_P had 0.44 and 0.42, while 
FC_U had 0.42 and 0.35 average PA for Add_2x_DArTSeq 
and Add_6x_GBSpoly models, respectively (Table 4). For 
these traits, additive-only models were the best and the full 
model (Add_Non_6x_GBSpoly) always had negative PA 

due to a largely monomorphic relationship matrix, possibly 
due to the assumptions taken in calculating the additive and 
non-additive effects in the full model which may be compli-
cated by the many possible combinations in autopolyploids. 
However, the situation changed with yield-related traits as 
the effects of dosage and non-additive effects became more 
important. For these traits, the high-quality data with dos-
age from GBSpoly (Add_6x_GBSpoly) were always better 
in prediction when compared to the additive model with 
diploidized data (Add_2x_DArTSeq). NOCR had 0.19 and 
0.32, TNR had 0.24 and 0.38, CYTHA had 0.18 and 0.20, 
RYTHA had 0.18 and 0.22, and FYTHA had 0.21 and 0.24 
average PA for Add_2x_DArTSeq and Add_6x_GBSpoly 
additive models, respectively (Table 4). However, the addi-
tive-only model with dosage (Add_6x_GBSpoly) was not 
always the best in PA for all yield-related traits, especially 
not for storage roots traits CYTHA and RYTHA, where it 
performed similar to either or both of the models considering 
non-additive effects whether with dosage (Add + Non_6x_
GBSpoly) or without dosage (NonAdd_2x_DArTseq) 
(Fig. 4). Nevertheless, the largely monomorphic relation-
ship matrix from the full model (Add + Non_6x_GBSpoly) 
ensured low predictive ability using this model for most 
yield-related traits as well, especially FYTHA which had the 
highest negative PA, (collapsed to zero in Fig. 3, for plotting 
purposes). In general, pseudo-diploidizing high-quality data 
already called with dosage (Pseudo_2x_GBSpoly) drasti-
cally reduced PA even more than using data called as diploid 
(DArTseq). In potato, the situation was not very different as 
the pseudo-diploidized additive-effects model (Pseudo_2x_
GBSCornell) was the second-best model after the additive-
effects-only model with dosage (Add_4x_GBSCornell) for 
simpler disease traits and its comparative advantage signifi-
cantly reduced with more complex traits (Fig. 5). LB2014_O 
had 0.68 and 0.63, LB2016_Y had 0.62 and 0.52, PVY_L 
had 0.55 and 0.51, AYP_K had 0.45 and 0.34, WMT_K 
had 0.48 and 0.34, TTW16_Ica had 0.16 and 0.16, while 
TTW16_HLJ had 0.38 and 0.31 average PA for Add_4x_
GBSCornell and Pseudo_2x_GBSCornell, respectively. As 
with the full model in sweetpotato, the model including non-
additive effects (Add + Non_4x_GBSCornell) was the least 
performing in terms of PA (Table 4).

Number of markers and environments

Our results in potato indicated that an increased number 
of markers by more than double did not have an effect of 
equal magnitude on PA (411 vs 178 SNPs; Fig. 5a vs b) 
considering the best predictive model (Add_4x_GBSCor-
nell). LB2014_O had 0.69 and 0.68, LB2016_Y had 0.66 
and 0.62, PVY_L had 0.59 and 0.55, AYP_K had 0.51 and 
0.45, WMT had 0.51 and 0.48, TTW16_Ica had 0.19 and 
0.16, while TTW16_HLJ had 0.40 and 0.38 average PA for 



3355Theoretical and Applied Genetics (2020) 133:3345–3363	

1 3

411 and 178 SNPs, respectively. Similarly, in sweetpotato, 
comparing PA using 10,358 SNPs, 2883 SNPs and 1291 
SNPs using the best predictive model (Add_6x_GBSpoly) 
showed no effect of increasing marker density at the cost of 
marker informativeness (allele frequency) on PA. PA based 
on 10,358 SNPs which had ≥ 10% MAF generally performed 
lower than 2883 and 1291 SNPs which both had ≥ 30% MAF 
(Fig. 6). Additionally, 2883 SNPs did not have a clear com-
parative advantage over 1291 SNPs, both at ≥ 30% (Fig. 6), 
indicating that allele frequency had more effect on PA than 
number of markers per se, and that less informative SNPs 
required a higher number of markers than more informative 
SNPS. This was confirmed in sweetpotato by using differ-
ent numbers of SNPs randomly selected from the original 
SNP pool having a constant MAF ≥ 5%, where 10,000 and 
5000 SNPs had better PA compared to 1000 and 500 SNPs 
for both simple (BC) and complex (RYTHA) traits (Online 
Resource 10). Regarding traits in different locations, envi-
ronmental effects on PA were observed which can be attrib-
uted to genotype-by-environment interaction (G x E). The 
PA based on the best model for FC_P (0.44; Peru) and FC_U 

(0.42; Uganda) in sweetpotato and LB2014_O (0.68; Peru) 
and LB2016_Y (0.62; China), TTW16_Ica (0.16; Peru) and 
TTW16_HLJ (0.38; China), in potato, were significantly dif-
ferent. However, the magnitude of the effect of G x E was 
higher for more complex yield trait, than for the simpler 
quality-related trait and disease trait. This can be attributed 
to the fact that complex traits are more prone to complex G 
x E interactions when compared to many simple traits.

Effects of quantitative trait loci, haplotypes 
and dosage on predictive ability

We additionally tested three analysis models using BT 
sweetpotato data: (i) Q-BLUP based on relationship matri-
ces from QTL-peak haplotypes, (ii) Q + G-BLUP fitting 
two terms based on QTL-peak haplotypes and the rest of 
the markers in the linkage map, (iii) G-BLUP, predictions 
using markers spaced every 2 cM in the genetic map with-
out considering QTL. The PA results are shown in Fig. 7. 
Considering QTL haplotypes either per se (Q-BLUP) or 
with G-BLUP (Q + G-BLUP) had a clear comparative 
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Fig. 4   Model comparison in sweetpotato. Boxplots comparing 
predictive ability of additive-effects-only models without dosage 
(Add_2x_DArTseq) and with dosage (Add_6x_GBSpoly); mod-
els considering also non-additive effects (NonAdd_2x_DArTSeq; 
Add + Non_6x_GBSpoly); and pseudo-diploidized dosage data 
(Pseudo_2x_GBSpoly) for quality-related traits (A; DM = dry mat-

ter, starch, BC = β-carotene, FC_P = flesh color in Peru; FC_U = flesh 
color in Uganda); and yield-related traits (B; NOCR = number of 
commercial storage roots, TNR = total number of storage roots, 
CYTHA = weight of commercial storage roots, RYTHA = weight of 
total storage roots, FYTHA = total weight of foliage) in a full-sib fam-
ily of sweetpotato
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advantage for PA in simpler traits. However, this com-
parative advantage faded with more complex yield-related 
traits. Our results therefore show that with genomic selec-
tion, the comparative advantage of using the linkage map 
information and QTL is dependent on trait architecture, 
hence the magnitude of QTL effects that can be mapped 
(Fig. 7).

Genetic variation, heritability and estimated rate 
of genetic gain

Given that the additive-effects-only model with dosage 
performed better for most traits in both sweetpotato and 
potato (Add_6x_GBSpoly and Add_4x_GBSCornell, 

Table 4   Summary quantitative-
genetic parameters derived 
from genomic selection with 
cross-validation applying 
different genetic effects models 
in sweetpotato and potato

�
2

a
 is the additive genetic variation, �2

e
 is the residual variance, h2 is the narrow-sense heritability, PA is the 

predictive ability, and ΔGG is the estimated rate of genetic gain considering the current breeding cycle 
length
a Traits as defined in Table 1
b Models: Add_2x_DArTseq = additive model using data from DArTseq called as diploid; Add_6x_GBSp-
oly = additive model using data with dosage from GBSpoly; Add_4x_GBSCornell = additive model 
using data with dosage from GBS at Cornell, Pseudo_2x_GBSCornell = additive model using data from 
GBSCornell with three heterozygote classes collapsed into one

Crop Traita Modelb �
2

a
�
2

e
h
2 PA ΔGG

Sweetpotato DM Add_2x_DArTSeq 1.6935 2.9536 0.36 0.33b 0.085889
Add_6x_GBSpoly 4.0035 2.0762 0.66 0.39a 0.176077

Starch Add_2x_DArTSeq 6.1716 13.7616 0.31 0.32b 0.158993
Add_6x_GBSpoly 12.1683 11.5424 0.53 0.34a 0.265111

BC Add_2x_DArTSeq 150.2336 113.1697 0.57 0.43a 1.0541
Add_6x_GBSpoly 225.1431 152.0581 0.60 0.39b 1.29041

FC_P Add_2x_DArTSeq 0.5416 0.3304 0.62 0.44a 0.064762
Add_6x_GBSpoly 0.8168 0.4189 0.66 0.42b 0.081339

FC_U Add_2x_DArTSeq 12.9633 10.9257 0.54 0.42a 0.295238
Add_6x_GBSpoly 16.1489 16.777 0.49 0.35b 0.305411

NOCR Add_2x_DArTSeq 50134102 2.93E + 08 0.15 0.19b 269.0607
Add_6x_GBSpoly 1.36E + 08 2.43E + 08 0.36 0.32a 722.4699

TNR Add_2x_DArTSeq 1.86E + 08 7.40E + 08 0.20 0.24b 681.9091
Add_6x_GBSpoly 4.71E + 08 5.83E + 08 0.45 0.38a 1606.149

CYTHA Add_2x_DArTSeq 8.6149 27.7157 0.13 0.18b 0.105664
Add_6x_GBSpoly 8.6149 26.6061 0.24 0.20a 0.129145

RYTHA Add_2x_DArTSeq 4.6249 31.4849 0.13 0.18b 0.07742
Add_6x_GBSpoly 10.9811 29.4989 0.27 0.22a 0.152434

FYTHA Add_2x_DArTSeq 7.678 26.0083 0.23 0.21b 0.116379
Add_6x_GBSpoly 12.8721 26.6023 0.33 0.24a 0.186564

Potato LB2014_O Add_4x_GBSCornell 0.0189 0.0193 0.49 0.68a 0.011686
Pseudo_2x_GBSCornell 0.0195 0.023 0.46 0.63b 0.010997

LB2016_Y Add_4x_GBSCornell 0.0191 0.0259 0.42 0.62a 0.010711
Pseudo_2x_GBSCornell 0.0166 0.0323 0.34 0.52b 0.008375

PVY_L Add_4x_GBSCornell 0.0419 0.0738 0.36 0.55a 0.013817
Pseudo_2x_GBSCornell 0.0364 0.0818 0.31 0.51b 0.011924

AYP_K Add_4x_GBSCornell 0.0118 0.0327 0.27 0.45a 0.00611
Pseudo_2x_GBSCornell 0.0066 0.0389 0.15 0.34b 0.003453

WMT_K Add_4x_GBSCornell 0.0132 0.0322 0.29 0.48a 0.006893
Pseudo_2x_GBSCornell 0.0069 0.0392 0.15 0.34b 0.00353

TTW16_Ica Add_4x_GBSCornell 2.00E − 04 0.0028 0.07 0.16a 0.000283
Pseudo_2x_GBSCornell 3.00E − 04 0.0027 0.10 0.16a 0.000346

TTW16_HLJ Add_4x_GBSCornell 0.0061 0.018 0.25 0.38a 0.003612
Pseudo_2x_GBSCornell 0.0049 0.0192 0.20 0.31b 0.0028
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respectively), we evaluated quantitative-genetic parame-
ters for this model in comparison with the additive model 
without dosage for both crops (Add_2x_DArTseq for 
sweetpotato and Pseudo_6x_for potato). Narrow-sense 
heritability (h2) ranged from 0.24–0.66 for the model 
with dosage (Add_6x_GBSpoly) and 0.13–0.62 for the 
model without dosage (Add_2x_DArTseq) in sweetpo-
tato. In potato, (h2) ranged from 0.07 to 0.49 in the model 
with dosage (Add_4x_GBSCornell) and 0.10 to 0.46 in 
the model with pseudo-diploidized dosages (Pseudo-
2x_GBSCornell; Table 4). As expected, traits with sim-
pler architecture (quality-related traits in sweetpotato; 
disease traits in potato) had the highest (h2) compared 
to more complex yield-related traits. All models across 
crops resulted in positive estimated genetic gain consider-
ing L = 5 years in sweetpotato and L = 8 in potato, which 
are the cycle lengths of current breeding schemes at CIP 
(Table 4). This implies that more genetic gains can be real-
ized if such breeding cycle lengths are further significantly 
reduced.

Discussion

Low‑cost, targeted amplicon sequencing platforms 
could realize faster genetic gains per unit time

Having a reliable, cost-efficient genotyping platform that 
ensures faster data turn-around to breeding programs on time 
to impact selection and advancement decisions is a must for 
routine application of genomic selection in plant breeding 
programs. Here we have compared results based on data 
from three GBS-based platforms, two of which provide data 
at the commercial diploid sequencing depth level (DArTSeq 
and GBSCornell). About 100 × read depth was required to 
confidently call all the five heterozygous dosage classes of 
sweetpotato, against 25-30x required for the diploids. These 
results agree with studies in potato where Uitdewilligen 
et al. (2013) reported that 60-80x depth was required to con-
fidently call the three heterozygote classes. GBSpoly (Wadl 
et al. 2018) provided high confidence, high density SNP data 
which are necessary for applications requiring high density 
markers such as genetic linkage mapping, QTL mapping 
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Fig. 5   Model comparison in potato. Box plots comparing predic-
tive ability of additive-effects-only model (Add_4x_GBSCornell); 
additive and non-additive effects (Add + Non_4x_GBSCornell); 
and pseudo-diploidized dosage data (Pseudo_2x_GBSCornell); 
using minimum allele frequency (MAF) ≥ 30% (A; 411 SNPs) and 
MAF ≥ 40% (B; 178 SNPs). LB2014_O = late blight in Oxapampa 

(Peru) in 2014, LB2016_Y = late blight in Yunnan (China) in 2016, 
PVY_L = potato virus Y in Lima (Peru), AYP_K = average yield per 
plant in Kunming (China), WMT_K = weight of marketable tubers 
in Kunming, TTW16_Ica = total tuber weight in Ica (Peru) in 2016 
across three drought treatments, TTW16_HLJ = total tuber weight in 
Heilongjiang (China) in 2016, single treatment, in potato
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and genome-wide association mapping for trait discovery 
pipelines. These resources are still limited in sweetpotato. 
However, its density and cost are currently not amenable to 
routine use in plant breeding, where resources are limited. 
Other options for more precise genotyping such as SNP 
arrays, in addition to issues with ascertainment biases, are 
crop-specific and therefore do not benefit from economies of 
scale that drive costs down. Breeding programs of polyploid 
crops therefore have to weigh whether investing more for 
higher depth of sequencing is an efficient resource alloca-
tion strategy (Endelman et al. 2018). To this end, although 
our results show that genotype quality and consequently the 
number of realized SNPs are lower with low allele sequenc-
ing depth, we also show that only a small number of markers 
are required to realize relatively high PA, if the SNPs are 
highly informative. It should, however, be noted that these 
results may apply only to the kind of populations analyzed 
in the current study, and that more complex populations 
like large, unstructured panels may require higher density 
markers. These results, however, agree with the findings of 
Chang et al. (2019) who showed that PA can be improved 

by prioritizing relevant SNP polymorphisms. Similarly, 
Covarrubias-Pazaran et al. (2018) using three biparental 
populations of the American cranberry, showed that addition 
of SNPs after 500 markers did not result in much increase 
in PA as only a few hundred SNPs were needed to reach PA 
plateau. This therefore implies that for practical plant breed-
ing applications, using established genotyping platforms 
that ensure low-costs due to scale effects and faster data 
turn-around will have better likelihood of success in routine 
application of genomic selection in polyploids. The costs 
associated with the need for high allele sequencing depth to 
confidently call SNPs could be offset by targeting only few 
but highly informative SNPs and investing a little more in 
sequencing depth of those. SNP informativeness is critical 
in this case, as our data show that allele frequency affects 
PA more than the number of markers. Guo et al. (2018) 
found that at allele sequencing depth between 10x and 20x, 
between 80 and 100 K SNPs would be required to accurately 
predict additive breeding values in tetraploid rye grass. Our 
data similarly show that at low minimum allele frequency 
(≥ 5%), 5000-10,000 SNPs had better PA than 500-1,000 

Fig. 6   Comparing effects of allele frequency and number of markers 
on predictive ability in sweetpotato. Box plots comparing the effect 
of number of markers (different minimum allele frequency) on pre-
dictive ability using additive-effects-only model (Add_6x_GBSp-
oly) with 10,358 SNPs, 2883 SNPs and 1291 SNPs in sweetpotato. 
A; DM = dry matter, starch, BC = β-carotene, FC_P = flesh color 

in Peru; FC_U = flesh color in Uganda; and yield-related traits: B; 
NOCR = number of commercial storage roots, TNR = total num-
ber of storage roots, CYTHA = weight of commercial storage roots, 
RYTHA = weight of total storage roots, FYTHA = total weight of 
foliage in a full-sib family of sweetpotato
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SNPs. Since both crops already have GBS-based SNPs at 
high density, the process can be fast-tracked by targeting the 
high informative segregating loci in amplicon sequencing. 
This is encouraging as polyploid crops in developing coun-
tries with limited access to expensive, high-quality geno-
typic datasets could also deploy GS approaches.

Modeling non‑additive genetic effects 
has negligible contribution to predictive ability

Our results in both potato and sweetpotato show that 
additive-effects-only models, whether diploidized or with 
dosage, were comparatively better in PA than the models 
considering non-additive effects for all simple traits. This 
comparative advantage, however, lessened with more com-
plex traits, where non-additive effects and inclusion of dos-
age information became slightly more relevant, although in 
most cases the additive-effects-only model with dosage still 
remained the best in terms of PA. This finding makes sense 
in quantitative genetic terms as the more the number of genes 

affecting a trait, the more the expected interaction among 
loci. In sweetpotato for example, issues of ‘missing’ herit-
ability have been established for yield-related traits using 
the current BT population in multiple environments, where 
only a few QTL with very small effects were reported even 
though a very dense, well phased hexaploid genetic map 
was used (Pereira et al. 2020; Gemenet et al. 2020). Accord-
ing to Varona et al. (2018), the contribution of non-additive 
effects to genetic variance depends on the allele frequency 
of the causative loci, and their consideration in breeding 
programs can improve the prediction accuracy for breeding 
values and inform cross-combinations that maximize non-
additive variation in progeny. Several studies have, however, 
shown that inclusion of non-additive effects in the predic-
tion models has negligible effects in improving the accu-
racy of predicting breeding (additive) values. For instance, 
Endelman et al. (2018) reported uncertainty in partitioning 
non-additive genetic variance in tetraploid potato, whereas 
Crow (2010), suggested that variance due to epistasis would 
have little effects in plant breeding as additive variance and 
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Fig. 7   Effect of considering QTL haplotypes in sweetpotato. Box-
plots comparing predictive ability of models using QTL haplotypes 
only in prediction (Q-BLUP); QTL combined with prediction based 
on markers per se, (Q + G-BLUP); prediction using markers per se 
without QTL (G-BLUP) for quality-related traits (A; DM = dry mat-
ter, starch, BC = β-caroten, FC_P = flesh color in Peru; FC_U = flesh 
color in Uganda); and yield-related traits (B; NOCR = number of 

commercial storage roots, TNR = total number of storage roots, 
CYTHA = weight of commercial storage roots, RYTHA = weight of 
total storage roots, FYTHA = total weight of foliage) in a full-sib fam-
ily of sweetpotato. The side graphs show the number of QTL in the 
model at a given replication (iteration) of cross-validation following 
the forward QTL search and backward QTL elimination used in the 
random-effect multiple interval mapping method
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covariance effects quickly overshadow such contribution fol-
lowing selection. Non-additive effects are mainly considered 
important in genomic prediction (prediction for performance 
of different traits based on the genotype of the individual), 
while additive-only methods as important in genomic selec-
tion (prediction of parental value of an individual), because 
only additive effects can be passed from parents to progeny 
(Varona et al. 2018). However, our results, supported by pre-
vious findings in other crops, imply that in light of the large 
number of moving parts to consider, including concerns with 
genotyping platforms and genotype quality for polyploids, 
practical breeding programs for potato and sweetpotato, and 
perhaps other polyploid crops, will achieve more advances 
considering only the infinitesimal model (additive) for both 
genomic selection and genomic prediction.

The relative importance of considering dosage, 
haplotypes and quantitative trait loci is dependent 
on trait architecture

Oliveira et al. (2019) showed that the relative advantage of 
including dosage information to PA is dependent on trait 
architecture. Our results confirm this and show that for sim-
ple traits diploidized data, especially when the genotypic 
data are directly called as diploid during variant calling, e.g., 
the DArTSeq data in sweetpotato rather than pseudo-dip-
loidizing data already called with dosage, e.g., in GBSCor-
nell data in potato, would be adequate for prediction. How-
ever, as the traits become more complex, considering dosage 
improves PA and therefore the rate of progress that can be 
made for such traits. Endelman et al. (2018) also showed 
that not considering allele dosage effects in potato reduced 
prediction accuracy by about 0.13 on average using data 
from the SolCAP potato SNP array, where they reported PA 
ranging from 0.06 to 0.63 for specific gravity, yield and fry 
color. Given that most traits are quantitative, we recommend 
the use of data with dosage that could benefit from improved 
genotype calling methods, such as Bayesian methods.

Our data in sweetpotato also show that for all traits, 
considering both QTL and haplotypes resulted in the best 
PA especially for simple traits, although this comparative 
advantage also faded with more complex yield traits. Hav-
ing markers in complete LD with causative QTL for a given 
trait is a prerequisite for improving PA in genomic prediction 
(Velasco et al. 2019). The study of Cuyabano et al. (2014) 
showed that considering haplotype blocks rather than sin-
gle markers improved PA for dairy traits in cattle. This is 
because haplotypes are supposed to be in tighter LD with 
QTL than single markers. This can be attributed to the fact 
that GS-only G-BLUP methods use the average genome 
information relationship for model building and for pre-
diction whereas incorporating QTL analysis gives differ-
ent weights (QTL effects) to different ‘significant’ genome 

positions (QTL positions) for model building and for pre-
diction. Due to this, studies have proposed a combination 
of QTL mapping to explain trait architecture and genomic 
prediction, to improve PA (Spindel et  al. 2016; Lopes 
et al. 2017; Morgante et al. 2018; Bhandari et al. 2019). 
Our results, however, indicate that the relative advantage 
of considering QTL-based haplotypes is dependent on trait 
architecture and directly related to the number and effect 
size of the QTL in question. In this case, yield-related traits 
did not show much improvement in PA when QTL were 
considered. Despite this finding, additional efforts in study-
ing the effect of haplotype structure on PA are recommended 
to increase the likelihood of fully recovering the polyploid 
genetic information, where the information from individual 
dosage markers can be rather limited.

Further considerations for optimized breeding 
programs using genomic selection

The PA of genomic selection is influenced by several factors 
including trait architecture, the size of the training popula-
tion, the relationship between the training and validation 
populations, heritability of the trait, the level of linkage dis-
equilibrium (LD), marker density, environmental variances 
and covariance among traits (Nakaya and Isobe 2012). In 
addition to the already discussed factors, our results indi-
cate that genotype-by-environment interaction plays a sig-
nificant role in determining PA as can be seen in the same 
traits measured across several environments. Additionally, 
PA magnitude even for simple traits was lower in sweetpo-
tato where we used BLUEs across six environments, than in 
potato where predictions were made per single environment. 
Models incorporating genotype-x-environment interaction 
are important and more realistic when predicting perfor-
mance of untested genotypes across environments (Bur-
gueno et al. 2012; Heslot et al. 2014; Wang et al. 2018). 
Furthermore, PA for complex yield-related traits was always 
lower than for simpler quality-related or disease traits. PA 
for such complex traits has been shown to benefit from 
multi-trait selection models incorporating simpler, corre-
lated traits with the primary trait (Covarrubias-Pazaran et al. 
2018; Michel et al. 2019). Additionally, Bernal-Vasquez 
et al. (2014) alluded to the fact that phenotypic data analy-
sis contributed to improved PA, which speaks to the neces-
sary precision and accuracy of the phenotype in training 
populations. Taken together, the current results show that 
genomic selection will contribute toward increased genetic 
gains, especially via reduced breeding cycle time in potato 
and sweetpotato. However, the effectiveness of genomic 
selection will have to be considered from the perspective of 
optimizing the entire breeding program (Cobb et al. 2019). 
Therefore, given the diversity existing from program to 
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program in terms of resources and human capacity, no ‘one 
size fits all’ scenario is anticipated.

Finally, it does not escape to our attention that the pre-
dictions herein are based on single populations. However, 
plant breeding requires several levels of allele recombination 
through generations. We cannot estimate from the current 
data, how such recombination complexity will affect the 
efficiency of GS in breeding programs. Additional studies 
estimating PA in actual multi-generation breeding popula-
tions therefore need to be carried out to reliably estimate the 
value of GS to potato and sweetpotato, and perhaps other 
polyploid breeding programs. Furthermore, we used an F1 
population in sweetpotato and a fairly structured diversity 
panel in potato (Lindqvist-Kreuze et al. 2020), which may 
influence the number of markers required to carry out pre-
dictions. For routine application of GS therefore, there is 
need to determine the number of markers based on the popu-
lation, its allele frequency and population structure.
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