A RTl C L E W) Check for updates

Detection of haplotype-dependent allele-specific
DNA methylation in WGBS data

J. Abante® "2* Y. Fang® 34, A. P. Feinberg® 3% & J. Goutsias® 2™

In heterozygous genomes, allele-specific measurements can reveal biologically significant
differences in DNA methylation between homologous alleles associated with local changes in
genetic sequence. Current approaches for detecting such events from whole-genome bisulfite
sequencing (WGBS) data perform statistically independent marginal analysis at individual
cytosine-phosphate-guanine (CpG) sites, thus ignoring correlations in the methylation state,
or carry-out a joint statistical analysis of methylation patterns at four CpG sites producing
unreliable statistical evidence. Here, we employ the one-dimensional Ising model of statistical
physics and develop a method for detecting allele-specific methylation (ASM) events within
segments of DNA containing clusters of linked single-nucleotide polymorphisms (SNPs),
called haplotypes. Comparisons with existing approaches using simulated and real WGBS
data show that our method provides an improved fit to data, especially when considering
large haplotypes. Importantly, the method employs robust hypothesis testing for detecting
statistically significant imbalances in mean methylation level and methylation entropy, as well
as for identifying haplotypes for which the genetic variant carries significant information
about the methylation state. As such, our ASM analysis approach can potentially lead to
biological discoveries with important implications for the genetics of complex human
diseases.
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ARTICLE

n diploid mammalian genomes, homologous chromosomes

may exhibit sequence-dependent imbalances in DNA methy-

lation at potentially important genomic regions!. Identifying
these regions and understanding the relationship between DNA
methylation and sequence constitutes the focal interest of an
active area of epigenetic research known as allele-specific
methylation (ASM) analysis. In fact, ASM analysis underpins
several reported associations between cis-genetic variation and
DNA methylation imbalances in homologous chromosomes!—>.

A type of ASM analysis is performed within specific DNA
segments, known as haplotypes!»3-°. These regions contain het-
erozygous single-nucleotide polymorphisms (SNPs) that are
responsible for genetic differences between the two homologous
chromosomes in a given subject. Haplotype-dependent ASM
(hap-ASM) analysis requires simultaneous observation of the
DNA methylation state within each allele (genetic variant of a
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Fig. 1 Comparison of hap-ASM analysis methods. WGBS reads (rows)
corresponding to each homologous allele of a haplotype are used by each
method to estimate the probability distribution of methylation (PDM)
within each allele. The NPI method provides an empirical estimate of the
PDM at each CpG site using WGBS observations of its methylation state
(orange rectangles). The NPD method provides an empirical estimate of
the joint PDM within an epiallele, composed of a few CpG sites (usually 4)
around an SNP, using only full WGBS observations of its methylation state
(yellow rectangles). The CPEL method performs haplotype-dependent
allele-specific methylation analysis by estimating the joint PDM at all CpG
sites within a homologous allele using the entire set of WGBS data (blue
rectangles), thus utilizing all available methylation information and allowing
modeling of the cooperative effect of multiple SNPs on DNA methylation.

haplotype) and the allele of origin. Heterozygous SNPs can be
identified by whole-genome sequencing (WGS), whereas whole-
genome bisulfite sequencing (WGBS) can be used to obtain
observations of the DNA methylation state which are then
aligned to a reference genome to determine their allele of origin.

Currently, there are two basic approaches to perform hap-ASM
analysis (see Supplementary Methods, Section 1, for details). The
first approach, which we refer to as the non-parametric inde-
pendent (NPI) method, assumes that DNA methylation occurs in
a statistically independent manner at individual cytosine-
phosphate-guanine (CpG) sites, whereas the second approach,
which we refer to as the non-parametric dependent (NPD)
method, does not make use of such a strong assumption. The NPI
method, previously employed for ASM analysis by Gertz et al.’”
and Fang et al.3, is based on empirically estimating the marginal
probability of methylation at each CpG site using WGBS reads of
the methylation state only at the particular CpG site (see Fig. 1).
At low levels of correlation between the methylation states at few
contiguous CpG sites, the NPI method can perform satisfactorily
well. However, this approach will not produce reliable results in
the presence of high correlations, which are prevalent in WGBS
data®10, especially when the region of interest contains a larger
number of CpG sites. Moreover, the unrealistic assumption of
statistical independence may lead to loss of specificity (true
negative rate) and sensitivity (true positive rate)!!, which will
seriously affect the method’s statistical performance.

The NPD method, employed for ASM analysis by Onuchic
et al.12, is based on empirically estimating the joint probability of
methylation at four contiguous CpG sites, known as epialleles,
located around individual SNPs. This estimation can only be
done using fully observed methylation reads of the epiallelic state
(see Fig. 1), demanding a much higher coverage for reliable
estimation and analysis than the one provided by currently
available WGBS technologies. Insufficient coverage can lead to
large uncertainty and low accuracy when estimating epiallelic
probabilities using the NPD method, especially in areas of the
genome that exhibit high methylation stochasticity (see ref. 10 and
Supplementary Note, Section 3), which can seriously affect
downstream statistical analysis. This problem is exacerbated
when epialleles that contain more than four CpG sites are used in
the analysis, due to the geometric growth of the number of
epiallelic patterns associated with an increasing number of CpG
sites. Consequently, the NPD method is not appropriate for hap-
ASM analysis, which often requires estimation of joint methyla-
tion probabilities within genomic regions that contain more than
four CpG sites.

In this work, we use concepts from statistical physics and
information theory and develop a parametric approach for ASM
analysis, based on the one-dimensional Ising model of statistical
physics, which extends our earlier developments of potential
energy landscape analysis of DNA methylation!? to hap-ASM. By
using simulated and real data, we show that this approach, which
we refer to as the correlated potential energy landscape (CPEL)
method, effectively addresses the previous limitations. This is
achieved by jointly modeling methylation data over multiple CpG
sites, by consistently providing accurate estimates of the joint
probability distributions of methylation (PDM) at these CpG
sites, and by constructing a reliable statistical approach for hap-
ASM analysis that outperforms existing methods.

Results

Method overview. To take into account the cooperative effect of
SNP clusters on DNA methylation, proper ASM analysis must be
performed at the haplotype level. The CPEL method provides a
statistical approach to hap-ASM analysis that is capable of
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evaluating imbalances in DNA methylation stochasticity between
homologous alleles in a haplotype, properly identified from WGS
and SNP data using read-based SNP phasing (see “Methods”), by
leveraging concepts from statistical physics and information
theory. It achieves this by modeling DNA methylation within a
homologous allelic region R that contains N CpG sites n=
1, 2, ..., N using the N x1 random methylation state vector
X = [X,,X,, ... ,Xy]", where X, =0 if the nth CpG site is
unmethylated and X, =1 if it is methylated. Subsequently, it
partitions R into the minimum number of equally-sized non-
overlapping allelic subregions R;, k=1, 2, ..., K, such that the
size of each subregion does not exceed 500 bp (see Supplementary
Methods, Section 2, for details). It then characterizes X using the
probabilities p(x) = Pr[X =x], given by

p(x) = %exp{—U(x)}7 for every x € {0,1}", (1)
where
K N-1
UR) ==Y o » (20, — 1) =pY (2x,— (2%, — 1)
k=1 neN n=1

(2)

is the potential energy of a methylation state x, and
Z= Z exp{-U(x)} (3)

is a normalizing constant, known as the partition function, which
is evaluated by the CPEL method in a computationally efficient
manner (see Supplementary Methods, Sections 3 and 4, for
details). In Eq. (2), NV is the set of all CpG sites within the allelic
subregion R, whereas aj is a parameter characteristic to the
allelic subregion R, and 8 is a parameter characteristic to the
entire allelic region R. These parameters are estimated from
given (incomplete) WGBS data via maximum-likelihood using
Simulated Annealing (see Supplementary Methods, Section 5, for
details).

An important objective of hap-ASM analysis is to identify
haplotypes demonstrating statistically significant imbalances in
DNA methylation stochasticity, which can be directly associated
with differences in DNA sequence between homologous alleles.
An equally important objective is to identify genetically
informative haplotypes, defined as haplotypes in which the allele
of origin conveys statistically significant information about the
methylation state, suggesting that methylation stochasticity is
closely associated with the allele of origin and therefore
determined by the genetic variant. To this end, the CPEL method
summarizes methylation stochasticity by using the mean
methylation level (MML), which measures the average amount
of methylation within an allele, the normalized methylation
entropy (NME), which measures the amount of methylation
stochasticity (pattern heterogeneity) within the allele, and the
Jensen-Shannon distance (JSD), which quantifies differences
between the two PDMs associated with the homologous alleles of
a haplotype (see “Methods”). It then evaluates these statistical
summaries by employing efficient algorithms (see Supplementary
Methods, Sections 6-9, for details) and computes values of three
test statistics,

Ty = [0(Xy) — (X)), (4)
Txme = |h(X1) - h(Xz)‘a (5)
and
_1D%(py,p,)
POM N TR (6)

where p(X;) and u(X;) are the MMLs in the two homologous
alleles of a given haplotype, h(X;) and h(X,) are the correspond-
ing NMEs, D(p;, p,) is the JSD between the associated PDMs
p1(x) and p,(x), h(X) is the NME of the methylation state X
within the haplotype without knowing its allele of origin, and N is
the number of CpG sites. It finally uses these values to perform
hap-ASM analysis by employing an one-sided empirical hypoth-
esis testing procedure based on bootstrapping, which tests the
null hypothesis that an observed test statistic value can be
explained by the variability present in homozygous regions of the
genome, against the alternative hypothesis that this value is due to
a true allele-specific effect (see Supplementary Methods, Section
10, for details).

Besides to being proportional to the square JSD, the test
statistic Tppy in Eq. (6) computes the uncertainty coefficient (see
“Methods”), which provides a measure of the amount of
information that the allele of origin conveys about the random
methylation state. Consequently, larger values of Tppy, indicate
that the two PDMs corresponding to the homologous alleles of a
haplotype are more distinct and that the random methylation
state is more related to its allele of origin. Therefore, and in
addition to detecting significant imbalances in MML and NME
values within a haplotype by using the test statistics Tygn and
Tnmes the CPEL method identifies genetically informative
haplotypes by determining significant PDM differences using
the test statistic Tppy. Notably, Typpg and Tyme provide
complementary insights into the statistical nature of methylation
imbalances within a haplotype, since homologous alleles that
exhibit similar levels of mean methylation may demonstrate
significant differences in methylation entropies and vice versa,
whereas Tppy provides a more comprehensive measure of such
imbalances in terms of differences between the PDMs associated
with the two homologous alleles and its relationship with the
uncertainty coefficient. We summarize the main steps (input,
estimation, analysis, and output) of the CPEL method in Fig. 2.

Simulation-based benchmarking. To evaluate the performance
of the CPEL method, we first used simulated data to assess its
effectiveness for correctly estimating methylation probabilities in
a haplotype when compared to the NPT and NPD methods.

We first considered a haplotype containing eight CpG sites and
evaluated the performance of the three methods under five
coverage regimes corresponding to 10, 20, 30, 40, and 50 fully
observed methylation reads. We generated these reads by
sampling a CPEL model with potential energy function given
by Eq. (2), where K=1, a; =1, and =0, thus producing reads
in which the methylation states at individual CpG sites were
mutually independent. Using these reads, we estimated the
models associated with the NPI, NPD, and CPEL methods via
maximum-likelihood and evaluated their goodness-of-fit by
comparing the estimated PDM p(x) to the true PDM p(x) using
the JSD. By generating reads and by performing estimation 1000
times, we obtained the results depicted in Fig. 3a. Notably, all
methods exhibited improved model estimation performance at
increasing coverage. However, the NPD method produced poor
estimates even at large coverage, whereas the CPEL method
performed consistently well and noticeably better than the NPI
method, even at low coverage.

We also studied estimation performance in terms of the
number of CpG sites, by considering haplotypes containing 2, 4,
6, 8, and 10 CpG sites and by using 20 fully observed reads
sampled from the previous CPEL model. According to the results
depicted in Fig. 3b, all methods performed well in haplotypes
containing two CpG sites. However, the performance of the two
non-parametric methods, and especially that of the NPD method,
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Fig. 2 Flowchart illustration of the CPEL method. The CPEL method first requires genome-wide identification of haplotypes, performed via read-based SNP
phasing using WGS and SNP data, followed by mapping WGBS methylation reads to the homologous alleles of each haplotype according to their allele of
origin. Using the WGBS data assigned to each allele, the CPEL method then computes a maximum-likelihood estimate U(x) of the potential energy
landscape (PEL) of the methylation state x, given by Eq. (2), determines a PDM estimate p(x) ~ exp{—a(x)}, and summarizes methylation stochasticity in
terms of the MML u(X) and the NME h(X) of the random methylation state X, as well as in terms of the JSD D(p;, p,) between the two estimated PDMs
P,(x) and p,(x). Subsequently, the CPEL method performs hypothesis testing using the two test statistics Tpme and Tyme in Egs. (4) and (5) in order to
identify haplotypes demonstrating significant imbalances in MML and NME (MML-haps and NME-haps), as well as the test statistic Tppp in Eq. (6), in
order to identify haplotypes that exhibit significant differences between the two PDMs associated with their homologous paternal and maternal alleles
(PDM-haps). To perform this step, the CPEL method uses an one-sided empirical bootstrap approach that estimates the P value of a test by

p=(/L) E,; IIt, > t.], where t, t5, ..., t, are test statistic values appropriately drawn from the null distribution via bootstrapping, t, is the observed test
statistic value, and I[ - ] is the Iverson bracket. Following a Benjamini-Hochberg step for multiple hypothesis testing correction, the CPEL method outputs
three distinct lists of haplotypes, MML imbalanced haplotypes, NME imbalanced haplotypes, and PDM imbalanced haplotypes, together with their
corresponding Q-values. Haplotypes associated with Q-values smaller than 0.05 are considered to be statistically significant.

greatly deteriorated as the number of CpG sites increased, while
the CPEL method consistently demonstrated a good fit in all cases
considered.

We subsequently performed simulations to investigate estima-
tion performance when reads are subject to correlation. We
considered again haplotypes containing 2, 4, 6, 8, and 10 CpG
sites and used 20 fully observed reads sampled from a CPEL
model with potential energy function given by Eq. (2), where K=
1, &; =0, and $=0.25, 0.5, 0.75, 1. As expected, the results
depicted in Fig. 3c and Supplementary Figs. la—c show that the
NPI method performs poorly in the presence of correlations.
Although the NPD method outperformed the NPI method when
correlations were present, its estimation performance was not
good, especially when compared to the CPEL method, which
again behaved consistently well in the cases examined.

We further employed simulations to evaluate estimation
performance when using partially observed reads, the most
common scenario in WGBS. To that effect, we simulated 20 fully
observed reads as before, randomly selected a subset of theses
reads, and removed the methylation states of randomly selected
CpG sites from each read in the subset. The results, depicted in
Fig. 3d and Supplementary Fig. 1d, showed that the NPD method
exhibits the worst behavior in this case, with its performance
rapidly deteriorating as the number of CpG sites increased.
Although the NPI method consistently outperformed the NPD
method, it was also characterized by poor estimation perfor-
mance, especially in the presence of correlations and in
haplotypes with many CpG sites, while the CPEL method
behaved again consistently well, clearly outperforming the other
two methods.
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Fig. 3 Simulated evaluation of model estimation performance. Boxplots depicting distributions of Jensen-Shannon distance values when comparing
estimated probability distributions of methylation (PDMs) to the true PDMs for a wide range of conditions using the NPI, NPD, and CPEL methods and
simulated data. Estimation was independently performed 1000 times, each using fully observed or partially observed reads, as indicated. The results
demonstrate a consistently superior performance of the CPEL method for correctly estimating methylation probabilities in a haplotype allele when
compared to the NPl and NPD methods. a Fully observed non-correlated data and increased coverage. b Fully observed non-correlated data and increased
number of CpG sites. ¢ Fully observed correlated data and increased number of CpG sites. d Partially observed correlated data and increased number of
CpG sites. Center line of box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value and 25th percentile minus 1.5 x
interquartile range; upper whisker: smaller of maximum value and 75th percentile plus 1.5 X interquartile range.

In addition to the previous analysis, we examined whether the
maximum-likelihood parameter estimator used by the CPEL
method can reliably estimate the true values of the potential
energy landscape parameters by performing estimation 1000
times for each case depicted in Fig. 3 and Supplementary Fig. 1.
The results, summarized in Supplementary Fig. 2, demonstrated
that the median of the parameter estimates almost always
recovers the true values, whereas their variance decreases with
increasing coverage or number of CpG sites, which is true even
when incomplete data are available. However, and due to
insufficient data, parameter estimation performed by the CPEL
method may not always work as well when it comes to accurately
estimating the true parameter values (see Supplementary Fig. 2,
full or missing data with C =20, « = 1.0, § = 0.0, N = 2), an issue
that will hamper parameter estimation regardless of the method
used. Nonetheless, the results depicted in Fig. 3 and Supplemen-
tary Fig. 1 show that the PDMs estimated by the CPEL method
remained close to the true distributions in our simulations even
under this circumstance.

We also used simulations to investigate the quality of the
hypothesis testing procedure employed by the CPEL method.
Note that, by definition, if the null hypothesis of a statistical test is
true, then the probability that a P value is less than or equal to a
will be a as well. This implies that, under the null hypothesis, a
statistically sound hypothesis testing method must produce P

values that are uniformly distributed between 0 and 1. In this
case, the method will provide proper control of the Type I error
(false positives) under the null hypothesis, since the probability of
obtaining a P value that is below a significance level a will
precisely be a, implying a Type I error of a%.

To investigate whether this is true for CPEL’s hypothesis
testing procedure, we performed simulations by considering the
fact that, under the null hypothesis, the cumulative distribution
function of a T statistic associated with a given haplotype depends
on the number N of the CpG sites within the haplotype
(see Supplementary Methods, Section 10, for details). To be
consistent with the way the CPEL method estimates this function,
we simulated a homozygous region containing N CpG sites and
assumed that the methylation states of its two homologous alleles
are generated by a true CPEL model with K, (N)+1
parameters, where K. (N) is the maximum number of
subregions observed within all haplotypes analyzed by the CPEL
method in the real data. Under these conditions, we generated
five methylation reads for each allele by sampling a true CPEL
model with randomly determined parameter values, which
produced methylation data within each homologous allele in a
manner that was consistent with the coverage assumed by CPEL’s
hypothesis testing approach (see Supplementary Methods,
Section 10, for details). Using these data, we finally computed
an estimated CPEL model for each allele from which we
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calculated, under the null hypothesis, a value ¢ for the T statistic
associated with the homozygous region.

By repeating the previous procedure, we obtained 1000 test
statistic values, from which we derived an empirical estimate

F,(t;N) of the cumulative distribution function of T under the
null hypothesis (see Supplementary Methods, Section 10, for
details). We then computed a P value for each value t of T by

P =1—Fy(t;N) and used these P values to empirically estimate
their cumulative distribution function. Our results, depicted in
Supplementary Fig. 3 for N=2, 4, 6, 8, 10, revealed that the
empirically estimated cumulative distribution functions of the P
values for each of the three test statistics employed by the CPEL
method were almost linear, implying that these P values closely
follow uniform distributions. This shows that the hypothesis
testing approach employed by the CPEL method is indeed
statistically sound producing a Type I error under the null
hypothesis that is controlled by the test’s significance level, as
expected.

We finally used simulations to investigate the performance of
CPEL’s hypothesis testing procedure when applied on haplotypes
that do not exhibit methylation imbalances. We did so by
simulating 1000 haplotypes, each containing N CpG sites. For
each haplotype, we randomly chose the number of subregions to
be between 1 and K, (N) and the coverage within each
homologous allele to be a random integer between 5 and 20. By
following similar steps as before, we sampled a true CPEL model
with K., (N) 4+ 1 parameters to generate an appropriate number
of methylation reads within each allele consistently with the
associated coverage. We then computed an estimated CPEL
model for each allele, calculated a value for the T statistic under
the null hypothesis, and estimated the corresponding P value
using the empirically estimated cumulative distribution function
obtained from our previous simulations. For each N=
2, 4, 6, 8, 10, hypothesis testing found <5% of the haplotypes
exhibiting statistically significant methylation imbalances (P value
< 0.05), demonstrating a Type I error that is smaller than the
test’s significance level and providing further evidence that the
CPEL method performs hypothesis testing in a statistically sound
manner.

The CPEL method leads to superior modeling of real data. We
next evaluated the appropriateness of the NPI, NPD, and CPEL
methods for modeling DNA methylation in real data. We did so
by employing WGS, SNP, and WGBS data, previously used for
ASM analysis by Onuchic et al.!2, corresponding to 10 different
tissues from the same individual (see Supplementary Table 1). We
found 715,155 haplotypes containing up to 121 SNPs and up to
20 CpG sites (see Supplementary Fig. 4). Using these haplotypes,
we estimated the NPI, NPD, and CPEL models within each
homologous allele, and identified all homologous alleles for which
the CPEL model was more preferable than the other two models.
We did so by quantifying the probability that a given model is
more preferable for hap-ASM analysis than an alternative model
using Akaike weights (see “Methods”).

We first compared the CPEL and NPI models to discern which
is best for the given data. Our results demonstrated that the CPEL
model was more preferable overall than the NPI model in all
samples, in the sense that its Akaike weight with respect to the
NPI model was at least 0.5 in most haplotype alleles, when
considering all haplotype alleles identified in the data (see Fig. 4a,
yellow and gray). In addition, the CPEL model was distinctly
superior to the NPI model when considering haplotype alleles
containing at least four CpG sites (see Fig. 4b, yellow). By
considering also the fact that the NPI model was not reliable at
low coverage and in the presence of correlations in our

simulations, we concluded that the applicability of the NPI
method for hap-ASM analysis is limited.

We then compared the CPEL and NPD models to discern
which was best for the real data. Since the NPD method cannot
handle partial observations, we restricted our comparison to
haplotypes with at least five full observations per haplotype allele,
which resulted in analyzing only a small portion (about 16%) of
all haplotypes identified in the data, as compared to 30% of the
haplotypes analyzed by the CPEL method. Overall, our results
demonstrated a clear preference for using the CPEL model over
the NPD model within most haplotype alleles (see Fig. 4c, yellow
and gray), with the CPEL model being distinctly superior to the
NPD model when considering haplotype alleles containing at
least four CpG sites (see Fig. 4d, yellow). When taking into
account the fact that only 16% of the haplotypes could be
analyzed by the NPD method, as well as its poor performance as
the number of CpG sites increases, we reached the conclusion
that this method is not appropriate for hap-ASM analysis.

We also investigated the quality of CPEL’s hypothesis testing
approach when applied to the real data. Similarly to our
simulations, we found the empirically estimated cumulative
distribution functions of the three test statistics employed by
CPEL to be consistently linear under the null hypothesis (see
Supplementary Fig. 5), thus leading to P values that closely follow
uniform distributions and demonstrating the ability of the CPEL
method to control the Type I error under the null hypothesis (see
Supplementary Fig. 6a). Notably, after applying the
Benjamini-Hochberg procedure to control the false discovery
rate, we identified no significant methylation imbalances
(adjusted P value < 0.05) in genomic regions that were not
labeled to be haplotypes in the data (see Supplementary Fig. 6b).
Finally, we considered the fact that large P values associated with
haplotypes that do not exhibit significant methylation imbalances
in terms of the three test statistics must be samples drawn from a
uniform distribution under the null hypothesis. In this case, we
expect small observed —log ,, P values to adhere to the diagonal
of a Q-Q plot of observed vs. expected quantiles, which is shown
to be true in the real data (see Supplementary Fig. 7), providing
additional evidence for the statistical quality of CPEL’s hypothesis
testing procedure.

Real data analysis. To further evaluate the CPEL method, we
analyzed results obtained by applying this approach on the real
data. Distributions of MML and NME values associated with the
two homologous alleles of identified haplotypes in each tissue
from the same individual revealed that haplotype alleles are
mostly partially methylated and subject to considerable methy-
lation stochasticity, whereas only subtle differences were observed
between the distributions associated with the two homologous
alleles in a given tissue, as anticipated (see Supplementary Fig. 8).
Interestingly, two tissues (intestine and pancreas) globally
exhibited a noticeable loss of methylation level and gain in
methylation entropy when compared to other tissues. Of the
715,155 haplotypes identified in the data across all tissues, only
90,524 (12.66%) were deemed to be statistically significant with
2320 of them exhibiting significant MML imbalances (MML-
haps), 87,412 showing significant NME imbalances (NME-haps),
and 1935 being identified as genetically informative demon-
strating significant PDM differences within their homologous
alleles (PDM-haps) that implies a significantly strong association
between genetic variation and the methylation state (see Fig. 5a).
As expected, distributions of MML-based test statistic (Tymr)
values associated with significant and nonsignificant haplotypes
in each tissue showed that MML-haps are subject to considerably
larger MML imbalances than non-MML-haps, and the same was
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Fig. 4 Evaluation of model fit to the real data. Stacked histograms showing the percentage of haplotype alleles for which the CPEL model is more
preferable (Akaike weight > 0.5), equally preferable (Akaike weight = 0.5), or less preferable (Akaike weight < 0.5) than the NPI or the NPD model. A total
of 1,766,467 haplotype alleles have been considered. The results demonstrate the superiority of the CPEL model for fitting real WGBS data when compared
to the NPI and NPD models, especially within haplotype alleles that contain at least four CpG sites. a Comparison between the CPEL and the NPl models
based on all alleles. b Comparison between the CPEL and the NPI models based on alleles with at least four CpG sites. ¢ Comparison between the CPEL and
the NPD models based on all alleles. d Comparison between the CPEL and the NPD models based on alleles with at least four CpG sites.
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Fig. 5 Results of real data ASM analysis using the CPEL method. a Statistically significant haplotypes identified by the CPEL method across all tissues
from the same individual in the real data and their specific attributes. b Odds ratio statistic values of statistically significant haplotypes overlapping genomic
features and regions of interest across all tissues from the same individual. A total of 1,459,967 haplotypes have been considered. OR >1 indicates
enrichment, whereas OR <1 indicates depletion. MML-haps: haplotypes exhibiting significant imbalances in mean methylation level; NME-haps: haplotypes
exhibiting significant imbalances in normalized methylation entropy; PDM-haps: haplotypes exhibiting significant differences between the probability
distributions of methylation within homologous alleles.
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true for NME-haps and PDM-haps (see Supplementary Fig. 9).
Notably, only a small fraction (1.55%) of statistically significant
haplotypes exhibited imbalances in MML alone, whereas most
significant haplotypes (96.19%) showed imbalances only in
methylation entropy, demonstrating the potential importance of
these haplotypes in ASM analysis. Moreover, 805 (41.60%) of the
genetically informative haplotypes exhibited significant imbal-
ances in MML, 227 (11.73%) showed significant imbalances in
methylation entropy, and 107 (5.53%) demonstrated both (see
Fig. 5a).

Using the previous results, we investigated tissue co-occurrence
of statistically significant haplotypes. To that end, we defined the
tissue co-occurrence of MML-haps to be the percentage of all
haplotypes demonstrating significant MML imbalances in more
than one tissue, and similarly for NME-haps and PDM-haps. We
found that 15% of MML-haps in the real data co-occurred in
more than one tissue, in agreement with known facts>%13, We
also computed tissue co-occurrence for NME-haps, which has not
been previously reported, and found that 34% of NME-haps co-
occurred in more than one tissue, demonstrating that significant
imbalances in methylation entropy co-occur across tissues more
often than significant imbalances in MML. In part, this could be
explained by our finding below that NME-haps tend to be located
at CG-poor regions of the genome in which ASM stochasticity
could be weakly regulated across tissues leading to consistently
large non-tissue specific imbalances in methylation entropy
within some haplotypes overlapping these regions. We also
found that 10% of PDM-haps co-occurred in more than one
tissue showing that genetically informative haplotypes (ie.,
haplotypes that demonstrate significant PDM differences within
their homologous alleles) co-occur less often than haplotypes
exhibiting significant mean methylation imbalances or haplotypes
demonstrating significant methylation entropy imbalances across
tissues. Notably, the previous co-occurrences were found to be
higher than what was expected by chance (all permutation test P
values < 0.001, see “Methods”), which is in line with recent
results regarding co-occurrence of mean methylation imbalances
across tissues!2. Our results also revealed a high degree of tissue
specificity, which we defined as the percentage of all statistically
significant haplotypes of the same type (MML-haps, NME-haps,
PDM-haps) that occur in only one tissue. We found 85% of
MML-haps and 66% of NME-haps occurring in only one tissue,
and the same was true for 90% of the PDM-haps, suggesting a
possibly important role for PDM-haps in defining the phenotype.

We also evaluated enrichment of statistically significant
haplotypes overlapping genomic features and regions of interest
across all tissues using the odds ratio (OR) statistic and a Fisher’s
two-sided exact test (see “Methods”). Results obtained by the
CPEL method (see Fig. 5b and Supplementary Tables 2 and 3)
demonstrated a striking enrichment in MML-haps and depletion
in NME-haps overlapping CpG islands (CGIs) contradicting
previous suggestions of depletion of ASM events at CGIs’12,
which we attributed to methodological limitations of those studies
(see Supplementary Discussion). These findings suggest an
association between CGIs and ASM events characterized by
significant imbalances in MML but small differences in methyla-
tion entropy. Additional results (see Fig. 5b and Supplementary
Tables 2 and 3) show a similar trend to that of CGIs for
enhancers, gene promoter regions, exons, and CGI shores, albeit
with smaller effect sizes. Notably, the enrichment result regarding
enhancers is consistent with previous studies!Z1415,

Overall, we found CG-rich regions of the genome, composed of
CGIs and CGI shores, to be enriched in MML-haps but depleted
in NME-haps and the same to be true for transcriptional regions
that include promoters, exons, and enhancers (see Fig. 5b and
Supplementary Tables 2 and 3). This points to a substantial

regulation of methylation within haplotypes overlapping CG-rich
regions, more often than what is expected by chance, resulting in
significantly imbalanced but highly ordered methylation states
within their homologous alleles, thus producing small methyla-
tion entropy differences.

On the other hand, CG-poor regions, composed of CGI shelves
and open seas, showed depletion in MML-haps but enrichment in
NME-haps and the same was true for non-transcriptional regions
(see Fig. 5b and Supplementary Tables 2 and 3). In part, we
attributed these findings to a lesser need for precisely regulating
methylation within haplotypes overlapping CG-poor and non-
transcriptional regions of the genome, resulting in similar MMLs
between the corresponding homologous alleles but significant
imbalances in methylation entropy. We also found significant
enrichment of PDM-haps overlapping CG-poor regions, open
seas, and enhancers, and to a lesser extend transcriptional and
intergenic regions (see Fig. 5b and Supplementary Table 4),
demonstrating that genetically informative haplotypes overlap
these regions more often than what is expected by chance. We
hypothesized that identifying NME-haps and PDM-haps over-
lapping MML-hap-depleted CpG-poor and non-transcriptional
regions of the genome can be important for understanding ASM,
since ASM analysis using these haplotypes can potentially lead to
better understanding the influence of genetic variation on ASM
stochasticity in terms of high-order statistical summaries that go
beyond the mean.

We further confirmed the validity of CPEL’s output by
checking whether the method identified statistically significant
haplotypes overlapping the promoter regions of imprinted genes.
This was motivated by the fact that control of certain imprinted
genes may be facilitated by ASM at their promoters, since the
imprinting control regions (ICRs) regulating imprint expression
of some imprinted genes overlap their promoter regions. To that
end, we tested for enrichment of statistically significant
haplotypes overlapping the promoter regions of 107 known
imprinted genes using the OR statistic and Fisher’s two-sided
exact test (see “Methods” and Supplementary Table 5). We found
promoter regions of imprinted genes to be highly enriched in
MML-haps and PDM-haps, indicating that haplotypes with
significant imbalances in MML tend to occur, much more often
than what is expected by chance, at the promoter regions of
imprinted genes than at the promoter regions of non-imprinted
genes, and the same was true for genetically informative
haplotypes. However, we found no enrichment or depletion of
haplotypes with significant imbalances in methylation entropy.
This is consistent with the fact that the promoters of some
imprinted genes may exhibit significant differential methylation
between the two parental alleles, with one allele being associated
with ordered methylation while its homologous allele exhibiting
ordered demethylation, which results in significant mean
methylation imbalances but nonsignificant entropy differences
due to the low methylation entropies associated with two ordered
methylation states.

To further investigate the relationship between imprinted
genes and statistically significant haplotypes identified by the
CPEL method, we found 53 genes with promoter regions that
overlap haplotypes exhibiting significant imbalances in MML
(MML-haps) in at least one tissue in the real data (see
Supplementary Table 6). These genes included GNAS, HI9,
MAGEL2, MESTIT1, NNAT, SNURF, and VTRNA2-1, which are
known to be imprinted. Although their promoter regions were
found to overlap with 32 haplotypes across all tissues from the
same individual, only 22 of them exhibited significant imbalances
in MML (see Supplementary Table 7). Among these, 15
haplotypes (associated with GNAS, H19, MAGEL2, MESTITI,
SNURF, and VTRNA2-1) demonstrated significant imbalances
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Fig. 6 lllustrative examples of significant haplotypes and imprinting. Haplotypes and their significance attributes overlapping the promoter regions
of imprinted genes, identified by the CPEL method in different tissues of the same individual. a GNAS in esophagus, b VTRNAZ2-1 in colon, ¢ SNURF in
muscle, d H19 in pancreas. MML-haps: haplotypes exhibiting significant imbalances in mean methylation level; NME-haps: haplotypes exhibiting significant
imbalances in normalized methylation entropy; PDM-haps: haplotypes exhibiting significant differences between the probability distributions of
methylation within homologous alleles. The specific location of the imprinting control regions (ICRs) for GNAS and SNURF is not known.

only in MML, 2 haplotypes (associated with MAGEL2 and
NNAT) exhibited significant imbalances in MML and NME, and
5 haplotypes (associated with H19, MAGEL2, and VTRNA2-1)
were found to be genetically informative.

To provide a more detailed picture of this behavior, we
considered four illustrative examples (see Fig. 6). In the
esophagus tissue, GNAS, an imprinted gene associated with the
McCune-Albright syndrome and progressive osseus heteroplasia
among other disorders!®, was associated with two haplotypes
overlapping the promoter regions of two of its transcripts,
GNASXL and GNAS (see Fig. 6a). Computed MML and NME
values showed one allele in the first haplotype to be nearly
methylated (MML = 0.87) and its homologous allele to be nearly
unmethylated (MML =0.16), whereas both alleles exhibited
similar amounts of methylation stochasticity (NME = 0.54 and
0.46). This was also true for the second haplotype (MML = 0.86
and 0.08, NME = 0.45 and 0.40), resulting in both haplotypes
exhibiting statistically significant imbalances in MML (MML-
haps) but no significant differences in methylation entropy.
Moreover, no significant differences between the corresponding
PDMs were found in this case. Notably, the promoters of the

GNASXL and GNAS transcripts in mice are known to be
embedded within two differentially methylated CpG island
regions that carry characteristics of an imprinted control region!”.

Likewise, VTRNA2-1, an imprinted gene that appears to act as
a tumor suppressor and linked to various types of cancer!8-20,
was associated in the colon tissue with a haplotype that overlaps
its promoter and ICRs (see Fig. 6b). Similarly to GNAS, this
haplotype exhibited a statistically significant imbalance between
its two homologous alleles only in MML (MML-hap), due to one
allele being methylated (MML = 0.96) and its homologous allele
being nearly unmethylated (MML =0.17), with both alleles
exhibiting similar amounts of methylation stochasticity (NME
=0.25 and 0.39). On the other hand, a haplotype was identified
in the muscle tissue overlapping the promoter region of SNURF
(see Fig. 6¢), an imprinted gene associated with the Prader-Willi
and Angelman syndromes?!. This haplotype exhibited statistically
significant imbalances in both MML (MML-hap) and methyla-
tion entropy (NME-hap) between its two homologous alleles
(allele 1: MML = 0.97 and NME = 0.21; allele 2: MML = 0.25 and
NME = 0.81) but no significant difference between the corre-
sponding probability PDMs, indicating that the identified
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haplotype is not genetically informative. Notably, the promoter
region of SNURF is embedded within a 4.3-kb imprinting domain
that is responsible for the Prader-Willi syndrome?2.

Finally, the imprinted gene HI9, which has been associated
with the Beckwith-Wiedemann and Silver-Russell syndromes?3,
was linked in the pancreas tissue to a haplotype overlapping its
promoter and ICRs (see Fig. 6d). Similarly to GNAS and
VTRNA2-1, this haplotype exhibited a statistically significance
imbalance in MML (MML-hap; MML = 0.97 and 0.17) but no
significant difference in methylation entropy (NME =0.16 and
0.45). However, it also demonstrated a statistically significant
difference between the corresponding PDMs (PDM-hap), indi-
cating that the identified haplotype is genetically informative in
this case. Taken together, our real data results provide strong
evidence that the CPEL method provides a powerful approach for
hap-ASM analysis that can potentially produce valuable insights
when assessing the impact of sequence-dependent allelic
imbalances of the epigenome on cellular function.

Discussion

Next-generation sequencing technology continues to improve
read size and sequencing depth resulting in better experimental
capabilities for measuring DNA methylation within large regions
of the genome. This presents a great opportunity for performing
ASM analysis within large haplotypes along the genome by jointly
observing DNA methylation within homologous alleles at mul-
tiple CpG sites. However, the NPI and NPD methods, two state-
of-the-art computational approaches for ASM analysis”>!2, have
critical shortcomings that limit their applicability in this type of
analysis (see Supplementary Discussion). Clearly, there is an
immediate need for a new computational approach to ASM
analysis that addresses the main drawbacks of existing methods.
Toward this goal, we have developed the CPEL method, a pow-
erful approach for hap-ASM analysis that leverages principles
from statistical physics and information theory.

By using simulations, we have demonstrated the superiority of
the CPEL method over the NPI and NPD methods. The NPI
method is based on the biologically unrealistic assumption of
statistical independence among the methylation states at indivi-
dual CpG sites and, therefore, performs poorly in the presence of
correlations. On the other hand, the performance of the NPD
method deteriorates rapidly as the number of CpG sites within a
haplotype increases. As a consequence, this method cannot per-
form ASM analysis reliably and reproducibly within large hap-
lotypes containing multiple CpG sites. Notably, our results
suggest that the ASM analysis approach of Onuchic et al.12, which
is based on the NPD method, can be subject to substantial sta-
tistical variability and, therefore, to questionable reproducibility.
We attribute this issue to the seemingly poor estimation perfor-
mance of the NPD method, especially in the presence of corre-
lations and partially observed data, even at high coverage. In
sharp contrast, the CPEL method appears to handle correlations
and partially observed data well, even at low coverage and when
haplotypes contain more than four CpG sites. Finally, the CPEL
method can take into account heterozygous CpG sites that are
created or removed by SNPs, which is not possible by current
ASM analysis methods. This is done by estimating the PDM at all
CpG sites within each homologous allele of a given haplotype
using all available WGBS data and by computing PDMs for each
allele over the homozygous CpG sites via marginalization, which
are then utilized by the CPEL method to perform ASM analysis.

By employing WGBS data corresponding to 10 different tissues
from the same individual and a model selection approach based
on Akaike’s information criterion (AIC), we have also demon-
strated that the CPEL method is consistently more suitable for

ASM analysis than the NPI and NPD methods, especially when
considering haplotypes with homologous alleles containing at
least four CpG sites. This provides additional evidence that the
CPEL method is more preferable than existing approaches to
ASM analysis.

In addition to the previous limitations, the statistical analysis
performed by the NPI and NPD methods focuses on detecting
ASM events exhibiting significant differences in mean methyla-
tion, thus neglecting possibly critical ASM events associated with
significant imbalances in methylation pattern variability between
two homologous paternal alleles, as well as ASM events demon-
strating a significant association between DNA sequence and the
random methylation state. Although the CPEL method uses
hypothesis testing to also detect haplotypes showing significant
mean methylation imbalances, it can do so over larger genomic
regions than existing methods. Moreover, it can detect haplotypes
exhibiting statistically significant imbalances in methylation
entropy (a statistical measure of methylation pattern variability),
as well as identify genetically informative haplotypes character-
ized by significantly strong associations between genetic variation
and the methylation state of the allele of origin. Note, however,
that the clear superiority of the CPEL method over existing
methods comes at a substantial computational cost (it took about
48h using 20 CPUs to process one WGBS sample in the real
data), which necessitates the use of parallel processing using a
computer cluster. Given the cost of DNA sequencing as well as of
data preprocessing and alignment, and considering the important
statistical advantages that the CPEL method offers over existing
approaches to ASM analysis, we believe that the added compu-
tational cost is a modest price to pay in most circumstances in
order to obtain reliable and reproducible results.

The exploratory hap-ASM analysis performed here using the
CPEL method demonstrates its potential for producing valuable
biological insights, although more investigations are needed to
further validate the biological results presented in this paper. For
example, results obtained by analyzing the real data suggest that
genetic differences are most often associated with significant
methylation entropy imbalances in CG-poor and non-
transcriptional genomic regions, while significant MML imbal-
ances seem to generally occur at a smaller rate within CG-rich
and transcriptional genomic regions. These two findings, which
could shown be important for understanding the nature of allele-
specific DNA methylation, cannot be obtained by existing
approaches to ASM analysis, due to their previously discussed
limitations.

Overall, the CPEL approach discussed in this paper improves
previous work on ASM analysis and extends this work to large
haplotypes containing many CpG sites. Most importantly, this
method provides an essential set of innovative tools for com-
prehensively studying epigenetic stochasticity within homologous
parental alleles and for quantifying and detecting imbalances in
the statistical properties of such stochasticity along the genome.
The keys to its success are threefold. First, the method compre-
hensively models the random methylation state at all CpG sites
within a haplotype via a joint probability distribution that
accounts for correlations among the methylation states of con-
tiguous CpG sites. Second, this distribution is computed by
estimating the values of a small number of parameters using all
information available in the WGBS reads associated with the
haplotype, a task that can be done reliably, even at low coverage.
Third, the method incorporates an approach for statistical
hypothesis testing that allows detection of significant differences
in MML and methylation entropy, as well as identification of
haplotypes for which the genetic variant carries significant
information about the methylation state of neighboring
CpG sites.
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Providing researchers the capability to comprehensively per-
form hap-ASM analysis in a statistically rigorous manner con-
stitutes a novelty in the ASM field. This opens the possibility of
accurately studying the impact of genetic variation in cis on
epigenetic stochasticity and ultimately facilitate the discovery of
biological findings with important implications to the genetics of
complex human diseases. Considering the advantages that the
CPEL method enjoys over existing approaches, as well as the
user-friendliness of the accompanying computer code, we believe
that this method will be used widely for ASM analysis, leading to
a better understanding of the circumstances in which ASM arises.

Methods

Data preprocessing and alignment. We first performed quality control and
adapter trimming of the raw WGS and WGBS data using Trim Galore (v0.5.0)
[https://github.com/FelixKrueger/TrimGalore]. We then aligned the resulting WGS
reads to the human reference assembly GRCh37 using Arioc?* (v1.3.0) and
removed PCR duplicates from the aligned reads using Picard?® (v2.18). We per-
formed a similar step on the raw WGBS reads using Arioc and a masked reference
genome for alignment, as well as Bismark?® (v0.20.0) for removing PCR duplicates.
We created the masked reference genome by placing an undetermined base N at
heterozygous SNP positions in the human reference assembly GRCh37 using
SNPsplit?” (v0.3.2). This ensured that the mapping score for either allele was not
penalized due to a potential mismatch in the SNP position between a WGBS read
and the reference genome. By utilizing available SNP information and by applying
WhatsHap?3 (v0.17) on the aligned WGS reads, we performed read-based SNP
phasing, which resulted in clustering SNPs in the same WGS reads into groups of
the same genetic origin. Finally, by using SNPsplit, we classified aligned WGBS
reads into three groups, according to their allele of origin or lack thereof.

Identifying haplotypes. An SNP cluster obtained by read-based SNP phasing
defines a segment of DNA with a start point and an end point given by the genomic
coordinates of its upstream-most and downstream-most SNPs, respectively. We
call this region a haplotype and refer to each genetic variant of a haplotype as an
allele. However, there might be nearby CpG sites upstream or downstream of a
haplotype that should also be included in the comparison, given their proximity to
the haplotype. To that end, the CPEL method symmetrically expands a haplotype
on both sides (upstream and downstream) by including the same number of base
pairs, which is taken to be the average size of the WGBS reads associated with the
haplotype.

The CPEL method estimates P values from WGBS data, which turns out to be
computationally expensive when haplotypes contain many CpG sites. To address
this issue, a maximum acceptable number N, .. of CpG sites is specified and each
haplotype that contains more than N, .. CpG sites is then divided into the
minimum number of haplotype regions, with each region containing an equal
number of CpG sites that is no more than N, . In this case, the term haplotype
refers to an individual haplotype containing at most N, .. CpG sites or to a
haplotype region obtained by the previous approach. We implemented the CPEL
method by setting N, = 20, a choice that led to infrequent division of haplotypes
in the real data and a reasonable usage of computational resources.

Mean methylation level. The average amount of methylation within an allele is
quantified by the CPEL method using the MML!?. For an allele associated with a
homozygous haplotype containing N CpG sites (i.e., one for which there is a perfect
match between the CpG sites in the two homologous alleles), the MML is given by

1 N
X)=E [N;Xn

where E[ - | denotes expectation. The MML ranges between 0 and 1, taking its
maximum value when all CpG sites within the allele are methylated and achieving
its minimum value when all CpG sites are unmethylated. Efficient techniques for
computing this quantity within homozygous and heterozygous haplotypes can be
found in Supplementary Methods, Section 7.

7)

Normalized methylation entropy. The amount of methylation stochasticity
(pattern heterogeneity) within an allele is quantified by the CPEL method using the
NME. For an allele associated with a homozygous haplotype containing N CpG
sites, the NME is given by

X) = 13" p(x)log,p(x), ®)

with X being the allele’s methylation state. The NME ranges between 0 and 1,
taking its maximum value when all methylation states within the allele are equally
likely (fully disordered methylation), and achieving its minimum value when only a
single methylation state is observed (perfectly ordered methylation). Efficient

techniques for computing this quantity within homozygous and heterozygous
haplotypes can be found in Supplementary Methods, Section 8.

JSD and uncertainty coefficient. Differences between two PDMs p;(x) and p,(x)
are quantified by means of the JSD D(p;, p,), where!®:11

D(p,,p,) =¢ |:Zpl )lo 82 2P1+p ® +ZP2 logz Zf’z(p)( il
©)

This quantity is a normalized metric since it takes values between 0 and 1, is
symmetric, and satisfies the triangle inequality?®. Moreover, it achieves its mini-
mum value of 0 if and only if the two PDMs p;(x) and p,(x) are identical, whereas
it takes its maximum value of 1 when the PDMs do not overlap with each other. In
addition, the amount of information that the allele of origin A € {1, 2} conveys
about the random methylation state X is measured by means of the uncertainty
coefficient Q(X; A), given by30

Qi) =, (10)
where
rX =x,A=
;azlzPr[Xfx A= ]logzm (11)

is the mutual information between the random methylation state X and the allele of
origin A, h(X) is the NME of X without knowing its allele of origin, and N is the
number of CpG sites. This quantity takes values between 0 and 1, with larger values
indicating that the allele of origin conveys more information about the random
methylation state.

Since we are considering diploid organisms, we can take the probability of
finding one of the two homologous alleles of a given haplotype in a biological
sample to be equal to the probability of finding the other allele; i.e., we can
set Pr[A =1] = Pr[A =2] = 1/2. In this case, it can be shown?3! that I(X; A) =
D%(py, p,), where D(p,, p,) is the JSD between the PDMs p;(x) = Pr[X =x|A = 1]
and p,(x) =Pr[X =x|A =2] of the two homologous alleles. This implies that

1D(popy) _
N h(X) PDM>

which shows that, in addition to being proportional to the square JSD between the
two PDMs p;(x) and p,(x) associated with the homologous alleles of a haplotype,
the test statistic Tppy used by the CPEL method provides a measure of association
between the random methylation state and the allele of origin by means of the
uncertainty coefficient. Efficient techniques for evaluating the uncertainty
coefficient and, therefore, Tppy, within homozygous and heterozygous haplotypes
are discussed in Supplementary Methods, Section 9.

QX;A) = (12)

AIC and Akaike weights. We evaluated the appropriateness of the NPI, NPD, and
CPEL models for modeling real data using the small-sample version of AIC, given
by32

AIC(i,j :
(i.j) = My, 1

7221r1pﬁ ) + 21, + =12,

(13)
where 77;; is the number of free parameters to be estimated for a given methylation
model pg(x) within the jth allele of the ith haplotype, M;; is the number of available
observations, and 6; are the estimated parameters. The AIC provides an estimate of
the quality of a given ASM model by quantifying the relative amount of infor-
mation lost when using this model, where a methylation model that is associated
with a smaller information loss (i.e., a smaller AIC value) is considered to be better
than a model that is associated with a higher information loss (i.e., a higher AIC
value). Note that

Ny, for the NPI model,
for the NPD model,

My = 2N —1,
K;+1, for the CPEL model,

(14)

where Nj; is the number of CpG sites and Kj; is the number of subregions in the jth
homologous allele of the ith haplotype used by the CPEL model.

Given the AIC values AIC;(i, j) and AIC,(3, j) of two alternative ASM models
associated with the jth allele of the ith haplotype, we computed the Akaike weight32

. exp{—4,(i,j)/2}

W(i,j) = — — s 15
) = P (=8,063)/2) + exp{~8:007)/2) 1

where A (i,j) = AIC, (i,j) — min{AIC, (i, /), AIC,(i, )} is the information loss

experienced when using the first model rather than the best possible model (i.e., the
model with the least AIC). By interpreting W(i, j) as a probability, we concluded
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that, when W(i, j) > 0.5, the first model was more preferable for hap-ASM analysis
than the second model within the jth allele of the ith haplotype.

Tissue co-occurrence permutation test. We evaluated the significance of the
tissue co-occurrence results using a permutation test, which tests against the
null hypothesis that an observed co-occurrence value is no larger than

what is expected by chance. This test counts the number K of all statistically
significant haplotypes of the same type (MML-hap, NME-hap, or PDM-hap)
obtained by the CPEL method across all tissues. It subsequently performs 1000
permutations, each consisting of sequentially (up to K times) and randomly
labeling a haplotype along the genome and across all tissues to be statistically
significant, and evaluates the corresponding tissue co-occurrence for each
permutation. It finally computes a P value as the proportion of tissue co-
occurrences obtained from all permutations that are at least as large as the
observed tissue co-occurrence. This P value quantifies the probability of
observing, under the permutation-based null model, a tissue co-occurrence at
least as large as the one computed by the CPEL method. Therefore, a small

P value suggests that the observed tissue co-occurrence is less likely to be due to
chance.

Genomic features and regions. Files and tracks bear genomic coordinates for
hg19. We obtained CGIs from Wu et al.>3 and defined CGI shores as sequences
flanking 2-kb on either side of CGIs, CGI shelves as sequences flanking 2-kb
beyond the shores, and open seas as everything else. We divided the genome
into CG-rich regions, composed of CGIs and CGI shores, and CG-poor regions
composed of CGI shelves and open seas. We identified genes, transcription start
sites (TSSs), exons, and introns using the R package TxDb.Hsapiens.UCSC.
hgl9.knownGene and defined the promoter region of a gene to be the 4-kb
window centered at its TSS. We obtained enhancer annotations from a 25-state
ChromHMM model4, which produced 474,004 putative enhancer regions that
we included in our analysis. We finally divided the genome into transcriptional
regions, composed of promoters, exons, and enhancers, and defined non-
transcriptional regions as everything else.

Enrichment analysis. We performed enrichment analysis of MML-haps over-
lapping a given genomic feature, and similarly for NME-haps and PDM-haps, by
using the OR statistic and Fisher’s two-sided exact test on a 2 x 2 contingency
table of haplotype counts genome-wide and across all tissues with columns
corresponding to the statistical significance of the haplotype (e.g., haplotype is
MML-hap, haplotype is not MML-hap) and rows corresponding to haplotype
overlap (haplotype overlaps genomic feature, haplotype does not overlap
genomic feature). We implemented Fisher’s two-sided exact test using the R
function fisher. test.

We also used the previous method to perform enrichment analysis of MML-
haps, NME-haps, and PDM-haps overlapping the promoter regions of imprinted
genes. We employed 107 human genes from the geneimprint database [http://www.
geneimprint.com] for which there is strong evidence that they are imprinted (i.e.,
whose status is labeled as imprinted in the database), and applied Fisher’s two-
sided exact test on a 2 x 2 contingency table of genome-wide haplotype counts
across all tissues with columns corresponding to the statistical significance of the
haplotype in the real data (e.g., haplotype is MML-hap, haplotype is not MML-hap)
and rows corresponding to haplotypes overlapping the promoter region of an
imprinted gene vs. that of a non-imprinted gene.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw WGS and WGBS data are available from NIH’s Epigenomics Roadmap Initiative
with number PRJNA34535 for patient ID STL003. The raw SNP data can be downloaded
from Genboree with patient ID STL003 [fttps://fts.genboree.org/allelic-epigenome/json].
The homo sapiens (human) genome assembly GRCh37 (hgl9) used as a reference
genome can be downloaded from [https://hgdownload.soe.ucsc.edu/goldenPath/hg19/
bigZips]. The gene imprinting data can be downloaded from [https://www.geneimprint.
com/site/genes-by-species. Homo-+-sapiens.imprinted-All]. The enhancer data can be
downloaded from [https://personal broadinstitute.org/meuleman/reg2map/
HoneyBadger2-intersect_release/DNase/p10/enh/25/state_calls.RData].

Code availability

The method presented in this paper has been implemented in a Julia package called
CpelAsm. The source code and associated instructions can be downloaded from
[https://github.com/jordiabante/Cpel Asm.jl].
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