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The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate
the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara
(MVA) vector system is being explored as a platform for development of multiple vaccines. This paper
reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a
template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebola-
virus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral
vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus
and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the
European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is
attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence
to replicate in human cells. MVA has six major deletions and other mutations of genes outside these dele-
tions, which all contribute to the replication deficiency in human and other mammalian cells.
Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and
non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants
have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines.
MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and
monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified
throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia
smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vacci-
nees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has
undergone clinical testing including Phase III in West Africa and is currently in use in large scale vacci-
nation studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN
vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as
well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to pro-
vide solutions to prevent disease from high-consequence human pathogens.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Brighton Collaboration (www.brightoncollaboration.org)
was launched in 2000 to improve the science of vaccine safety.
The Brighton Collaboration formed the Viral Vector Vaccines Safety
Working Group (V3SWG) in October 2008 to improve our ability to
anticipate potential safety issues and meaningfully assess or inter-
pret safety data, thereby facilitating greater public acceptance
when a viral vector vaccine is licensed. The V3SWG has developed
a standardized template describing the key characteristics of a
novel viral vaccine vector to facilitate the scientific discourse
among key stakeholders and increase the transparency and compa-
rability of information. This introduction and the ‘‘specific instruc-
tions” provide definitions and additional guidance for completing
the template (V2.0) that follows.

Viral vector vaccines are laboratory-generated, chimeric viruses
that are based upon replicating or non-replicating virus vectors
into which have been spliced genes encoding antigenic proteins
for a target pathogen. Consideration of safety issues associated
with viral vector vaccines requires a clear understanding of the
agents used for construction of the vaccine. These include (1) the
wild type virus from which the vector is derived, referred to in
the template as ‘‘wild type virus”; (2) the vector itself before incor-
poration of the foreign antigen, referred to in the template as ‘‘viral
vector”; and (3) the final recombinant viral vector vaccine, referred
to in the template as ‘‘vaccine”. Wild type viruses used as vectors
may originate from human or non-human hosts and may have low
or high pathogenic potential in humans regardless of species of ori-
gin. Viral vectors can originate from attenuated human vaccines,
from attenuated human viruses, from human viruses with low
pathogenic potential, from animal viruses with low human patho-
genic potential, and from vectors (for the expression of proteins)
which are then adapted as a viral vector (such as DNA plasmids
or baculovirus vector vaccines) to be used as a vaccine in humans
or animals. Thus, viral vectors usually, but not always, have prop-
erties in a human host that differ from wild type virus from which
they were derived. Incorporation of a target antigen into a viral
vector to create a vaccine may alter the properties of the vector
such that the vaccine may have properties that differ from the vec-
tor. The Brighton Collaboration Vaccine Vector template is designed to

describe vectors into which transgenes may be incorporated to create
vaccines. However, pursuant to understanding completely the
safety aspects of a given vector, consideration is given to the wild
type virus fromwhich the vector is derived (Table 1, Section 3), and
the potential impact of transgene insertion to create a vaccine
(Table 1, Section 5).
1.1. Modified Vaccinia Ankara (strain MVA-BN) as a platform for
recombinant vaccines

1.1.1. Background
The world was declared to be free of smallpox in May 1980 and

this was because of global vaccination with vaccinia virus (VACV)
3068
based vaccines [1]. Although these vaccines were very successful
at preventing smallpox there were serious adverse events indicat-
ing the need for a less virulent vaccine [2,3].

Due to these often-severe post-vaccination complications asso-
ciated with Vaccinia viruses, there were several attempts to gener-
ate a more attenuated, safe smallpox vaccine. Modified vaccinia
Ankara (MVA) originates from the dermal Vaccinia Virus Ankara
strain (Chorioallantois Vaccinia Virus Ankara, CVA) that was main-
tained in the Vaccination Institute Ankara for many years and used
as the basis for vaccination of humans. During the period of 1960
to 1974, Prof. Anton Mayr and his colleagues (University of
Munich, Germany, Institute for Microbiology and Infectious Dis-
eases of Animals) succeeded in attenuating CVA by over 570 con-
tinuous passages in primary CEF (chicken embryo fibroblast) cells.

A reduced virulence of CVA was reported from passage 371 on
CEF cells [4]. From passage 516, the attenuated CVA virus was
renamed MVA to discriminate it from other attenuated Vaccinia
virus strains [5–7]. In clinical trials with MVA, the pock lesions
associated with vaccinia virus vaccination are not seen [7]. This
attenuated MVA vaccine was used in more than 120,000 vaccinees
for priming prior to administration of a conventional smallpox vac-
cine in a two-step protocol used in the 1970s in Europe [3,6,8].

In the last decades, multiple recombinant MVA vectors have
been tested as vaccine candidates against various pathogens, such
as human immunodeficiency viruses, Mycobacterium tuberculosis,
Plasmodium falciparum or Middle East Respiratory Syndrome
virus [8,9].

MVA-BN, that is derived from the MVA strain developed in Prof.
Anton Mayr’s laboratory, is a further attenuated MVA strain, which
has lost its ability to replicate in most mammalian cell types,
including human cell lines and is safe in severely immune compro-
mised animals [10,11]. The hallmark of MVA-BN is the fact that it
does not productively replicate in the human keratinocyte cell line
HaCat, the human cervix adenocarcinoma cell line HeLa, the
human embryo kidney cell line 293 (HEK293), and the human bone
osteosarcoma cell line 143B [10,12].

However, like other MVA strains, MVA-BN effectively infects
mammalian cells. Infection of mammalian cells results in tran-
scription of the viral genes, but no MVA-BN virus is released from
the cells due to a genetic block in the viral assembly and egress.
The infected cells eventually undergo apoptosis (programmed cell
death) [13–15]. There are several deletions and other mutations in
MVA that account for the change in host-range of the virus. Six
major deletions mainly account for a reduction in the size of the
original vaccinia genome from 204.5 kb to 178 kb for the MVA
strain [12,16]. Sequencing of the genome revealed that these dele-
tions included immune evasion genes, host interactive protein
genes and some structural proteins [17].

Due to the lack of replication competence in many mammalian
cells including human cells, MVA-BN can be safely administered to
immunocompromised humans. This safety feature has also been
confirmed in severely immunocompromised animals [10,11].
MVA-BN is now a licensed smallpox vaccine (since 2013 in EU

http://www.brightoncollaboration.org


Table 1
Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG).

1. Authorship Information

1.1. Author(s) Anna-Lise Williamson, Thomas PH Meyer, Ariane Volkmann, Heinz Weidenthaler
1.2. Date completed/updated April 2020

2. Basic vector information Information

2.1 Vector name Modified Vaccinia Ankara (MVA-BN)
2.2. Vector origin Family/Genus/

Species/subtype
Poxviridae family/orthopox virus/vaccinia virus/modified vaccinia virus Ankara/MVA-BN
Poxviruses are large, enveloped virus particles with a rounded brick shape of approximately 350 x 250 x 250 nm. They are
surrounded by 1-2 membranes containing protein projections that are discernible by electron microscopy. The dumbbell
shaped viral core surrounded by the core wall is mainly composed of proteins and contains the viral genome. The poxvirus
genome consists of a linear double-stranded DNA of 130 - 230 kb with closed hairpin ends.
The genome of MVA is a linear, double-stranded DNA molecule with covalently closed ends (hairpins) comprising 177,923
nucleotides [17]. Inverted terminal repeats (ITRs) of 9.8 kb are located at the ends of the genome. These ITRs consist of 3
major parts: The terminal hairpin loops comprising 165 nucleotides, 6 kb of DNA mainly consisting of tandem repeats and
3.7 kb of non-repeat region coding for 4 polypeptides. In total, the genome contains 193 open reading frames (ORFs) coding
for polypeptides of more than 62 amino acids. In comparison to the parental Vaccinia Virus Ankara strain (Chorioallantois
Vaccinia Virus Ankara, CVA) the genome of MVA has lost around 26,600 nucleotides. Six major deletions totaling more than
25 kb and deleting or truncating 31 ORFs have occurred in the genomic DNA of MVA compared to CVA. In addition, a
multitude of shorter deletions and insertions as well as point mutations have occurred in the MVA genome, resulting in gene
fragmentation, truncation, short internal deletions, and amino acid exchanges.
MVA-BN is derived from the MVA strain developed by Professor Anton Mayr. In 1998, one vial of the MVA virus (at passage
582) was transferred from the Institute of Molecular Virology, a section of the Research Center for Environment and Health
(GSF, Munich), to Bavarian Nordic GmbH, Martinsried, Germany. The isolate was further passaged by Bavarian Nordic and
has been named MVA-BN. Documented virus stocks i.e. the original Master Virus Bank (MVB, passage 584) and the newly
rederived MVB (passage 597) have been prepared at BN which were used as primary virus stocks for GMP production. The
preparation of the re-derived primary virus stock consisted of 5 rounds of plaque purification by limiting dilutions. Selection
and further amplification of the final clone resulted in a new re-derived primary virus stock MVA-BN MVB corresponding to
passage number 597. The complete coding DNA-sequence was determined and the re-derived MVB was confirmed to be
genetically and phenotypically identical to the original MVA-BN MVB.
MVA-BN was shown to be more attenuated compared to two other MVA isolates, namely MVA-572 and MVA-I721, and even
fails to replicate in immune compromised animals [10,12].
Despite its high attenuation and reduced virulence, MVA-BN has been shown to elicit both humoral and cellular immune
responses to Vaccinia virus and foreign genes cloned into the MVA-BN genome [31–36]. MVA is a potent inducer of type I
interferon (IFN) in human cells. MVA expresses a soluble interleukin-1 receptor, which has been implicated as an anti-
virulence factor for certain Poxviruses. MVA does not express soluble receptors for IFN-c, IFN-a/-b, tumor necrosis factor and
CC chemokines [37]. Neurovirulence assessment of vaccinia virus based smallpox vaccines demonstrated the inability of
MVA to replicate in suckling mouse brains following intracranial inoculation of 10-100 plaque forming units (pfu) of virus,
while all other vaccinia virus strains tested (Dryvax�, Lister, Copenhagen, IHD-J, WR) replicated to peak titers of 107 to 108

pfu per gram tissue. Moreover, none of the doses of MVA tested, i.e. up to 105 pfu administered intracranially, induced death
in the suckling mice. In contrast, mortality induced by Dryvax� started at a dose of 10 pfu; Lister, Copenhagen, IHD-J andWR
induced death in some mice at 1 pfu and injection of 103 pfu was 100% lethal confirming neurovirulence reported for these
strains [38].
MVA-BN replicates extensively and rapidly in CEF cells and also in certain other avian cell lines.

2.3. Vector replication in humans
(replicating or non-replicating)

MVA-BN is a non-replicating vector in humans.

3. Characteristics of the wild type
virus from which the vector is
derived

Information Comments/Concerns Reference(s)

3.1 Name of wild type virus (common
name; Family/Genus/
Species/subtype)

Family: Poxviridae
Subfamily: Chordopoxviridae
Genus: Orthopoxviridae
Species: Vaccinia virus (VACV)

VACV is the virus used for the
replicating smallpox vaccine that was
utilized during eradication and now
ACAM2000.

[39]

3.2 What is the natural host for the wild
type virus?

The original host is unknown, but VACV
can replicate in a range of animals
including primates, rodents,
lagomorphs and ungulates as well as
humans.

The origin of the VACV is debated and
there is some evidence that it originated
from a horse poxvirus which was able to
infect cows. In Brazil and in India VACV
is endemic in animals, with occasional
transmission to humans, and is thought
to originate from smallpox vaccine
campaigns.

[39–43]

3.3. How is the wild type virus normally
transmitted?

The typical manifestation of the
wildtype virus infection are
vesiculopustular lesions or dermal
vesicles (pox lesions). These lesions
contain infectious virus particles.
Transmission can occur by close contact
with infected area. There is no evidence
that VACV is transmitted via airborne
infection.

There is evidence that shedding of VACV
from the vaccination lesion of healthy
primary vaccinees occurs from about
the third day to the end of the third
week after vaccination. There are rare
reports of transmission of VACV.

[44]

3.4. Does the wild type virus establish a
latent or persistent infection?

No, the infections are acute [45]

3.5. Does the wild type virus replicate in
the nucleus?

No. Poxviruses replicate in the
cytoplasm.

[46]

(continued on next page)
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3.6. What is the risk of integration into
the human genome?

Very low

Poxviral vectors are considered non-
integrating according to the EMA
‘Guideline on nonclinical testing for
inadvertent germline transmission of gene
transfer vectors’, because they lack the
machinery to actively integrate their
genome into the host chromosomes.1

MVA, as well as other members of the
Poxviridae family, is unusual among
deoxyribonucleic acid (DNA) viruses in
that they replicate in the cytoplasmic
compartment of the cell. Compared to
other DNA viruses, the possibility for
integration of their genetic material into
the host chromosome is therefore
extremely low [47].
In addition, vaccinia infection results in
cell death

1. Guideline on nonclinical testing for
inadvertent germline transmission of
gene transfer vectors’ EMEA/273974/
2005. Available at https://www.ema.
europa.eu/en/documents/scientific-
guideline/guideline-non-clinical-
testing-inadvertent-germline-
transmission-gene-transfer-vectors_
en.pdf; Accessed 28 February 2019.
[47–50]

3.7. List any disease manifestations
caused by the wild type virus, the
strength of evidence, severity, and
duration of disease for the following
categories:

� In the healthy natural host There are reports of occurrence of
vaccinia infection in dairy cattle,
particularly in Brazil. The manifestation
consists of painful vesiculopustular
lesions [42,43].

[42,43].

� In healthy human host � Most common AE is generalized
vaccinia.

� Association reported between the
US vaccinia strain and myocarditis
and/or pericarditis in up to 1 in
200 vaccinees.

� Eczema vaccinatum, progressive
vaccinia, and neurological and car-
diac complications.

� Death rate 1-5/million.

These rates are rather for the previously
observed complication rates with
replicating vaccinia virus smallpox
vaccines, such as ACAM2000 or Dryvax.
There is no natural occurrence of
vaccinia virus infections in human
hosts.

[51,52]
Reference for myocarditis and/or
pericarditis frequency: [53]

� In immunocompromised humans Can be fatal and so vaccination with
VACV is contraindicated.

Applicable for the replicating vaccinia-
based smallpox vaccines

[54,55]

� In human neonates, infants, children Children <12 months of age have an
increased rate of the complications
listed above for healthy human host

[55,56]

� During pregnancy and in the unborn
in humans

Live vaccinia virus vaccines can cause
fetal harm when administered to a
pregnant woman. Congenital infection,
principally occurring during the first
trimester, has been observed after
vaccination with live vaccinia smallpox
vaccines, although the risk may be low.
Generalized vaccinia of the fetus, early
delivery of a stillborn infant, or a high
risk of perinatal death has been
reported. (Source: ACAM2000
prescribing information)

Pregnant women can be given Vaccinia
hyperimmune globulin if at risk of
transmission to fetus.

Reference [57] is from 1975. The data on
pregnancy is from uncontrolled sources
referring to the years 1932 to 1975. In
contrast, the prescribing information for
ACAM2000 has a clear and prominent
warning [58].

[57,58]

� In any other special populations? Live vaccinia virus vaccines are
contraindicated for subjects with atopic
dermatitis (eczema), allergies to vaccine
components and immunosuppression.

This also includes treatments that cause
immunodeficiency or
immunosuppression, including
radiation therapy, antimetabolites,
alkylating agents, corticosteroids,
chemotherapy agents, and organ
transplant medications.
Patients should not be vaccinated with
live vaccinia virus until they, or their
household contacts, have been off
immunosuppressive treatment for three
months.

Inflammatory eye diseases, including
eye surgery and subsequent use of

[55,59]
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steroid eye drops. These patients should
not be vaccinated with live vaccinia
virus until the ocular condition is well
controlled and they have not been using
steroid eye drops for at least two weeks.

3.8. What cell types are infected and
what receptors are used in the
natural host and in humans?

Wide range of cells can be infected with
VACV.

VACV enters cells in a multistep process.
Four proteins participate in attachment
to glycosaminoglycans and laminin. A
complex of 11 proteins mediate the
hemifusion and entry steps.

[60]

3.9. What is known about the
mechanisms of immunity to the wild
type virus?

Antibody and T cell responses
associated with protection

People with severe T cell abnormalities
developed generalized VACV infection
after vaccination. The same was not
seen with in people with
agammaglobulinemia. This indicated
that cell medicated immunity was
important in controlling the primary
VACV infection. Vaccinia immune
globulin (VIG) is recommended as first
line therapy for adverse event after
VACV vaccination.

[61,62]

3.10 Has disease enhancement been
demonstrated with the wild type
virus:

No

� in vitro? No
� in animal models? No
� in human hosts? No
3.11 Is DE a possible contributor to the

pathogenesis of wild type disease
No

3.12 What is the background prevalence
of natural immunity to the virus?

Low – natural VACV infections are
relatively rare.

‘‘Natural” infections are rather accidents
of lab workers. Background immunity in
the population is based on previous
vaccination programs. There are only
isolated reports of natural infections
with ‘‘wild type” VACV.

[42]

3.13 Is there any vaccine available for
the wild-type virus? If yes,

The parent virus is the vaccine strain of
VACV, so this is the vaccine.

� What populations are immunized? Military personnel, health care workers
and laboratory workers at risk of
infection with virulent poxviruses

[63,64]

� What is the background prevalence of
artificial immunity?

Low in people born after 1980. Smallpox was declared eradicated in
1980 and so with the exception of
selected groups people born after 1980
were not vaccinated.

[1]

3.14 Is there treatment available for the
disease caused by the wild type virus

Vaccinia immune globulin (VIG) is as
the first-line therapy, and Brincidofovir,
the second-line therapy. Tecovirimat
(TPOXX) is approved for treatment of
smallpox but can be reasonably
expected to show effectiveness also for
other orthopoxvirus infections.

[62]
(TPOXX (Tecovirimat) Prescribing
Information)

4. Characteristics of the vector from
which vaccine(s) may be derived

Information Comments/ Concerns Reference(s)

4.1 Describe the source of the vector
(e.g. isolation, synthesis)

MVA was derived from the vaccine
strain of the smallpox vaccine, vaccinia
virus strain Ankara by passage on the
chorioallantoic membrane of chicken
eggs.
MVA-BN was derived from MVA by
further passaging and plaque
purification, see Section 2.2.

[4,5–7]

4.2. What is the basis of attenuation/
inactivation of the wild type virus to
create the vector?

After over 500 passages in eggs MVA
was shown to have restricted host
tropism and did not complete
replication in human cells. MVA has six
major deletions which account for a
reduction in the size of the original
vaccinia genome from 208 kb to 177 kb
for the MVA strain, and other mutations
of genes outside these deletions, which
all contribute to the replication
deficiency in human and other
mammalian cells. The deletions
included immune evasion genes, host
interactive protein genes and some
structural proteins.

[15,17,4,5–7,12,16,65]

(continued on next page)
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4.3. What is known about the
replication, transmission and
pathogenicity of the vector in
humans in the following categories:

� in healthy people Non-productive infection Non-replicating in human cell lines, no
egress of infectious virus particles after
first infectious cycle.

[10,14]

� in immunocompromised people Non-productive infection Non-replicating in human cell lines,
clinical trials in HIV positive subjects
showed safety profile equivalent to
healthy populations.

[66–68]

� in neonates, infants, children Non-productive infection Non-replicating in human cell lines.
Clinical trials with a Measles construct
and with a Filo construct in pediatric
population showed a safety profile
equivalent to healthy adults.

� during pregnancy and in the unborn Non-productive infection Limited experience in MVA-BN clinical
trial program, in total 29 pregnancies
reported and documented. No
congenital abnormalities, complication
rate in line with expected background
rates.

[31]

� in gene therapy experiments Non-productive infection Cancer vaccines:
CV301 (reference [69])

Brachyury (references [35,70])

[69,35,70]

� in any other special populations Non-productive infection.
Non-replicating in human cell lines

Atopic dermatitis: references [71,72]
Stem cell transplant: reference [73]

[71–73]

4.4. Is the vector replication-competent
in non-human species?

It replicates in chicken embryo
fibroblasts, baby hamster kidney cells;
no replication has been described in vivo

Replicating in CEF (chicken embryo
fibroblast) cells. Replicating in BHK
(baby hamster kidney) cells, and some
other cell lines, but not in live mammals
including rabbits, rats,
immunosuppressed NHP (non-human
primates), immunocompromised mice

[13,48,10,11,14]

4.5. What is the risk of reversion to
virulence or recombination with wild
type virus or other agents?

No documented incidence of reversion
which appears extremely unlikely.
Recombination with standard vaccinia
virus strains or other Orthopoxviruses
can occur

4.6 Is the vector genetically stable
in vitro and/or in vivo?

Yes Even in vivo in immunosuppressed
mice, MVA-BN remains stable, while
replicating variants become apparent
after administration of other MVA
strains

[13,10]

4.7. What is the potential for shedding
and transmission to humans or other
species?

Negligible Non-replicating, therefore, basically no
risk following s.c. or i.m. injection.

4.8. Does the vector establish a latent or
persistent infection?

No Non-replicating, see biodistribution
section (Section 6.8)

4.9. Does the vector replicate in the
nucleus?

No

4.10. What is the risk of integration into
the human genome?

Extremely low as replication takes place
in cytoplasm and infection results in cell
death

4.11. Is there any previous human
experience with this or a similar
vector (safety and immunogenicity
records)?

Yes Excellent safety record.
Reference to BN’s clinical trial program
and approved product texts.
MVA-BN has been developed by BN
under two Investigational New Drug
(IND) applications in the US: IND 11596
for the LF formulation, and IND 15316
for a freeze-dried (FD) formulation.
MVA-BN (LF formulation) has been
approved as smallpox and monkeypox
vaccine (tradename JYNNEOS) by the
FDA on September 24, 2019.
From the time that clinical development
of MVA-BN was initiated in 1999, a total
of 7,871 subjects have been vaccinated
with MVA-BN in 22 completed clinical
studies; 16 trials were sponsored by BN
(10 under IND 11596, one under IND
15316) and 6 were sponsored by the
NIH/DMID (under IND 11229). These
trials were designed to identify an
optimal dose and vaccination regimen;
to generate data indicating the
protective efficacy of MVA-BN by

[30,74–
88,81,73,66,72,79,67,31,71,32,68]
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comparison to replicating smallpox
vaccines (Dryvax and ACAM2000); to
assess the safety and immunogenicity of
MVA-BN in subjects 18-80 years of age,
including healthy as well as at-risk
populations with contraindications to
receive traditional smallpox vaccines;
and to compare the FD to the LF
formulation of MVA-BN.
In all these trials and all populations
studied, MVA-BN has demonstrated a
favorable safety profile and consistently
demonstrated the ability to induce a
rapid and strong vaccinia-specific
immune response, i.e. neutralizing
antibodies measured by plaque
reduction neutralization test (PRNT)
and total antibodies measured by
enzyme-linked immunosorbent assay
(ELISA).

4.12. What cell types are infected and
what receptors are used in humans?

Can potentially infect all cell types,
multiple receptors

see above section on wildtype virus
(Section 3.8)

[60]

4.13. What is known about the
mechanisms of immunity to the
vector?

Immune responses to the vector are
directed to multiple antigens and are
based on antibodies as well as T cell
responses

see above section on wildtype virus
(Section 3.9)

[61,62]

4.14 Has disease enhancement been
demonstrated with the vector:

No

� in vitro? No
� in animal models? No
� in human hosts? No
4.15. Is there antiviral treatment

available for disease manifestations
caused by the vector?

There are no disease manifestations
reported as vector does not complete
replication.

4.16. Can the vector accommodate
multigenic inserts or will several
vectors be required for multigenic
vaccines?

Yes, several foreign genes can be
inserted into a single MVA-BN construct

Examples for multiple inserts in a single
MVA-BN vector are:
MVA-BN-Filo
MVA-BN-RSV
MVA-BN-CV301
MVA-BN-Brachyury

[89–91]
MVA-BN-Filo:
[30,92–97]
MVA-BN-RSV:
[33]
MVA-BN-CV301:
[69]
MVA-BN-Brachyury:
[35]

5. Characteristics of vector-based
vaccine(s)

Information Comments/ Concerns Reference(s)

5.1. What is the target pathogen? Ebola virus
5.2. What is identity and source of the

transgene?
The protein sequences for glycoproteins
(GP) from Ebola Virus (EBOV) Zaire

(Mayinga; GenBank: ABX75367.1),
Sudan Virus (SUDV) (Gulu; GenBank:

AAU43887.1) and Marburg Virus
(MARV) (Musoke; GenBank:

ABA87127.1) and NP from Tai-Forest

Virus (TAFV) (GenBank: ACI28629.1)
were used. The corresponding DNA
sequences were optimized for human
cell expression, homologies between
the different GP were reduced without
affecting the amino acid sequence to
circumvent homologous recombination,
and genes were synthesized by GeneArt
(Regensburg, Germany).

5.3. Is the transgene likely to induce
immunity to all strains/genotypes of
the target pathogen?

Yes, the vaccine induces immunity
against Ebola virus Zaire (target
indication), subtype Mayinga
(glycoprotein encoded in the vaccine)
and other subtypes of EBOV, e.g. Kikwit

MVA-BN Filo contains inserts of the
following viruses: Ebola virus Zaire,
Sudan virus, Marburg virus, Tai Forest
virus;
Protection against EBOV Kikwit
challenge in NHP demonstrated

[96]

5.4. Where in the vector genome is the
transgene inserted?

Two transgenes each (GP SUDV & NP
TAFV and GP EBOV & GP MARV) with
their own promotors are inserted in two
MVA-BN non-coding regions (intergenic
regions) in a single MVA-BN viral vector

[20]

(continued on next page)
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5.5. Does the insertion of the transgene
involve deletion or other
rearrangement of any vector genome
sequences?

No

5.6. How is the transgene expression
controlled (transcriptional
promoters, etc.)?

Three different poxviral promotors
(synthetic and native) with early and
late elements

[21–24]

5.7. Does insertion or expression of the
transgene affect the pathogenicity or
phenotype of the vector?

No Human clinical trial data as well as
animal toxicology studies with
recombinant MVA-BN based vaccines,
including MVA-BN Filo, have shown a
comparable safety profile as the MVA-
BN vector.

[30,92–94,98]

5.8. Is the vaccine replication-
competent in humans or other
species?

Humans: no replication; this was tested
in in multiple human cell lines
Other species: replication in chicken
embryo fibroblasts (CEF) may suggest
replication in birds (not tested)

Replicating in CEF. Replicating in BHK,
and some other cell lines, but not in live
mammals including rabbits, rats,
immunosuppressed NHP, immune-
compromised mice

[10]

5.9. What is the risk of reversion to
virulence or recombination with wild
type or other agents?

For vector only: see Section 4.5
For insert: no risk, only single proteins
contained

5.10. Is the vaccine genetically stable
in vitro and/or in vivo?

Yes Recombinant product analyzed through
seven production passages

5.11. What is the potential for shedding
and transmission to humans or other
species?

Negligible See Section 4.7 (same as for vector)

5.12. Does the vaccine establish a latent
or persistent infection?

No See Section 4.8 (same as for vector)

5.13. Does the vaccine replicate in the
nucleus?

No

5.14. What is the risk of integration into
the human genome?

Extremely low See Section 4.10 (same as for vector)

5.15. List any disease manifestations
caused by the vaccine in humans, the
strength of evidence, severity, and
duration of disease for the following
categories:

See Section 3.7 (same as for vector/wild
type virus)

For references see Section 3.7 (same
as for vector)

� In healthy people
� In immunocompromised people
� In neonates, infants, children
� During pregnancy and in the unborn
� In any other special populations

5.16. What cell types are infected and
what receptors are used in humans?

See Section 3.8 [60]

5.17. What is known about the
mechanisms of immunity to the
vaccine?

Antibody and T cell responses are
induced upon vaccination

[30]

5.18 Has disease enhancement been
demonstrated with the vaccine:

No

� in vitro? No
� in animal models? No
� in human hosts? No
5.19 What is known about the effect of

pre-existing immunity, including
both natural immunity and repeat
administration of the vector or the
vaccine, on ‘take’, safety or efficacy in
any animal model or human studies
using this vector?

Low effect of pre-existing immunity;
the MVA-BN Filo vaccine is intended for
single-dose and it is non-replicating, i.e.
not dependent on several infection
cycles; as a poxvirus, it is also not
dependent on a single receptor for entry
but uses multiple proteins

Recombinant MVA vaccines induce
immune responses in people previously
vaccinated against smallpox and in mice
previously vaccinated with VACV or
MVA.For recombinant MVA-BN based
vaccines safety and immunogenicity
following multiple administrations
could be demonstrated [4,98]

[34,99,98]

5.20. Is the vaccine transmissible in
humans or other species (including
arthropods) and/or stable in the
environment?

No, not transmissible due to non-
replicating properties (therefore
handling of MVA-BN under BSL1
conditions).
Environmentally stable

As with all poxviruses, MVA shows high
environmental stability with high
resistance to drying up to 39 weeks at
6.7% moisture at 4�C and increased
temperature tolerance compared to
other viruses

[48,49,100]

5.21. Are there antiviral or other
treatments available for disease
manifestations caused by the
vaccine?

No disease manifestations

5.22. Vaccine formulation Tris buffer saline
5.23. Proposed route of vaccine

administration
Intramuscular

5.24 Target populations for the vaccine
(e.g. pediatric, maternal, adult,
elderly, etc.)

Individuals �1 year of age
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6. Toxicology and potency
(Pharmacology) of the vector

Information Comments/Concerns Reference(s)

6.1. What is known about the
replication, transmission and
pathogenicity of the vector in and
between animals?

Non replicating vector so no
transmission

6.2. For replicating vectors, has a
comparative virulence and viral
kinetic study been conducted in
permissive and susceptible species?
(yes/no) If not, what species would
be used for such a study? Is it
feasible to conduct such a study?

N/A

6.3. Does an animal model relevant to
assess attenuation exist?

Attenuation of the MVA-BN backbone
was demonstrated in
immunocompromised mice and NHP

[10,11]

6.4. Does an animal model for safety
including immuno-compromised
animals exist?

Yes, suitable animal models are
immunocompromised mice and NHP

6.5. Does an animal model for
reproductive toxicity exist?

Yes Rat and rabbit, not published.

6.6. Does an animal model for
immunogenicity and efficacy exists?

Yes Mice and NHP [101–103]
More manuscripts to be published.

6.7 Does an animal model for antibody
enhanced disease or immune
complex disease exist?

N/A

6.8. What is known about
biodistribution in animal models or
in humans?

Two biodistribution studies in rabbits
(not published) showed the highest
number of vaccinia positive tissues
within the first 48 hours following IM or
SC injection of MVA-BN and confirmed
that expression is mostly limited to the
injection site.

6.9 What is the evidence that vector
derived vaccines will generate a
beneficial immune response in:

� Small animal models? Yes RSV immunogenicity in mice and cotton
rats (manuscript in preparation)

YF in hamster: [104]
Alphavirus: [105]
Mouse MVA-Her: [106]

� Nonhuman primates (NHP)? Yes [96,97]
� Human? Yes Clinical trials with recombinant MVA-

BN vaccines assessing immune
responses, e.g. HIV or RSV

HIV: [34]
RSV: MVA-BN-RSV: [33]

6.10. Have challenge or efficacy studies
been conducted in subjects with:

� HIV? No MVA has been tested in HIV positive
ART treated individuals with no serious
AE.
BN comment: BN studies (using MVA-
BN or recombinant vaccine) with HIV
positive subjects were no challenge or
efficacy studies.

[34,107]

� Other diseases?
6.11 Have studies been done

simultaneously or sequentially
administering more than one vector
with different transgenes? Is there
evidence for interaction/
interference?

Yes. No evidence for interaction/
interference.

No studies performed using different
MVA-based recombinant vaccines.
But studies performed with
heterologous prime – boost regimen
(oncology, CV301, Ebola,..)

HIV: [108]
CV301: [69]
Ebola:[30,92,93,94,95]
Additionally: [109–111]

7. Adverse Event (AE) Assessment of
the Vector:

Information Comments/ Concerns Reference(s)

7.1. Approximately how many humans
have received this viral vector
vaccine to date? If variants of the
vector, please list separately.

7,871 in 22 completed clinical trials Approx. 2,700 more in ongoing clinical
trials, not yet analyzed

Same references as Section 4.11

7.2. Method(s) used for safety
monitoring:

� Spontaneous reports/passive
surveillance

No, all mentioned data from clinical trial
sources. However spontaneous
reporting is ongoing for post-
authorization sources, but the product
was not yet used extensively

If yes, describe method:

� Diary Yes If yes, number of days:
8 days (vaccination day plus 7
subsequent days)

Same as Section 4.11

(continued on next page)

A. Volkmann, Anna-Lise Williamson, H. Weidenthaler et al. Vaccine 39 (2021) 3067–3080

3075



� Other active surveillance Yes If yes, describe method and list the AE’s
solicited:
Routine AE/SAE reporting in clinical trial
setting.
Active cardiac monitoring using ECG,
Troponin I and targeted physical exams
in most of the clinical trials.

Same as Section 4.11, for cardiac refer
in particular to [87]

7.3. What criteria was used for grading
the AE’s?

� 2007 US FDA Guidance for Industry
Toxicity Grading Scale for Healthy
Adult and Adolescent Volunteers
Enrolled in Preventive Vaccine Clin-
ical Trials

Yes

� If no or other, please describe: Other: protocol specific definitions of
toxicity grades, in particular for
assessment of laboratory abnormalities

7.4. List and provide frequency of any
related or possibly related serious
AE’s observed:

Across all studies, a causal relationship
to MVA-BN (JYNNEOS) could not be
excluded for 4 SAEs, all non-fatal, which
included Crohn’s disease, sarcoidosis,
extraocular muscle paresis and throat
tightness.

MVA empty backbone vector (MVA-BN)
was approved as the vaccine JYNNEOS
for smallpox/monkeypox by the FDA on
September 24, 2019. The SAE
information is from the US Prescribing
Information.
The integrated analyses of serious
adverse events (SAEs) pooled safety
data across 22 studies, which included a
total of 7,093 smallpox vaccine-naïve
subjects and 766 smallpox vaccine
experienced subjects who received at
least 1 dose of JYNNEOS and 1,206
smallpox vaccine-naïve subjects who
received placebo only. SAEs were
monitored from the day of the first
study vaccination through at least 6
months after the last study vaccination.
A causal relationship to JYNNEOS could
not be excluded for 4 SAEs (0.05%), all
non-fatal, which included Crohn’s
disease, sarcoidosis, extraocular muscle
paresis and throat tightness

Prescribing Information of JYNNEOS
(www.jynneos.com) [112]

7.5. List and provide frequency of any
serious, unexpected AE:

Among smallpox vaccine-naïve
subjects, SAEs were reported for 1.5% of
JYNNEOS recipients and 1.1% of placebo
recipients. Among the smallpox
vaccine-experienced subjects enrolled
in studies without a placebo
comparator, SAEs were reported for
2.3% of JYNNEOS recipients.

7.6. List and provide frequency of any
serious, unexpected statistically
significantly increased AE or lab
abnormality in vaccinee vs. control
group:

There were no statistically significant
differences in serious AEs or lab
abnormalities

Number of SAEs too small and evenly
distributed across groups for any
statistically significant imbalance.
For Troponin I an imbalance was
observed although not evaluated
statistically.
The imbalance in Troponin values is
described in Section 7.7, as those were
defined as AESIs.

� Describe the control group: Control groups included placebo and the
smallpox vaccine ACAM2000

Data of MVA-BN vs. placebo is
published in [31]
Data of MVA-BN vs. ACAM2000: [32]

7.7. List and provide frequency of
Adverse Events of Special Interest

Cardiac AESIs were reported to occur in
1.3% (95/7,093) of JYNNEOS recipients
and 0.2% (3/1,206) of placebo recipients
who were smallpox vaccine-naïve.
Cardiac AESIs were reported to occur in
2.1% (16/766) of JYNNEOS recipients
who were smallpox vaccine-
experienced. The higher proportion of
JYNNEOS recipients who experienced
cardiac AESIs was driven by 28 cases of
asymptomatic post-vaccination
elevation of troponin-I. The clinical
significance of these asymptomatic
post-vaccination elevations of troponin-
I is unknown.

Myopericarditis is a known risk of
previously approved vaccinia smallpox
vaccines. Evaluation of cardiac adverse
events of special interest (AESIs)
included any cardiac signs or symptoms,
ECG changes determined to be clinically
significant, or troponin-I elevated above
2 times the upper limit of normal. In the
22 studies performed with MVA-BN,
subjects were monitored for cardiac-
related signs or symptoms through at
least 6 months after the last vaccination.
No signal for inflammatory cardiac
disorders was identified throughout the
MVA-BN development program

[31,87]
Prescribing Information of JYNNEOS
(www.jynneos.com) [112]
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7.8. Did Data Safety Monitoring Board
(DSMB) or its equivalent oversee the
study?

Yes DSMB across the whole BN sponsored
development program

� Did it identify any safety issue of
concern?

No No safety concerns in BN sponsored
trials. One temporary halt in an NIH
sponsored trial

� If so describe: POX-MVA-036 (DMID 11-0021): One
case of throat tightness (angioedema),
responsive to epinephrine treatment,
with short delay after vaccine
administration. Finally assessed as
allergic/anaphylactoid reaction. Trial
resumed after an investigation of
product quality of the particular batch
had not identified any issues.

[88]

8. Overall Risk Assessment of the
Vector

Information Comments/ Concerns Reference(s)

8.1. Please summarize key safety issues
of concern identified to date, if any:

None serious safety concerns identified,
safety profile is consistent with other
licensed, modern vaccines. Mostly local
and systemic reactogenicity, rare cases
of allergy/hypersensitivity

[49,50,112]

� how should they be addressed going
forward:

N/A

8.2. What is the potential for causing
serious unwanted effects and
toxicities in:

Describe the toxicities Please rate risk as:
none, minimal, low, moderate, high,
or unknown

� healthy humans? minimal No identified safety concerns in overall
development program in 7,871
vaccinated subjects in completed
clinical trials. Overall exposure is
currently >10,500 subjects including
ongoing trials, confirming the lack of
safety concerns.

See Section 4.11 and
Prescribing Information of JYNNEOS
(www.jynneos.com) [112,113]

� immunocompromised humans? minimal Investigated in HIV positive subjects [66–68]
� Human neonates, infants, children? Minimal or unknown No clinical trials performed with the

empty backbone vector (smallpox
vaccine), but some data with
recombinant constructs, such as a
measles vaccine and the MVA-BN Filo
construct. No signals towards
differences in safety profile between
adults and pediatric populations were
detected.
Experience with a predecessor MVA
strain in children in the 1970s, no safety
concerns.

[114]

� pregnancy and in the unborn in
humans?

unknown No safety signal in 29 pregnancies
observed during the clinical
development program. Rate of
spontaneous abortions in line with
published background experience. Data
basis is insufficient for a relevant
assessment.

� in any other special populations. Minimal in Atopic Dermatitis subjects Specifically tested in this population,
who cannot receive traditional,
replicating smallpox vaccines.

[71,72]

8.3. What is the potential for shedding
and transmission in risk groups?

Negligible See Section 4.7
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and Canada and since 2019 in the US, where it is also licensed as
monkeypox vaccine) after undergoing a clinical development pro-
gram involving >7800 trial participants (in completed clinical
trials).

1.1.2. Poxvirus as vaccine vectors
Poxviruses make excellent vaccine delivery vehicles since their

genomes allow large insertions of foreign DNA [18,19]. Conven-
tionally, foreign genes are inserted into poxviruses by homologous
recombination into non-essential genes or into intergenic regions
[20]. The genes are under the control of a poxvirus promoter and
may have a reporter gene or selection marker to aid selection of
recombinants [21–24]. The foreign genes are usually modified to
remove the poxvirus early transcription termination signals
3077
(TTTTTNT) [25] and must be devoid of introns. Recently a Horsepox
virus genome has been made by chemical synthesis and rescued by
coinfection with Shope fibroma virus [26] demonstrating that this
strategy can potentially be used in the future to synthesize other
poxviruses. One of the most successful poxvirus vectored vaccines
is the VACV vectored rabies vaccine distributed in oral baits for
foxes, which has almost completely eradicated terrestrial rabies
in parts of Europe [27,28]. Host restricted poxviruses, such as the
canary poxvirus, ALVAC, have been registered as commercial vac-
cine vectors for a number of veterinary diseases including equine
influenza, canine distemper, rabies, feline leukemia and West-
Nile fever [29].

This publication presents the properties of MVA-BN as a vaccine
vector and specifically focuses on MVA-BN-Filo as a component of
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an Ebola vaccine two-dose regimen (Ad26.ZEBOV/MVA-BN-Filo)
which was granted Marketing Authorization by the European Com-
mission on July 1, 2020 [30] (Table 1).
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