Skip to main content
. 2020 Oct 16;3:135. doi: 10.1038/s41746-020-00338-8

Table 2.

Model validation using overlapping attributes and annual observations.

Threshold Model Sensitivity Specificity Overall
CLIMB EPIC CLIMB EPIC CLIMB EPIC
0.5 SVM 0.63 0.81 0.75 0.70 0.72 0.74
Logistic Regression 0.64 0.76 0.78 0.72 0.75 0.73
Random Forest 0.62 0.83 0.77 0.65 0.74 0.71
XGBoost 0.58 0.75 0.75 0.71 0.71 0.72
LightGBM 0.56 0.62 0.75 0.83 0.71 0.76
Meta-La 0.61 0.78 0.79 0.76 0.75 0.77
0.45 SVM 0.76 0.90 0.61 0.45 0.64 0.60
Logistic Regression 0.69 0.83 0.69 0.65 0.69 0.71
Random Forest 0.73 0.90 0.63 0.53 0.65 0.65
XGBoost 0.68 0.79 0.70 0.66 0.70 0.70
LightGBM 0.69 0.69 0.68 0.77 0.68 0.74
Meta-La 0.70 0.85 0.68 0.70 0.68 0.75
0.4 SVM 0.84 0.93 0.47 0.42 0.55 0.59
Logistic Regression 0.78 0.88 0.60 0.59 0.64 0.68
Random Forest 0.85 0.92 0.54 0.39 0.61 0.56
XGBoost 0.75 0.85 0.62 0.60 0.65 0.68
LightGBM 0.75 0.73 0.61 0.73 0.64 0.73
Meta-La 0.81 0.90 0.58 0.58 0.63 0.68
0.35 SVM 0.92 0.96 0.37 0.32 0.50 0.53
Logistic Regression 0.86 0.92 0.51 0.51 0.59 0.64
Random Forest 0.89 0.96 0.45 0.31 0.55 0.52
XGBoost 0.85 0.87 0.54 0.60 0.61 0.69
LightGBM 0.85 0.80 0.52 0.70 0.60 0.73
Meta-La 0.88 0.93 0.49 0.52 0.58 0.65
0.3 SVM 0.93 0.98 0.25 0.23 0.40 0.47
Logistic Regression 0.90 0.93 0.41 0.48 0.52 0.63
Random Forest 0.95 0.95 0.30 0.24 0.45 0.47
XGBoost 0.90 0.90 0.45 0.56 0.55 0.67
LightGBM 0.92 0.86 0.42 0.62 0.53 0.70
Meta-La 0.93 0.96 0.38 0.37 0.51 0.56
Regression coef. (p value) R-square (correlation) 1.08 (6.9E−08) 0.65 (0.81) 0.77 (8.6E−09) 0.70 (0.84) 0.88 (1.8E−08) 0.68 (0.83)

Bold numbers indicate models of high practical value.

aEnsemble of SVM, Logistic Regression, and Random Forest.