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Non-invasive decision support for NSCLC
treatment using PET/CT radiomics
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Two major treatment strategies employed in non-small cell lung cancer, NSCLC, are tyrosine
kinase inhibitors, TKls, and immune checkpoint inhibitors, ICls. The choice of strategy is
based on heterogeneous biomarkers that can dynamically change during therapy. Thus, there
is a compelling need to identify comprehensive biomarkers that can be used longitudinally to
help guide therapy choice. Herein, we report a '8F-FDG-PET/CT-based deep learning model,
which demonstrates high accuracy in EGFR mutation status prediction across patient cohorts
from different institutions. A deep learning score (EGFR-DLS) was significantly and positively
associated with longer progression free survival (PFS) in patients treated with EGFR-TKIs,
while EGFR-DLS is significantly and negatively associated with higher durable clinical benefit,
reduced hyperprogression, and longer PFS among patients treated with ICls. Thus, the EGFR-
DLS provides a non-invasive method for precise quantification of EGFR mutation status in
NSCLC patients, which is promising to identify NSCLC patients sensitive to EGFR-TKI or ICI-
treatments.
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on-small cell lung cancer (NSCLC) is the most common

histologic subtype of lung cancer and the leading cause of

cancer-related death worldwide, with a dismal 5-year
survival rate of 5% for the patients diagnosed with metastatic
disease!. The emergence of two treatment paradigms has revo-
lutionized cancer treatment and improved survival clinical among
subsets of patients, with advanced NSCLC: targeted therapy
represented by epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors (TKIs)2? and immune checkpoint inhibitors
(ICIs) targeting the programmed death-1 (PD-1) receptor on T-
cells, or the programmed death ligand-1 (PD-L1) expressed by
tumor cells*-8. Patients are treated with TKIs when harboring an
activating mutation of the EGFR, resulting in objective response
rates (ORR) as high as 80% compared to an ORR of 10% in
patients with wild-type EGFR®. Notably, patients with EGFR
mutations have a low ORR to ICI treatments!?, and this is
believed to be due to the lack of inflammatory microenviron-
ment!l. Therefore, an accurate estimation of EGFR mutation
status could inform therapy choice between EGFR-TKI or ICI
treatment, which would improve the patient outcome.

At present, EGFR mutation status!? is determined by tissue-
based assays, which have many limitations, including inter alia:
sampling bias due to the heterogeneous nature of tumors, a
requirement for invasive biopsies with associated morbidities, the
assays are not rapid, can be expensive, and may fail to yield
actionable results due to insufficient quantity or quality of the
tissue!3. Further, EGFR mutational status and immune landscape
may change during the course of therapy and progression!4. As
such, high-throughput and, ideally, noninvasive longitudinal
methods that can predict EGFR mutational status is a critical
need. Recently, noninvasive molecular imaging with positron
emission tomography (PET) with a radiotracer, 18F-radiolabeled
polyethylene glycol (PEG)-modified (PEGylated) anilinoquina-
zoline derivative, 2-(2-(2-(2-(4-(3-chloro-4-fluorophenylamino)-

6-methoxyquinazolin-7-yl)oxy)ethoxy)ethoxy)ethoxy) ethyl 4-
methylbenzenesulfonate (18F-MPG), has shown potential to
detect mutated EGFR and identify patients who are likely to
benefit from EGFR-TKI treatment!>. However, this radiotracer is
not routinely available.

In contrast to '8F-MPG, PET/CT imaging of fluorodeox-
yglucose, 18F-FDG, is widely used for staging of patients with
NSCLC. Further, uptake of this tracer is known to be affected by
EGER activation and inflammation!®. Early studies have shown
that radiomics features extracted from PET/CT images, and CT
images can predict gene expression patterns and EGFR muta-
tion status'”>18. However, the hand-crafted radiomics features
used in these prior studies were computed from a segmented
tumor volume, which is dependent on precise tumor boundary
delineation and does not consider information that may be
present in the peritumoral microenvironment. Hence, advanced
artificial intelligence models using deep learning approaches
that do not require accurate segmentation have been investi-
gated to achieve better performance in diagnosis, prediction,
and prognosis!®20.

In this study, we develop an !8F-FDG PET/CT-based deep
learning model, which could accurately classify EGFR mutation
status, using two retrospective cohorts of patients accrued from
two institutions: the Shanghai Pulmonary Hospital (SPH),
Shanghai, China, and the Fourth Hospital of Hebei Medical
University (HBMU), Hebei, China. To evaluate the performance
of the EGFR prediction model, an external test cohort from the
Fourth Hospital of Harbin Medical University (HMU), Harbin,
China is used. Using the model generated deep learning score
(EGFR-DLS), further evaluation of the potential value in guiding
therapy choice is performed in the TKI-treated patients from
HMU and ICI-treated patients from H. Lee Moffitt Cancer Center
and Research Institute (HLM), Tampa, Florida, respectively
(details shown in Fig. 1).
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Fig. 1 Study design and inclusion and exclusion diagram. The SPH and HBMU data comprised EGFR mutation status and the corresponding imaging data,
and was used to train and validate the deep learning score (EGFR-DLS) generated by the deep learning model. The HMU TKI-treated data comprised EGFR
mutation status, and the corresponding imaging data was used for the external test of the EGFR-DLS and also used for the investigation of the prognostic
value of the EGFR-DLS for TKI treatment. The HLM ICl-treated data comprised patients included in anti-PD-1 and anti-PD-L1 immunotherapy, and was used
for the investigation of the prognostic value of the EGFR-DLS for immunotherapy.
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Table 1 Demographic and clinical characteristics of EGFR mutation related patients.
Characteristic Training cohort (N = 429) Validation cohort (N =187) HMU EGFR-test-cohort (N = 65)
EGFR+ EGFR— P EGFR+ EGFR— P EGFR+ EGFR— P
(N=201) (N =228) (N=175) (N=112) (N=36) (N=29)
Age(y) 0.55 0.99 0.21
Mean = SD 62.79+8.65 63.26+894 62.6+9.14 62.47 £9.32 58.81+10.4 61.07 £9.07
Sex, no. (%) <.001" <.001" 047"
Female 137 (68.16) 57 (25) 50 (66.67) 23 (20.54) 24 (66.67) 12 (41.38)
Male 64 (31.84) 171 (75) 25 (33.33) 89 (79.46) 12 (33.33) 17 (58.62)
TNM stage 0.23 <.001" 0.52
| 16 (57.71) 111 (48.68) 47 (62.67) 56 (50) 8 (22.22) 7 (24.14)
Il 30 (14.93) 47 (20.61) 8 (10.67) 24 (21.43) 2 (5.56) 1(3.45)
1 30 (14.93) 42 (18.42) 8 (10.67) 20 (17.86) 6 (16.67) 9 (31.03)
[\ 25 (12.44) 28 (12.28) 12 (16) 12 (10.71) 20 (55.56) 12 (41.38)
Histology (baseline), <.001" <007 .002"
no. (%)
ADC 197 (98.01) 157 (68.86) 75 (100) 80 (71.43) 36 (100) 22 (75.86)
SCC 4 (1.99) 71 (31.14) 0 (0O 31 (27.68) 0 (0) 7 (24.4)
Smoking status, <.001 0.076 .070
no. (%)
Never 156 (77.61) 80 (35.09) 56 (74.67) 36 (32.14) 25 (69.44) 13 (44.83)
Former 45 (22.39) 148 (64.91) 19 (25.33) 76 (67.86) 11 (30.56) 16 (55.17)
SUV ax <.007 <.001" 0.99
Mean + SD 7.92+5.22 1017 £5.7 6.97 +4.82 10.32+5.52 9.47 £7.67 8.41+6.06
PD-L1 status, no. (%) .069 0.28 NA
>50% 10 (4.98) 24 (10.53) 5 (6.67) 12 (10.71) NA
1-49% 12 (6.97) 30 (13.16) 3 (4.00) 12 (10.71)
0% 89 (43.28) 102 (44.74) 32 (42.67) 48 (42.86)
Unknown 90 (44.78) 72 (31.58) 35 (46.67) 40 (35.71)
EGFR-deep learning <.001 <007 <007
score (EGFR-DLS)
Median 0.65 0.34 0.63 0.38 0.55 0.26
(IQR) (0.54, 0.73) (0.5, 0.34) (0.55,0.70) (0.21,0.49) (0.38,0.66)  (0.08, 0.44)
The comparison of age, EGFR-DLS, and SUV . between two groups was performed with two-sided Wikcoxon sign-rank test, and the rest variables were compared with two-sided Fisher's test. IQR is
short for interquartile range. ADC is short for adenocarcinoma and SCC is short for squamous cell carcinoma.
NA not available.
*p Value <0.05.

Results

Demographic and clinical characteristics. Table 1 shows the
demographic and clinical characteristics of the patients used to
train and test EGFR-DLS, as a potential diagnostic biomarker for
EGFR mutation status. The prevalence of mutant EGFR in the
training, validation, and HMU EGFR test cohorts was 46.85%,
40.11%, and 55.38%, respectively. There was no significant dif-
ference for histology (p=0.26) or smoking status (p=0.19)
among these three cohorts, but the prevalence of females was
significantly higher (p =0.033) in the HMU cohort. The demo-
graphic and clinical characteristics of the patients to test the
utility of EGFR-DLS to predict response are presented in Table 2.
For the EGFR-TKI-treated cohort (n=67), the median
progression-free survival (PFS) was 6.1 months, with 27 (40.30%),
9 (13.43%), and 31 (46.27%) patients responding with progressive
disease (PD), stable disease (SD), and complete response (CR)/
partial response (PR), respectively. The ICI-treated cohort (n =
149) had a median PFS of 7.67 months, with 31 (20.81%) and 87
(58.39%) patients responding with hyperprogression (time-to-
treatment failure (TTF) <2 months) and durable clinical benefit
(DCB, PFS =6 months).

Performance of EGFR-DLS in predicting EGFR mutation sta-
tus. To discriminate EGFR-mutant type from wild type, the
EGFR-DLS vyielded area under the receiver operating character-
istics curves (AUCs) of 0.86, 0.83, and 0.81, and accuracies

(ACCs) of 81.1%, 82.8%, and 78.5% in the training, internal
validation, and external test cohorts, respectively (Fig. 2 and
Supplementary Table 1). These were significantly higher than the
commonly used SUV ,,«, which yielded AUCs of 0.62 (p < 0.001,
Delong test), 0.69 (p <0.001, Delong test), and 0.50 (p <0.001,
Delong test), and ACCs of 58.0% (p <0.001, McNemar’s test),
72.2% (p=0.003, McNemar’s test), and 72.2% (p<0.001,
McNemar’s test) in the three cohorts, respectively.

When investigating the added value of EGFR-DLS in addition
to standard clinical variables (i.e., age, sex, stage, histology,
smoking status, and SUV ,,,), a clinical signature (CS model) was
created by combining sex, histology, and smoking status (all other
variables were uninformative), and a combined signature
incorporating EGFR-DLS, histology, and smoking status (CMS)
were built with multivariable logistic regression analyses in the
training cohort. Their quantitative performance shown in Fig. 2
and Supplementary Table 1 indicate that the CMS model had the
better performance with AUCs of 0.88, 0.88, and 0.84, ACCs of
82.3%, 82.9%, and 80.0% in the training, internal validation, and
external test cohorts, respectively. These were significantly higher
than the CS with AUCs of 0.78 (p < 0.001, Delong test), 0.78 (p <
0.001, Delong test), 0.70 (p =0.005, Delong test), and ACCs of
72.5% (p <0.001, McNemar’s test), 72.7% (p = 0.015, McNemar’s
test), and 64.6% (p=0.055, McNemar’s test), respectively.
However, the difference between the CMS model and the
EGFR-DLS by itself was negligible (p > 0.05). In addition, through
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Table 2 Demographic and clinical characteristics for TKl-treated and ICl-treated patients.
Characteristic HMU TKI-treated patients (N =67) HLM ICl-treated patients (N =149)
All EGFR-DLS P All EGFR-DLS P
High (N=29) Low (N=38) High (N=39) Low (N=110)
Age(y) 0.016 0.77
Mean £ SD 60.31+£9.36 57.31+8.65 62.61+9.33 65.21+13.01 65.95+£10.36 64.95£13.86
Sex, no. (%) 0.007" 0.45
Male 38 (56.72) 22 (75.86) 16 (42.11) 60 (40.27) 18 (46.15) 42 (38.18)
Female 29 (43.28) 7 (24.14) 22 (57.89) 89 (59.73) 21 (53.85) 68 (61.82)
TNM stage 0.26 0.15
| 15 (22.39) 9 (31.03) 6 (15.79) 0 (0 0(0) 0 O
Il 4 (5.97) 1(3.45) 3(7.89) 0 (0 0(0) 0 (0
1 15 (22.39) 4 (13.79) 11 (28.95) 25 (16.78) 2 (513) 23 (20.91)
v 33 (49.25) 15 (51.72) 18 (47.37) 124 (83.22) 37 (94.87) 87 (79.09)
Histology (baseline), 0.016 0.048"
no. (%)
ADC 60 (89.55) 29 (100) 31 (81.58) 100 (67.11) 21 (53.85) 79 (71.82)
SCC 7 (10.45) 0 (0) 7 (18.42) 49 (32.89) 18 (46.15) 31(28.18)
Smoke, no. (%) 0.006' 1.00
Never 40 (59.7) 23 (79.31) 17 (44.74) 54 (36.24) 14 (35.9) 40 (36.36)
Former 27 (40.3) 6 (20.69) 21 (55.26) 95 (63.76) 25 (64.1) 70 (63.64)
SUV max 0.86 0.56
Mean £ SD 9.5+£6.97 8.93+5.55 9.93+£7.93 N.67+7.74  10.65+6.22 12.04+8.21
PD-L1 status, no. (%) NA <.001"
>50% NA 22 (14.77) 3(7.69) 19 (17.27)
1-49% 19 (12.75) 8 (20.51) 11 (10.00)
0% 34 (22.82) 15 (38.46) 19 (17.27)
Unknown 74 (49.66) 13 (33.33) 61 (55.45)
Follow up <0.001" <0.001"
Progression 34 (50.75) 7 (24.14) 27 (71.05) 94 (63.09) 33 (84.62) 61 (55.45)
Rate (%)
PFS, median, month 6.1 75 3.75 7.67 4.20 9.18
(IQR) (3,9.36) (3.38,11.15) (2.03,6.10) (2.7614.99) (1.77,9.27) (3.67,16.00)
EGFR-deep learning <0.001" <0.001"
score (EGFR-DLS)
Median 0.45 0.60 0.36 0.29 0.64 0.21
(IQR) (0.23,0.56)  (0.54,0.69) (0.10,0.39) (0.1,0.53) (0.57,0.72) (0.09,0.35)
The comparison of age, EGFR-DLS, and SUV,.., between two groups was performed using two-sided Wilcoxon sign-rank test, PFS was compared with two-sided log-rank test, and the rest variables were
compared with two-sided Fisher's test. ADC is short for adenocarcinoma and SCC is short for squamous cell carcinoma.
IQR interquartile range, NA not available.
*p Value <0.05.

multivariable logistic regression analysis, EGFR-DLS was the only
identified significant independent variable in EGFR prediction in
the validation and test cohorts (Supplementary Table 2).

Multivariate linear regression (adjusted r2=0.25, F=24.77,
P <0.001) further showed that the EGFR-DLS was independently
associated with sex (coefficient=0.18, p=0.007), histology
(coefficient = —0.31, p<0.001), and SUV,., (coefficient=
—0.14, p=0.005). A total of 25.0% of EGFR-DLS variability
could be explained by these three parameters (Supplementary
Table 3).

Distribution and characteristics of EGFR-DLS. By performing
unsupervised hierarchical clustering method on the deeply
learned features (i.e., the output of last global average pooling
layer, N = 256), two patterns were obtained as shown in Fig. 3a.
These patterns (I and II) were distinguished by a significantly
higher EGFR mutation rate (p <0.001), proportion of females
(p < 0.001), adenocarcinomas (p < 0.001), and never smokers (p <
0.001) in pattern II for both the training and validation cohorts.
Given the limited squamous cell carcinoma rate in the HMU
cohort, no significant difference was found between patterns I
and II. However, pattern II still had a higher EGFR-mutant rate

(p<0.001), female:male ratio (p=0.076), and never smokers
(p =0.045) in this cohort. Further, the EGFR-DLS significantly
discriminated between the EGFR-mutant-type and EGFR-wild-
type tumors in all three cohorts in both histologies (p <0.05,
Fig. 3b).

Figure 3¢, d shows representative model inputs and outputs for
two patients: one with wild-type EGFR and other with mutant
EGEFR. The high-response areas of the filters in the previous layers
(the first and second columns of the third line) indicate the self-
learned important regions in the subsequent deep learning
features generation. After inputting a mutant EGFR tumor into
the deep learning model, the positive filter (the third column of
the third line) generated a strong response, while the negative
filter (the fourth column of the third line) was nearly shut down.
Similarly, the negative filter was strong activated, and the positive
filter was nearly shut down with EGFR-wild-type tumor fed to the
deep learning model, which reveals the strong classification ability
of the deep learning model. When the input (regions of interest)
ROIs were enlarged to include more organs and tissues, similar
activation maps, positive/negative filters, and predicted EGFR-
DLSs were also obtained as shown in Supplementary Fig. 1.

In this work, accurate segmentations were not needed, yet
radiologists had to delineate a ROI that contained the tumors and
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Fig. 2 Performance of the EGFR-DLS in predicting EGFR status across different cohorts. The top row are the ROC curves of different models in the
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comparisons among different models, a two-sided Delong test was used. *** denotes a p value <0.001. If p value is otherwise, it is noted. Statistics for AUC,
sensitivity, specificity, and accuracy for all cohorts are provided in Supplementary Table 1.

some surrounding tissue. To investigate the effect of the minor
differences between the different radiologists in selecting the
ROIs, the ROIs from a subset of the validation patients (n =73
cases) were generated by all the three radiologists, and three
EGFR-DLSs were obtained accordingly. The intraclass correlation
coefficient (ICC) of these three EGFR-DLSs was 0.91 (95%
confidence interval (CI): 0.87-0.94, p<0.001), and indicating
there were no significant differences in AUCs of these three
EGFR-DLSs (Supplementary Fig. 2), both of which validate the
reproducibility of EGFR-DLS with the input images selected by
different radiologists. Further stratified analysis was also per-
formed to investigate the independence of the model on tumor
location. For the external HMU test cohort, the EGFR-DLS
achieved AUCs of 0.98 (95% CI: 0.93-1.00, p = 0.002), 0.80 (95%
CL 0.61-1.00, p=0.020), 0.93 (95% CI: 0.77-1.00, p =0.013),
0.97 (95% CI: 0.88-1.00, p = 0.016) in tumors surrounded by air
(n =15 cases), tumors surrounded by air and mediastinum (n =
23 cases), tumors surrounded by air and chestwall (n = 13 cases),
and tumors surrounded by air, mediastinum, and chestwall (n =
14 cases), respectively. There is no significant difference of the
AUC between any two different types (p=0.10-0.82), which
suggests this work is independent on tumor location.

Correlation of EGFR-DLS with histologic findings and MPG
imaging. For the patients with consistent results between EGFR
status from biopsy and !8F-MPG imaging (N = 64), the EGFR-
DLS derived from 18FFDG was moderately positively correlated
with 18F-MPG accumulation in tumors measured by 8F-MPG
SUV nax (Spearman rho =048, p <0.001, Fig. 4a). Further, the
hot-spot regions shown in negative and positive filters (Fig. 3c, d,
row 3, columns 3 and 4) also corresponded well with the 8F-MPG

uptake of the EGFR-wild type and mutant type, with a median
structural similarity index?! of 0.66 (interquartile range (IQR):
0.38, 0.77; 0.66 for Fig. 3c and 0.70 for Fig. 3d, respectively).

Performance of EGFR-DLS to predict EGFR-TKI treatment
response. The distribution of EGFR-DLS in patients with dif-
ferent response is shown in Fig. 4b. In the 31 patients with an
objective response (PR/CR) to TKI therapy, the EGFR-DLS was
significantly higher (median: 0.53) compared to the 36 patients
with PD and SD (median: 0.39; Wilcoxon’s p = 0.042). Further, if
you grouped patients based on the 40 patients with controlled
disease (SD/PR/CR), the EGFR-DLS was higher (median: 0.52)
though not significant, compared to the 27 patients with PD
(median: 0.38; Wilcoxon’s p =0.068). The AUCs of binarized
EGFR-DLS to identify controlled patients was 0.68 (p =0.012),
and 0.67 (p=0.019) to identify the patients with objective
response (details shown in Supplementary Table 4). A higher
EGFR-DLS (20.5) significantly predicted a longer PFS compared
to the lower EGFR-DLS (<0.5) group (hazard ratio (HR): 0.24,
p <0.001, Fig. 4c and Supplementary Table 5). In addition, the
patients with lower EGFR-DLS group and higher EGFR-DLS
showed similar PFS compared to the biopsy detected EGFR-wild-
type patients (p = 0.31, log-rank test) and EGFR-mutant patients
(p =0.91, log-rank test), respectively (Supplementary Fig. 3a). No
other clinical characteristics significant in the univariate Cox
regression analyses for PFS (Supplementary Table 5).

Performance of EGFR-DLS in ICI treatment response. While
EGFR-DLS is shown to predict EGFR mutation status and
response to TKIs, it remains possible that this is merely
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Fig. 3 The unsupervised clustering of the deep learning features, the distribution of the EGFR-DLS, and two NSCLC adenocarcinoma patients with
different EGFR mutation status. a The unsupervised hierarchical clustering of the deep learning features (i.e., the output of global average pooling, N=
256) on the vertical axis, which shows a significant association of the deep learning expression patterns with EGFR mutation (training: p < 0.001, validation:
p<0.001, HMU: p = 0.002, 42 test). There was also significant association of the expression patterns by stage (training: p < 0.001, validation: p < 0.001,
HMU: p = 0.66), smoke status (training: p < 0.001, validation: p < 0.001, HMU: p = 0.045), histology (training: p < 0.001, validation: p < 0.001, HMU: p =
1.00), and sex (training: p < 0.001, validation: p < 0.001, HMU: p = 0.076). b The EGFR-DLS distribution across different subgroups divided by EGFR
mutation status and histology type. Significant difference of EGFR-DLS was found between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) for
EGFR-wild-type patients (training: p < 0.001, validation: p < 0.001, HMU: p = 0.24). In the box plots, the central line represents the median, the bounds of
box the first and third quartiles, and the whiskers are the interquartile range. For statistical comparisons among different groups, a two-sided Wilcoxon
signed-rank test was used. For the validation cohort, n =80, 32, and 75 for EGFR— ADC, EGFR— SCC, and EGFR+ ADC groups, respectively. For the HMU
test cohort, n =22, 7, and 36 for EGFR— ADC, EGFR— SCC, and EGFR+ ADC groups, respectively. Note: ***means p value <0.001. If p value is otherwise it
is so noted. ¢, d The patients with wild-type EGFR and EGFR L858 mutant, respectively. The first lines are the CT, PET, and fusion images of '8F-FDG PET/
CT imaging, the second lines are the input ROls. For the third line, columns 1 and 2 show two of the activation maps of the fourth ResBlock, columns 3 and
4 show the negative filter and positive filter. The fourth lines are the CT, PET, and fusion images of 8F-MPG PET/CT imaging. The last lines show
hematoxylin and eosin (H&E) staining, the immunohistochemistry for total-EGFR, phospho-EGFR, and L858-specific EGFR at X20 magnification
demonstrating EGFR mutation status. Scale bar, 200 um. Immunohistochemistry scoring was performed on at least two independent biological replicates

(slides) per patient.

prognostic and that all patients with elevated EGFR-DLS will
respond well, regardless of therapy. To test this, we examined the
relationship between the EGFR-DLS and PD-L1 status, and
response to ICIs. For the patients with known PD-L1 expression,
a weak but significant inverse correlation was observed between
the PD-L1 status and EGFR-DLS with Spearman’s rho of —0.24
(p<0.001), —0.26 (p=0.006), and —0.26 (p=0.024) for the
training, validation, and HLM ICI-treated sub-cohorts, respec-
tively (Supplementary Fig. 4).

Among the ICI-treated patients, 67.27% of the patients with
low EGFR-DLS experienced DCB, and this rate was significantly
lower (33.33%) for patients with high EGFR-DLS (p =0.004).
Notably, 33.33% of patients with high EGFR-DLS responded with

hyperprogression, which was significantly higher than patients
with a low EGFR-DLS, who had a rate of 16.36% (p = 0.037).
Specifically, for the 41 patients with positive PD-L1 status (tumor
proportion score (TPS) > 1%), the patients with high EGFR-DLS
had a low DCB rate of 54.54% and a high hyperprogression rate
of 18.18% vs 76.67% and 6.67% in the patients with low EGFR-
DLS. Similar results were obtained for the 34 patients with
negative PD-L1 status (TPS = 0%). Those with a high EGFR-DLS
had a lower DCB rate of 20.00% and a higher hyperprogression
rate of 60.00%, compared to 57.89 and 36.84% in the low EGFR-
DLS patients (Supplementary Table 6).

The PFS was significantly longer among ICI-treated patients
with low EGFR-DLS compared to those with a high EGFR-DLS
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Fig. 4 Prognostic value of the EGFR-DLS in the different cohorts and in guiding treatment. a-c The prognostic value of the EGFR-DLS in the TKI-treated
cohort. a The correlation between the EGFR-DLS and the SUV . of the 18F-MPG PET/CT imaging. p Value indicates two-sided Spearman rank-correlation
test. b The objective response to TKI treatment relative to the EGFR-DLS. n = 27, 9, and 31 for PD, SD, and PR/CR groups, respectively. In the box plot, the
central line represents the median, the bounds of box the first and third quartiles, and the whiskers are the interquartile range. p Value shows two-sided
ANOVA. * denotes a p value <0.05. ¢ The progression survival of patients relative the EGFR-DLS (cutoff: 0.5). d-f Prognostic value of the EGFR-DLS in the
ICl-treated cohorts. d The progression survival of patients relative the EGFR-DLS. e The progression survival of patients relative the EGFR-DLS and
histology type (ADC adenocarcinoma, SCC squamous cell carcinoma). f Progression-free survival of patients relative the EGFR-DLS and PD-L1 status
(EGFR-DLS cutoff: 0.5). HDLS high EGFR-DLS, LDLS low EGFR-DLS, PD-L1— PD-L1 negative (i.e., the tumor proportion score (TPS) <1%), PD-L1+ PD-L1
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status. g The progression survival of patients relative the EGFR-DLS and different treatment using the combined TKI-treated and ICl-treated cohorts with
adenocarcinoma (EGFR-DLS cutoff: 0.5). HDLS high EGFR-DLS, LDLS low EGFR-DLS. Comparisons of the above progression survival curves were
performed with a two-sided log-rank test. h Proposed alternative guideline to use EGFR-DLS, PDL1_DLS, and ECOG PS score for decision support for
NSCLC patients. ECOG PS Eastern Cooperative Oncology Group performance status.

(12.00 vs 4.20 months; HR: 2.33, p <0.001, as shown in Fig. 4d
and Table 2). Stratified analyses by histology and PD-L1 status
were performed to investigate the ability of EGFR-DLS to predict
outcomes in these subgroups, considering their intimate associa-
tion with PFS (Supplementary Table 5). The PFS of low EGFR-
DLS group was longer than the low EGFR-DLS group in both
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ADC and SCC subgroups (Fig. 4e and Supplementary Table 7).
The results of the stratified analysis based on PD-L1 status (Fig. 4f
and Supplementary Table 8) showed that high EGFR-DLS was
still significantly associated with poor outcomes among patients
with negative PD-L1 status, i.e., patients with low EGFR-DLS and
positive PD-L1 status had the longest PES, and this was observed
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in both histologies (Supplementary Fig. 5, and Supplementary
Tables 9 and 10).

Potential value in guiding treatment. According to NCCN
Guideline Version 2.2020 for treatment of NSCLC?2 (Supple-
mentary Fig. 6), EGFR mutation and PD-L1 status through
invasive biopsy are two important biomarkers in treatment
planning. As an EGFR mutation predictor, the value of EGFR-
DLS in guiding treatment plan was investigated by analyzing the
PES of combined TKI-treated patients and ICI-treated patients.
Since histology is a significant predictor in ICI treatment, and
most (89.55%) of the TKI-treated patients were adenocarcinoma,
only patients with adenocarcinoma were analyzed in the current
study. Through Kaplan-Meier (K-M) analysis (Fig. 4g), for
patients with high EGFR-DLS, the PFES of TKI-treated patients
was significantly longer than ICI-treated patients (p = 0.01), while
for patients with low EGFR-DLS, ICIs treatments resulted in a
significantly longer PES (p <0.001). Further, there were no sig-
nificant differences in PFS between TKI-treated high EGFR-DLS
patients and ICI-treated low EGFR-DLS patients.

In addition to the current EGFR-DLS, we have also developed
an 18F-FDG PET/CT-based deep learning score predictor of PD-
L1 status (PDL1_DLS), which showed similar prognostic value
compared to the IHC-detected PD-L1 status on which it was
tested, as shown in Supplementary Fig. 3b and applied it herein?3.
For the patients with high EGFR-DLS (Supplementary Fig. 7a),
TKI treatment would improve the PFS significantly compared to
ICI in patients with a low-PDL1_DLS (p = 0.013). Though there
were no significant differences (p = 0.52) in the PFS between the
two treatments for patients with a high-PDL1_DLS, the TKI-
treated patients had an insignificantly higher DCB rate of 80.00%
compared to 50.00% for the ICI-treated patients (p=0.57,
Fisher’s test). Therefore, TKI should be performed on patients
with high EGFR-DLS regardless of PDL1_DLS. For the patients
with low EGFR-DLS (Supplementary Fig. 7b), patients with high-
PDL1_DLS received ICI treatment had significant longer PFS
compared to TKI treatment (p <0.001). There is not significant
different PFS between two treatment (p=0.54) for the low-
PDL1_DLS patients, but ICI treatment could lead to a significant
higher 1-year PFS rate (34.29% vs 6.25%, p = 0.041, Fisher’s test).
Therefore, ICI should be performed on patients with low EGFR-
DLS and high-PDL1_DLS.

Consequently, an alternative noninvasive guideline (Fig. 4h)
could be used in guiding treatment for NSCLC.

Discussion

Accurate and rapid quantification of EGFR mutation status is
critical in identifying of lung cancer patients suitable for EGFR-
TKI treatment, and provides a potential possibility for guiding
ICI immunotherapy. However, the dynamic change in proportion
of cells expressing EGFR mutation and the invasive tissue-based
nature limit the utility of EGFR testing compared to image-based
assays. Thus, there is a need for a noninvasive, accurate, and
reproducible method arises to assess EGFR mutation status. In
this study, a deeply learning model using PET/CT images was
developed to predict EGFR mutation status with AUCs of 0.86,
0.83, and 0.81 in the training, validation, and independent test
cohorts. This model generates a deeply learned score, EGFR-DLS,
whose utility was further validated by identifying patients most
likely to benefit by TKI and ICI treatments.

Prior studies have demonstrated the utility of radiomics as an
noninvasive approach to predict EGFR mutation?%?4, Liu et al.>*
utilized five CT radiomic features combined with clinical cov-
ariates from 298 patients to predict EGFR mutational status and
found an AUC of 0.71. Wang et al.?0 used transfer learning to

develop and validate a deeply learned predictor based on CT
imaging for EGFR status with AUC of 0.81. Yip et al.1” identified
the most relevant PET radiomics features for EGFR mutation
status, with AUC of 0.67 from 387 patients from single institu-
tion, and Zhang et al. combined five PET and five CT radiomics
features and achieved AUCs of 0.79-0.85 with 248 patients from
single institution!8. In contrast, our analysis yielded among the
highest AUCs in the aforementioned studies, but had many
advantages including trained and validated with multiple cohorts
from four institutions without using accurate tumor segmenta-
tions, increasing its generalizability. Further, the clinical utility of
the EGFR-DLS related to patient outcomes of TKI and ICI
treatments.

Since the uptake of 18F-MPG is highly correlated with EGFR
mutation, the generated EGFR-DLS was qualitatively compared
to the 18F-MPG uptake maps. As presented in Fig. 3c, d, the hot-
spot regions in negative/positive filter to generate EGFR-DLS
corresponded well with the 18F-MPG uptake regions with high
SSIM and the EGFR-DLS was significantly associated with the
SUV,.x of I8F-MPG, indicating the underlying biological
meaning of EGFR-DLS. Furthermore, from the unsupervised
clustering of the deeply learned features (Fig. 3a), different his-
tology subtypes have different expression patterns in EGFR
negative patients, which means the histology type is not requisite
when %)plying the EGFR prediction model as presented in Wang
et al.’s*0.

We also observed that hyper image constructed with different
modalities could significantly improve the accuracy of EGFR
mutation modeling. By training a similar network only using PET
and CT images, the resulting EGFR-DLSs achieved AUCs of 0.76
(95% CI: 0.72, 0.81) and 0.80 (95% CI: 0.76, 0.84) in the training
cohort, 0.74 (95% CI: 0.67, 0.81) and 0.75 (95% CI: 0.67, 0.81) in
the validation cohort, respectively, which was significantly worse
(p<0.05) than those generated using the hyper-images. The
similar network with input of PET-CT fused image achieved a
lower though not significant AUCs of 0.85 (95% CI: 0.81, 0.88)
and 0.79 (95% CI: 0.73, 0.86) in the training (p=0.19) and
validation (p = 0.13) cohort, respectively. This may be attributed
to the important regions used for the accurate prediction of EGFR
mutation could be better and easier localized by utilizing both
metabolic and anatomical information, as reflected by PET and
CT images, respectively.

A weak but significant inverse correlation (—0.26 to —0.24)
was observed between the PD-L1 status and the EGFR-DLS.
Further, NSCLC harboring EGFR mutations were associated with
shorter PFS in response to ICI treatment, which is consistent with
Kato et al.?> and Gainor et al.ll, respectively. This could be
responsible for the observed poor response to anti-PD-1 treat-
ment among EGFR-mutant tumors which are associated with the
low rates of PD-L1 expression and CD8+ TILs in EGFR-mutant
tumors?®, Importantly, there is addition insight provided by
combining the two signatures. As such, we were able to identify a
cohort with low EGFR-DLS and low PDL1_DLS, suggesting they
may not be responsive to either TKI or ICI (Fig. 4h).

We acknowledge some limitations. First, EGFR mutation was
usually obtained at the diagnosis of lung cancer, rather than at the
initiation of immunotherapy. Second, the patient cohorts were
heterogeneous in terms of clinical characteristics and PET/CT
image acquisition. However, this can be viewed as a strength, as
this heterogeneity decreases the possibility of overfitting to a
particular subset of tumors or imaging parameters, and thus will
result in a model that is more robust and transportable. Third,
only 75 of patients have PD-LI status in the ICI treatment
cohorts, so the complementary information of EGFR-DLS in
guiding immunotherapy needed to be validated on a larger cohort
with PD-L1 status. Fifth, though 25.0% of EGFR-DLS variability
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could be explained by the amalgamation of some standard clinical
variables, EGFR-DLS could reflect more information and achieve
significant higher performance in predicting EGFR mutation
status in an easier way, with the more commonly used PET/CT
images. Sixth, the hidden colliders like sex, ethnicity, and his-
tology may introduce the selection bias in the current study.
Though CNN model with causal inference incorporated provided
a good way to reduce this bias?’, not all the patients have the
information of these colliders and clinical outcome at the same
time. For example, the HLM cohort doesn’t have the EGFR
mutation status, while the SPH and HBMU cohorts don’t have
the clinical outcome of TKI treatment of ICI treatment. There-
fore, this method will be left for future work. In addition, the
satisfied results of the test cohorts with different demographic
characteristics (e.g., different ethnicities, different histology) fur-
ther validated that the model was less affected by the hidden
colliders. Seventh, given this model is trained mainly for the
tumor with 10-20 mm of tumor peripheral region included, the
model could not be used for the ROIs without tumor included,
and the prediction ability will be decreased with the input of ROI
including more organs and tissues. A more intelligent model to
solve this problem will be left for our future work. Lastly, this
work is based on PET/CT imaging, which is not widely available
in many parts of the world. Therefore, this model may be limited
to the developed countries and to large urban centers in the
developing countries.

In conclusion, an effective and stable deep learning model was
identified and may serve as a predictive biomarker to identify
NSCLC patients sensitive to EGFR-TKI treatment and to identify
patients most likely to benefit from ICI treatment. Due to the
advantage of routine acquisition and not subject to sampling bias
per se of 18F-PET/CT images, we prudently propose that this
model as a future clinical decision support tool for different
treatments pending in larger and prospective trials.

Methods

Study population. In this multi-institutional study, five retrospective cohorts of
patients were accrued from four institutions: the SPH, Shanghai, China, the
HBMU, Hebei, China, the HMU, Harbin, China, and HLM, Tampa, Florida.
Patient cohorts from SPH and HBMU were divided into a training (n = 429) and
validation cohort (n = 187) randomly with a ratio of 70/30 to train, and validate
the deep learning model to predict EGFR mutation. An EGFR-TKI-treated cohort
with EGFR status generated in a prospective 18F-MPG study (ClinicalTrials.gov:
NCT02717221 (ref. 15)) at HMU was used as an external test cohort to test this
model. Data from cohorts was rigorously kept separate. Then, this EGFR-TKI-
treated cohort and an ICI-treated cohort from HLM were used to investigate and
validate the association of the generated EGFR-DLS and clinical characteristics on
the clinical outcomes of different treatment. Detail of the inclusion criteria are
provided in Fig. 1 and Supplementary Methods.

The prognosis values of DLS for EGFR-TKI treatment were investigated
through the comparison with target 18F-MPG molecular imaging, therapy response
assessed by CT imaging following standard response criteria: CR, PR, SD, and PD
using Response Evaluation Criteria in Solid Tumors (RECIST1.1)28, as well as PFS.

Hyperprogression (i.e.,TTF < 2 months), DCB (PFS > 6 months), and PFS were
chosen to investigate the association of the EGFR-DLS and clinical characteristics
with the clinical outcome in ICI-treated cohorts. The index date was date of
initiation of immunotherapy.

The study was approved by the Institutional Review Boards at the SPH, HBMU,
HMU, and University of South Florida, and was conducted in accordance with
ethical standards of the 1964 Helsinki Declaration and its later amendments. The
requirement for informed consent was waived, as no PHI is reported.

18F-FDG PET/CT Imaging and '8F-MPG PET/CT imaging. All patients involved
in this study had '8F-FDG PET/CT imaging. Image acquisition parameters for each
cohort are presented in Supplementary Table 11. Since uptake of EGFR-TKI
PD153035 based on 18F-MPG is highly correlated with EGFR mutation
status!>2%30, 18E_MPG PET/CT imaging (Discovery 790 Elite; GE Healthcare) was
also performed on HMU cohort. Scanning was initiated 1 h after administration of
~259 MBq of 18F-MPG. Whole-body CT scans were firstly acquired for attenuation
correction by using a low-dose protocol (40 mA, 120 keV), and PET data were
subsequently acquired in 3D mode. The anisotropic resolutions for CT and PET
images were 0.98 x 0.98 x 3.75 mm? and 3.65 x 3.65 x 3.27 mm?, respectively!®.

All PET images were converted into SUV units by normalizing the activity
concentration to the dosage of 18F-FDG injected and the patient body weight after
decay correction, and all CT images were converted into lung window.

Tumor EGFR and PD-L1 analysis. All patients in this study underwent surgical
resection or biopsy of the primary tumor. The portion of the tumor specimen was
carefully examined, and the portion with more malignant cells, less differentiated
cells, and less hemorrhage was subjected to histopathological confirmation. The
EGFR mutation status was determined by ARMS PCR method or gene sequencing.
The tumor was identified as EGFR-mutant type if any exon mutation was detected;
otherwise was regarded as EGFR-wild type.

PD-L1 immunohistochemistry was available on 454 patients (training cohort:
267, validation cohort: 112, and HLM ICI-treated cohort: 75), using pharmDx PD-
L1 (28-8) rabbit monoclonal antibody and PD-L1 22C3 mouse monoclonal
antibody. The PD-L1 expression was presented as a TPS of 0, 1-49, and >50%,
which is the percentage of viable tumor cells showing membrane PD-L1 staining
relative to all viable tumor cells. And PD-L1 positivity was defined as >1% of TPS”.

Development of the deep learning model. The EGFR mutation status prediction
2D small-residual-convolutional-network (SResCNN) model is presented in Sup-
plementary Fig. 8. The ROIs of the PET and CT images were first selected by
experienced nuclear medicine radiologists (L.J., ].Y.Z., and Y.S.) after registration
using ITK-SNAP 3.6.0 (ref. 3!) on the condition that entire tumor and at least 10
mm of its peripheral region were included, and were then resized to 64 x 64 pixels
by spline interpolation and constructed a three-channel hyper image together with
their fusion image (alpha-blending fusion®?, a = 1; Pipeline is shown in Supple-
mentary Fig. 9). To reduce the effect of the difference between the central slice and
peripheral slices, only ROISs that contained measurable tumor tissue were regarded
as valid ROIs, and fed into the SResCNN model to update the parameters of the
SResCNN model with backward propagation. The EGFR mutation status (positive
or negative) was encoded to one-hot and used as the label. The output of the
network, i.e., the deep learning score (EGFR-DLS), was used as the classification
result to represent the EGFR mutation positivity probability.

EGFR mutation positivity probability at the patient level was obtained by
averaging the EGFR-DLSs of the valid slices that included tumor tissue. To reduce
overfitting, augmentation including width/height-shift, horizontal/vertical-flip,
rotation, and zoom for the 13,583 training hyper-images were used, and the model
with the best performance on the validation dataset was selected. Details are shown
in Supplementary Methods. The model implemented with Keras toolkit and
Python 3.5 (available at https://github.com/lungproject/lungegfr) was further
performed on the HMU and HLM cohorts to obtain the EGFR-DLS based on the
trained model. ROIs of 73 patients within the validation cohorts were selected by
all the three radiologists to validate the reproducibility of EGFR-DLS.

Visualization of the SResCNN model. Intermediate activation layers were
visualized to see how the network carries the information from input to output33,
and the Gradient-weighted Class Activation Mapping was used to localize the
important regions in the input images for predicting the target concept (EGFR
positive or EGFR negative), by using the gradient information of target concept
flowing into the last convolutional layer of the SResCNN model, and the recon-
structed maps were named as the positive and negative filters>%. In addition, the
deeply learned features (i.e., the output of last global average pooling layer, N=
256) were clustered based on the similarities and dissimilarities with unsupervised
hierarchical clustering using MATLAB, which was presented by heatmap to show
the distinguishable expression pattern among different patients in the training,
validation, and external HMU test cohorts, respectively. In order to investigate the
correlation between the different patterns and the EGFR mutation status (positive
or negative), two clusters were chosen to be presented.

Statistical analysis. The Wilcoxon signed-rank test and Fisher’s exact test were
used to test for differences for continuous variables and categorical variables,
respectively. One-way ANOVA followed by the Scheffe post hoc test was per-
formed for comparisons involving more than two categories.

The inter-rater agreement of EGFR-DLS estimations were calculated by ICC
among the different EGFR-DLSs obtained from the different delineation of the
three radiologists. The AUC, ACC, specificity (SPEC), and sensitivity (SEN) with
cutoff of 0.5 and the 95% CI by the Delong method!2 were used to assess the ability
of EGFR-DLS in discriminating EGFR-mutant and EGFR-wild type. The median
value of the EGFR-DLS from the training cohorts was used as the cutoff.
Performance of the EGFR-DLS was likewise compared with other published
clinical characteristics, including smoking status, sex, histologic type3®, and PET
image-based SUV ,,,>%7 with Delong test. To investigate a potential relation
between EGFR-DLS and these indices, stepwise multiple linear regression tests
were conducted. Spearman’s correlation was used to investigate the relation
between EGFR-DLS and PD-L1 status or 18F-MPG SUV .

K-M survival curves method and Cox proportional hazards model were used to
analyze PFS. To rigorously assess the quality of the study design, the radiomic
quality score was calculated®® (Supplementary Methods). Two-sided p values of
<0.05 were regarded as statistically significant, and all analyses were conducted
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with R 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria) and
MATLAB R2019a (Natick, MA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The excel files containing raw data included in the main figures and tables can be found
in the Source data file in the article. The PET/CT imaging data and clinical information
are not publicly available for patient privacy purposes, but are available from the
corresponding authors upon reasonable request (R.J.G. and M.B.S.). The remaining data
are available within the article, Supplementary information or available from the authors
upon request. Source data are provided with this paper.

Code availability
The models and the code used to test and evaluate the model is available on GitHub
(https://github.com/lungproject/lungegfr)
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