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a b s t r a c t

The paper evaluates the dynamic impact of various policies adopted by US states on the
growth rates of confirmed Covid-19 cases and deaths as well as social distancing be-
havior measured by Google Mobility Reports, where we take into consideration people’s
voluntarily behavioral response to new information of transmission risks in a causal
structural model framework. Our analysis finds that both policies and information on
transmission risks are important determinants of Covid-19 cases and deaths and shows
that a change in policies explains a large fraction of observed changes in social distancing
behavior. Our main counterfactual experiments suggest that nationally mandating face
masks for employees early in the pandemic could have reduced the weekly growth rate
of cases and deaths by more than 10 percentage points in late April and could have led
to as much as 19 to 47 percent less deaths nationally by the end of May, which roughly
translates into 19 to 47 thousand saved lives. We also find that, without stay-at-home
orders, cases would have been larger by 6 to 63 percent and without business closures,
cases would have been larger by 17 to 78 percent. We find considerable uncertainty
over the effects of school closures due to lack of cross-sectional variation; we could not
robustly rule out either large or small effects. Overall, substantial declines in growth
rates are attributable to private behavioral response, but policies played an important
role as well. We also carry out sensitivity analyses to find neighborhoods of the models
under which the results hold robustly: the results on mask policies appear to be much
more robust than the results on business closures and stay-at-home orders. Finally, we
stress that our study is observational and therefore should be interpreted with great
caution. From a completely agnostic point of view, our findings uncover predictive effects
(association) of observed policies and behavioral changes on future health outcomes,
controlling for informational and other confounding variables.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Accumulating evidence suggests that various policies in the US have reduced social interactions and slowed down the
rowth of Covid-19 infections.1 An important outstanding issue, however, is how much of the observed slow down in
he spread is attributable to the effect of policies as opposed to a voluntarily change in people’s behavior out of fear
f being infected. This question is critical for evaluating the effectiveness of restrictive policies in the US relative to an
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1 See Courtemanche et al. (2020), Hsiang et al. (2020), Pei et al. (2020), Abouk and Heydari (2020), and Wright et al. (2020).
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alternative policy of just providing recommendations and information such as the one adopted by Sweden. More generally,
understanding people’s dynamic behavioral response to policies and information is indispensable for properly evaluating
the effect of policies on the spread of Covid-19.

This paper quantitatively assesses the impact of various policies adopted by US states on the spread of Covid-19, such as
on-essential business closure and mandatory face masks, paying particular attention to how people adjust their behavior
n response to policies as well as new information on cases and deaths.

We present a conceptual framework that spells out the causal structure on how the Covid-19 spread is dynamically
etermined by policies and human behavior. Our approach explicitly recognizes that policies not only directly affect the
pread of Covid-19 (e.g., mask requirement) but also indirectly affect its spread by changing people’s behavior (e.g., stay-
t-home order). It also recognizes that people react to new information on Covid-19 cases and deaths and voluntarily
djust their behavior (e.g., voluntary social distancing and hand washing) even without any policy in place. Our causal
odel provides a framework to quantitatively decompose the growth of Covid-19 cases and deaths into three components:

1) direct policy effect, (2) policy effect through behavior, and (3) direct behavior effect in response to new information.
Guided by the causal model, our empirical analysis examines how the weekly growth rates of confirmed Covid-19

ases and deaths are determined by (the lags of) policies and behavior using US state-level data. To examine how policies
nd information affect people’s behavior, we also regress social distancing measures on policy and information variables.
ur regression specification for case and death growths is explicitly guided by a SIR model although our causal approach
oes not hinge on the validity of a SIR model.
As policy variables, we consider mandatory face masks for employees in public businesses, stay-at-home orders (or

helter-in-place orders), closure of K-12 schools, closure of restaurants except take out, closure of movie theaters, and
losure of non-essential businesses. Our behavior variables are four mobility measures that capture the intensity of visits
o ‘‘transit’’, ‘‘grocery’’, ‘‘retail’’, and ‘‘workplaces’’ from Google Mobility Reports. We take the lagged growth rate of cases
nd deaths and the log of lagged cases and deaths at both the state-level and the national-level as our measures of
nformation on infection risks that affects people’s behavior. We also consider the growth rate of tests, month dummies,
nd state-level characteristics (e.g., population size and total area) as confounders that have to be controlled for in order
o identify the causal relationship between policy/behavior and the growth rate of cases and deaths.

Our key findings from regression analysis are as follows. We find that both policies and information on past cases and
eaths are important determinants of people’s social distancing behavior, where policy effects explain more than 50% of
he observed decline in the four behavior variables.2 Our estimates suggest that there are both large policy effects and
large behavioral effects on the growth of cases and deaths. Except for mandatory masks, the effect of policies on cases and
deaths is indirectly materialized through their impact on behavior; the effect of mandatory mask policy is direct without
affecting behavior.

Using the estimated model, we evaluate the dynamic impact of the following three counterfactual policies on Covid-19
cases and deaths: (1) mandating face masks, (2) allowing all businesses to open, and (3) not implementing a stay-at-home
order. The counterfactual experiments show a large impact of those policies on the number of cases and deaths. They also
highlight the importance of voluntary behavioral response to infection risks when evaluating the dynamic policy effects.

Our estimates imply that nationally implementing mandatory face masks for employees in public businesses on March
14th would have reduced the growth rate of cases and that of deaths by approximately 10 percentage points in late April.
As shown in Fig. 1, this leads to reductions of 21% and 34% in cumulative reported cases and deaths, respectively, by the
end of May with 90 percent confidence intervals of [9, 32]% and [19, 47]%, which roughly implies that 34 thousand lives
ould have been saved. This finding is significant: given this potentially large benefit of reducing the spread of Covid-19,
andating masks is an attractive policy instrument especially because it involves relatively little economic disruption.
hese estimates contribute to the ongoing efforts towards designing approaches to minimize risks from reopening (Stock,
020b).
Fig. 2 illustrates how never closing any businesses (no movie theater closure, no non-essential business closure, and no

losure of restaurants except take-out) could have affected cases and deaths. We estimate that business shutdowns have
oughly the same impact on growth rates as mask mandates, albeit with more uncertainty. The point estimates indicate
hat keeping all businesses open could have increased cumulative cases and deaths by 40% at the end of May (with 90
ercent confidence intervals of [17, 78]% for cases and [1, 97]% for deaths).
Fig. 3 shows that stay-at-home orders had effects of similar magnitude as business closures. No stay-at-home orders

ould have led to 37% more cases by the start of June with a 90 percent confidence interval given by 6% to 63%. The
stimated effect of no stay-at-home orders on deaths is a slightly smaller with a 90 percent confidence interval of −7%
o 50%.

We also conducted sensitivity analysis with respect to changes to our regression specification, sample selection,
ethodology, and assumptions about delays between policy changes and changes in recorded cases. In particular, we
xamined whether certain effect sizes can be ruled out by various more flexible models or by using alternative timing
ssumptions that define forward growth rates. The impact of mask mandates is more robustly and more precisely
stimated than that of business closure policies or stay-at-home orders, and an undesirable effect of increasing the weekly

2 The behavior accounts for the other half. This is in line with theoretical study by Gitmez et al. (2020) that investigates the role of private
behavior and negative external effects for individual decisions over policy compliance as well as information acquisition during pandemics.
24
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Fig. 1. Relative cumulative effect on confirmed cases and fatalities of nationally mandating masks for employees on March 14th in the US. This
figure shows the estimated relative change in cumulative cases and deaths if all states had mandated masks on March 14th. The thick blue line
is the estimated change in cumulative cases or deaths relative to the observed number of cases or deaths. The shaded region is a pointwise 90%
confidence band.

Fig. 2. Relative cumulative effect of no business closure policies on cases and fatalities in the US. This figure shows the estimated relative change in
cases and deaths if no states had ever implemented any business closure policies. The thick blue line is the estimated change in cumulative cases
or deaths relative to the observed number of cumulative cases or deaths. The shaded region is a pointwise 90% confidence band.

death growth by 5 percentage points is ruled out by all of the models we consider.3 This is largely due to the greater
variation in the timing of mask mandates across states. The findings of shelter-in-place and business closures policies are
considerably less robust. For example, for stay-at-home mandates, models with alternative timing and richer specification
for information set suggested smaller effects. Albeit after application of machine learning tools to reduce dimensionality,
the range of effects [0, 0.15] could not be ruled out. A similar wide range of effects could not be ruled out for business
closures.

We also examine the impact of school closures. Unfortunately, there is very little variation across states in the timing
of school closures. Across robustness specifications, we obtain point estimates of the effect of school closures as low as 0
and as high as -0.6. In particular, we find that the results are sensitive to whether the number of past national cases/deaths
is included in a specification or not. This highlights the uncertainty regarding the impact of some policies versus private
behavioral responses to information.

A growing number of other papers have examined the link between non-pharmaceutical interventions and Covid-19
cases.4 Hsiang et al. (2020) estimate the effect of policies on the growth rate of cases using data from the United States,
China, Iran, Italy, France, and South Korea. In the United States, they find that the combined effect of all policies they
consider on the growth rate is −0.347 (0.061). Courtemanche et al. (2020) use US county level data to analyze the effect
of interventions on case growth rates. They find that the combination of policies they study reduced growth rates by 9.1

3 This null hypothesis can be generated by looking at the meta-evidence from RCTs on the efficacy of masks in preventing other respiratory
cold-like deceases. Falsely rejecting this null is costly in terms of potential loss of life, and so it is a reasonable null choice for the mask policy from
decision-theoretic point of view.
4 We refer the reader to Avery et al. (2020) for a comprehensive review of a larger body of work researching Covid-19; here we focus on few

quintessential comparisons on our work with other works that we are aware of.
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Fig. 3. Relative cumulative effect of not implementing stay-at-home order on cases and fatalities in the US. This figure shows the estimated relative
change in cases and deaths if no states had ever issued stay at home orders. The thick blue line is the estimated change in cumulative cases or
deaths relative to the observed number of cumulative cases or deaths. The shaded region is a point wise 90% confidence band.

percentage points 16–20 days after implementation, out of which 5.9 percentage points are attributable to shelter in place
orders. Both Hsiang et al. (2020) and Courtemanche et al. (2020) adopt a reduced-form approach to estimate the total
policy effect on case growth without using any social distancing behavior measures.5

Existing evidence for the impact of social distancing policies on behavior in the US is mixed. Abouk and Heydari (2020)
mploy a difference-in-differences methodology to find that statewide stay-at-home orders have strong causal impacts
n reducing social interactions. In contrast, using data from Google Mobility Reports, Maloney and Taskin (2020) find that
he increase in social distancing is largely voluntary and driven by information.6 Another study by Gupta et al. (2020)
lso found little evidence that stay-at-home mandates induced distancing by using mobility measures from PlaceIQ and
afeGraph. Using data from SafeGraph, Andersen (2020) shows that there has been substantial voluntary social distancing
ut also provide evidence that mandatory measures such as stay-at-home orders have been effective at reducing the
requency of visits outside of one’s home.

Pei et al. (2020) use county-level observations of reported infections and deaths in conjunction with mobility data from
afeGraph to conduct simulation of implementing all policies 1–2 weeks earlier and found that it would have resulted in
educing the number of cases and deaths by more than half. However, their study does not explicitly analyze how policies
re related to the effective reproduction numbers.
Epidemiologists use model simulations to predict how cases and deaths evolve for the purpose of policy recommenda-

ion. As reviewed by Avery et al. (2020), there exists substantial uncertainty about the values of key epidemiological
arameters (see also Atkeson, 2020a; Stock, 2020a). Simulations are often done under strong assumptions about the
mpact of social distancing policies without connecting to the relevant data (e.g., Ferguson et al., 2020). Furthermore,
imulated models do not take into account that people may limit their contact with other people in response to
igher transmission risks.7 When such a voluntary behavioral response is ignored, simulations would necessarily exhibit
xponential spread and over-predict cases and deaths. In contrast, as cases and deaths rise, a voluntary behavioral
esponse may possibly reduce the effective reproduction number below 1, potentially preventing exponential spread.
ur counterfactual experiments illustrate the importance of this voluntary behavioral change.
Whether wearing masks in public place should be mandatory or not has been one of the most contested policy issues

ith health authorities of different countries providing contradictory recommendations. Reviewing evidence, Greenhalgh
t al. (2020) recognize that there is no randomized controlled trial evidence for the effectiveness of face masks, but they
tate ‘‘indirect evidence exists to support the argument for the public wearing masks in the Covid-19 pandemic’’.8 Howard
t al. (2020) also review available medical evidence and conclude that ‘‘mask wearing reduces the transmissibility per
ontact by reducing transmission of infected droplets in both laboratory and clinical contexts’’. The laboratory findings
n Hou et al. (2020) suggest that the nasal cavity may be the initial site of infection followed by aspiration to the lung,
upporting the argument ‘‘for the widespread use of masks to prevent aerosol, large droplet, and/or mechanical exposure

5 Using a synthetic control approach, Cho (2020) finds that the cases would have been lower by 75 percent had Sweden adopted stricter lockdown
policies.
6 Specifically, they find that of the 60 percentage point drop in workplace intensity, 40 percentage points can be explained by changes in

information as proxied by case numbers, while roughly 8 percentage points can be explained by policy changes.
7 See Atkeson (2020b) and Stock (2020a) for the implications of the SIR model for Covid-19 in the US. Fernández-Villaverde and Jones (2020)

estimate a SIRD model in which time-varying reproduction numbers depend on the daily deaths to capture feedback from daily deaths to future
behavior and infections.
8 The virus remains viable in the air for several hours, for which surgical masks may be effective. Also, a substantial fraction of individual who

are infected become infectious before showing symptom onset.
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to the nasal passages’’. He et al. (2020) examined temporal patterns of viral shedding in COVID-19 patients and found the
highest viral load at the time of symptom onset; this suggests that a significant portion of transmission may have occurred
before symptom onset and that universal face masks may be an effective control measure to reduce transmission.9 Ollila
t al. (2020) provide a meta-analysis of randomized controlled trials of non-surgical face masks in preventing viral
espiratory infections in non-hospital and non-household settings, finding that face masks decreased infections across
ll five studies they reviewed.10
Given the lack of experimental evidence on the effect of masks in the context of COVID-19, conducting observational

tudies is useful and important. To the best of our knowledge, our paper is the first empirical study that shows the
ffectiveness of mask mandates on reducing the spread of Covid-19 by analyzing the US state-level data. This finding
orroborates and is complementary to the medical observational evidence in Howard et al. (2020). Analyzing mitigation
easures in New York, Wuhan, and Italy, Zhang et al. (2020b) conclude that mandatory face coverings substantially

educed infections. Abaluck et al. (2020) find that the growth rates of cases and of deaths in countries with pre-existing
orms that sick people should wear masks are lower by 8 to 10% than those rates in countries with no pre-existing
ask norms.11 The Institute for Health Metrics and Evaluation at the University of Washington assesses that, if 95% of

he people in the US were to start wearing masks from early August of 2020, 66,000 lives would be saved by December
020 (IHME, 2020), which is largely consistent with our results. Our finding is also independently corroborated by a
ompletely different causal methodology based on synthetic control using German data in Mitze et al. (2020).12
Our empirical results contribute to informing the economic-epidemiological models that combine economic models

with variants of SIR models to evaluate the efficiency of various economic policies aimed at the gradual ‘‘reopening’’ of
various sectors of economy.13 For example, the estimated effects of masks, stay-home mandates, and various other policies
n behavior, and of behavior on infection can serve as useful inputs and validation checks in the calibrated macro, sectoral,
nd micro models (see, e.g., Alvarez et al., 2020; Baqaee et al., 2020; Fernández-Villaverde and Jones, 2020; Acemoglu et al.,
020; Keppo et al., 2020; McAdams, 2020 and references therein). Furthermore, the causal framework developed in this
aper could be applicable, with appropriate extensions, to the impact of policies on economic outcomes replacing health
utcomes (see, e.g., Chetty et al., 2020; Coibion et al., 2020).
Finally, our causal model is framed using the language of structural equations models and causal diagrams of

conometrics (Wright, 1928; Haavelmo, 1944; Tinbergen, 1940; Wold, 1954; Pearl, 1995) and genetics (Wright, 1923),14
ith natural unfolding potential/structural outcomes representation (Rubin, 1974; Tinbergen, 1930; Neyman, 1925;

mbens and Rubin, 2015). The work on causal graphs has been modernized and developed by Pearl (1995), Greenland
t al. (1999), Pearl (2009), Pearl and Mackenzie (2018) and many others (e.g., Pearl and Mackenzie, 2018; White and
halak, 2009; Robins et al., 2020; Peters et al., 2017; Bareinboim et al., 2020; Hernán and Robins, 2020), with applications
n computer science, genetics, epidemiology, and econometrics (see, e.g., Heckman and Pinto, 2013; Hünermund and
areinboim, 2019; White and Chalak, 2009 for applications in econometrics). The particular causal diagram we use has
everal ‘‘mediation’’ components, where variables affect outcomes directly and indirectly through other variables called
ediators; these structures go back at least to Wright (1923, see Figure 6); see, e.g., Baron and Kenny (1986), Hines et al.

2020), Robins et al. (2020) for modern treatments.

. The causal model for the effect of policies, behavior, and information on growth of infection

.1. The causal model and its structural equation form

We introduce our approach through the Wright-style causal diagram shown in Fig. 4. The diagram describes how
olicies, behavior, and information interact together:

• The forward health outcome, Yi,t+ℓ, is determined last, after all other variables have been determined;
• The adopted policies, Pit , affect health outcome Yi,t+ℓ either directly, or indirectly by altering human behavior Bit ;

9 Lee et al. (2020a) find evidence that viral loads in asymptomatic patients are similar to those in symptomatic patients. Aerosol transmission
of viruses may occur through aerosols particles released during breathing and speaking by asymptomatic infected individuals; masks reduce such
airborne transmission (Prather et al., 2020). Anfinrud et al. (2020) provide visual evidence of speech-generated droplet as well as the effectiveness
of cloth masks to reduce the emission of droplets. Chu et al. (2020) conduct a meta-analysis of observational studies on transmission of the viruses
that cause COVID-19 and related diseases and find the effectiveness of mask use for reducing transmission.
10 Whether wearing masks creates a false sense of security and leads to decrease in social distancing is also a hotly debated topic. A randomized
ield experiment in Berlin, Germany, conducted by Seres et al. (2020) finds that wearing masks actually increases social distancing, providing no
vidence that mandatory masks leads to decrease in social distancing.
11 Miyazawa and Kaneko (2020) find that country’s COVID-19 death rates are negatively associated with mask wearing rates.
12 Our study was first released in ArXiv on May 28, 2020 whereas Mitze et al. (2020) was released at SSRN on June 8, 2020.
13 Adda (2016) analyzes the effect of policies reducing interpersonal contacts such as school closures or the closure of public transportation
etworks on the spread of influenza, gastroenteritis, and chickenpox using high frequency data from France.
14 The father and son, P. Wright (economist) and S. Wright (geneticist) collaborated to develop structural equation models and causal path diagrams;
. Wright’s key work represented supply–demand system as a directed acyclical graph and established its identification using exclusion restrictions
n instrumental variables. We view our work as following this classical tradition.
27
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Fig. 4. S. & P. Wright type causal path diagram for our model.

• Information variables, Iit , such as lagged values of outcomes can affect human behavior and policies, as well as
outcomes;

• The confounding factors Wit , which vary across states and time, affect all other variables.

he index i denotes observational unit, the state, and t and t + ℓ denotes the time, where ℓ is a positive integer that
epresents the time lag between infection and case confirmation or death.

Our main outcomes of interest are the growth rates in Covid-19 cases and deaths, behavioral variables include
roportion of time spent in transit, shopping, and workplaces, policy variables include mask mandates, stay-at-home
rders, and school and business closures, and the information variables include lagged values of outcome. We provide a
etailed description of these variables and their timing in the next section.
The causal structure allows for the effect of the policy to be either direct or indirect — through behavior or through

ynamics; all of these effects are not mutually exclusive. The structure also allows for changes in behavior to be brought
y change in policies and information. These are all realistic properties that we expect from the contextual knowledge
f the problem. Policies such as closures of schools, non-essential business, and restaurants alter and constrain behavior
n strong ways. In contrast, policies such as mandating employees to wear masks can potentially affect the Covid-19
ransmission directly. The information variables, such as recent growth in the number of cases, can cause people to spend
ore time at home, regardless of adopted state policies; these changes in behavior in turn affect the transmission of
ovid-19. Importantly, policies can have the informational content as well, guiding behavior rather than constraining it.
The causal ordering induced by this directed acyclical graph is determined by the following timing sequence:

(1) information and confounders get determined at t ,
(2) policies are set in place, given information and confounders at t;
(3) behavior is realized, given policies, information, and confounders at t;
(4) outcomes get realized at t + ℓ given policies, behavior, information, and confounders.

The model also allows for direct dynamic effects of information variables on the outcome through autoregressive
structures that capture persistence in growth patterns. As highlighted below, realized outcomes may become new
information for future periods, inducing dynamics over multiple periods.

Our quantitative model for causal structure in Fig. 4 is given by the following econometric structural (or potential)
outcomes model:

Yi,t+ℓ(b, p, ι) :=α′b + π ′p + µ′ι+ δ′

YWit + ε
y
it ,

Bit (p, ι) :=β ′p + γ ′ι+ δ′

BWit + εbit ,
(SO)

which is a collection of functional relations with stochastic shocks, decomposed into observable part δ′W and unob-
servable part ε. The terms εyit and εbit are the centered stochastic shocks that obey the orthogonality restrictions posed
below.

The policies can be modeled via a linear form as well,

Pit (ι) := η′ι+ δ′

PWit + ε
p
it , (P)

although linearity is not critical.15

15 Under some additional independence conditions, this can be replaced by an arbitrary non-additive function Pit (ι) = p(ι,Wit , ε
p
it ), such that the

nconfoundedness condition stated in the next footnote holds.
28
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Fig. 5. Diagram for Information Dynamics in SEM.

The exogeneity restrictions on the stochastic shocks are as follows:

ε
y
it ⊥ (εbit , ε

p
it ,Wit , Iit ),

εbit ⊥ (εpit ,Wit , Iit ),
ε
p
it ⊥ (Wit , Iit ),

(E)

where we say that V ⊥ U if EVU = 0.16 This is a standard way of representing restrictions on errors in structural equation
modeling in econometrics.17

The observed variables are generated by setting ι = Iit and propagating the system from the last equation to the first:

Yi,t+ℓ :=Yi,t+ℓ(Bit , Pit , Iit ),
Bit :=Bit (Pit , Iit ),
Pit :=Pit (Iit ).

(O)

The specification of the model above grasps one-period responses. The dynamics over multiple periods will be induced
by the evolution of information variables, which include time, lagged and integrated values of outcome18:

Iit := It (Yit , Ii,t−ℓ) :=

(
g(t), Yit ,

⌊t/ℓ⌋∑
m=0

Yi,t−ℓm

)′

(I)

for each t ∈ {0, 1, . . . , T }, where g is deterministic function of time, e.g., month indicators, assuming that the log of new
cases at time t ≤ 0 is zero, for notational convenience.19 In this structure, people respond to both global information,
captured by a function of time such as month dummies, and local information sources, captured by the local growth rate
and the total number of cases. The local information also captures the persistence of the growth rate process. We model
the reaction of people’s behavior via the term γ ′It in the behavior equation. The lagged values of behavior variable may
be also included in the information set, but we postpone this discussion after the main empirical results are presented.

With any structure of this form, realized outcomes may become new information for future periods, inducing a
dynamical system over multiple periods. We show the resulting dynamical system in a diagram of Fig. 5. Specification of
this system is useful for studying delayed effects of policies and behaviors and in considering the counterfactual policy
analysis.

Next we combine the above parts together with an appropriate initialization to give a formal definition of the model
we use.

Structural Equations Model (SEM). Let i ∈ {1, . . . ,N} denote the observational unit, t be the time periods,
and ℓ be the time delay. (1) For each i and t ≤ −ℓ, the confounder, information, behavior, and policy variables

16 An alternative useful starting point is to impose the Rosenbaum–Rubin type unconfoundedness condition:

Yi,t+ℓ(·, ·, ·) y (Pit , Bit , Iit ) | Wit , Bit (·, ·) y (Pit , Iit ) | Wit , Pit (·) y Iit | Wit ,

which imply, with treating stochastic errors as independent additive components, the orthogonal conditions stated above. The same unconfoundedness
restrictions can be formulated using formal causal DAGs, and also imply orthogonality restrictions stated above, once stochastic errors are modeled
as independent additive components.
17 The structural equations of this form are connected to triangular structural equation models, appearing in microeconometrics and
macroeconometrics (SVARs), going back to the work of Strotz and Wold (1960).
18 Our empirical analysis also considers a specification in which information variables include lagged national cases/deaths as well as lagged
behavior variables.
19 The general formula for I is S +

∑⌊t/ℓ⌋ Y , where S is the initial condition, the log of new cases at time −t mod ℓ.
i,t−1 i,t,ℓ m=1 i,t−ℓm i,t,ℓ
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Wit , Iit , Bit , Pit are determined outside of the model, and the outcome variable Yi,t+ℓ is determined by factors outside
of the model for t ≤ 0. (2) For each i and t ≥ −ℓ, confounders Wit are determined by factors outside of the model,
and information variables Iit are determined by (I); policy variables Pit are determined by setting ι = Iit in (P) with
a realized stochastic shock εpit that obeys the exogeneity condition (E); behavior variables Bit are determined by
setting ι = Iit and p = Pit in (SO) with a shock εbit that obeys (E); finally, the outcome Yi,t+ℓ is realized by setting
ι = Iit , p = Pit , and b = Bit in (SO) with a shock εyit that obeys (E).

2.2. Main testable implication, identification, parameter estimation

The system above together with orthogonality restrictions (E) implies the following collection of projection equations
for realized variables:

Yi,t+ℓ = α′Bit + π ′Pit + µ′Iit + δ′

YWit + ε
y
it , ε

y
it ⊥ Bit , Pit , Iit ,Wit (BPI→Y)

Bit = β ′Pit + γ ′Iit + δ′

BWit + εbit , εbit ⊥ Pit , Iit ,Wit (PI→B)

Pit = η′Iit + δ′

PWit + ε
p
it , ε

p
it ⊥ Iit ,Wit (I→P)

Yi,t+ℓ = (α′β ′
+ π ′)Pit + (α′γ ′

+ µ′)Iit + δ̄′Wit + ε̄it , ε̄it ⊥ Pit , Iit ,Wit . (PI→Y)

Therefore the projection equation:

Yi,t+ℓ = a′Pit + b′Iit + δ̃′Wit + ε̄it , ε̄it ⊥ Pit , Iit ,Wit . (Y∼PI)

hould obey:

a′
= (α′β ′

+ π ′) and b′
= (α′γ ′

+ µ′). (TR)

Without any exclusion restrictions, this equality is just a decomposition of total effects into direct and indirect
components and is not a testable restriction. However, in our case we rely on the SIR model with testing to motivate the
presence of change in testing rate as a confounder in the outcome equations but not in the behavior equation (therefore, a
component of δB and δP is set to 0), implying that (TR) does not necessarily hold and is testable. Furthermore, we estimate
(PI→B) on the data set that has many more observations than the data set used to estimate the outcome equations,
implying that (TR) is again testable. Later we shall also try to utilize the contextual knowledge that mask mandates only
affect the outcome directly and not by changing mobility (i.e., β = 0 for mask policy), implying again that (TR) is testable.
If not rejected by the data, (TR) can be used to sharpen the estimate of the causal effect of mask policies on the outcomes.

Validation of the model by (TR) allows us to check exclusion restrictions brought by contextual knowledge and check
stability of the model by using different data subsets. However, passing the (TR) does not guarantee that the model is
necessarily valid for recovering causal effects. The only fundamental way to truly validate a causal model for observational
data is through a controlled experiment, which is impossible to carry out in our setting.

The parameters of the SEM are identified by the projection equation set above, provided the latter are identified by
sufficient joint variation of these variables across states and time. We can develop this point formally as follows. Consider
the previous system of equations, after partialling out the confounders:

Ỹi,t+ℓ =α′B̃it + π ′P̃it + µ′ Ĩit + ε
y
it , ε

y
it ⊥ B̃it , P̃it , Ĩit ,

B̃it =β ′P̃it + γ ′ Ĩit + εbit , εbit ⊥ P̃it , Ĩit ,

P̃it =η′ Ĩit + ε
p
it , ε

p
it ⊥ Ĩit

Ỹi,t+ℓ =a′P̃it + b′ Ĩit + ε̄
y
it , ε̄

y
it ⊥ P̃it , Ĩit ,

(1)

here Ṽit = Vit − W ′

itE[WitW ′

it ]
−E[WitVit ] denotes the residual after removing the orthogonal projection of Vit on Wit .

he residualization is a linear operator, implying that (1) follows immediately from the above. The parameters of (1)
re identified as projection coefficients in these equations, provided that residualized vectors appearing in each of the
quations have non-singular variance, that is

Var(P̃ ′

it , B̃
′

it , Ĩ
′

it ) > 0, Var(P̃ ′

it , Ĩ
′

it ) > 0, and Var(Ĩ ′it ) > 0. (2)

Our main estimation method is the standard correlated random effects estimator, where the random effects are
arameterized as functions of observable characteristic, Wit , which include both state-level and time random effects.
he state-level random effects are modeled as a function of state level characteristics, and the time random effects are
odeled by including month dummies and their interactions with state level characteristics (in the sensitivity analysis, we
lso add weekly dummies). The stochastic shocks {εit}

T
t=1 are treated as independent across states i and can be arbitrarily

ependent across time t within a state.
Another modeling approach is the fixed effects panel data model, where Wit includes latent (unobserved) state level
onfonders Wi and time level effects Wt , which must be estimated from the data. This approach is much more demanding
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of the data and relies on long time and cross-sectional histories to estimate Wi and Wt , resulting in amplification of
ncertainty. In addition, when histories are relatively short, large biases emerge and they need to be removed using
ebiasing methods, see e.g., Chen et al. (2019) for overview. We present the results on debiased fixed effect estimation
ith weekly dummies as parts of our sensitivity analysis. Our sensitivity analysis also considers a debiased machine

earning approach using Random Forest in which observed confounders enter the model nonlinearly.
With exclusion restrictions there are multiple approaches to estimation, for example, via generalized method of

oments. We shall take a more pragmatic approach where we estimate the parameters of equations separately and
hen compute

1
2
â′

+
1
2
(α̂′β̂ ′

+ π̂ ′) and
1
2
b̂

′

+
1
2
(α̂′γ̂ ′

+ µ̂′),

s the estimator of the total policy effect. Under standard regularity conditions, these estimators concentrate around their
opulation analogues

1
2
a′

+
1
2
(α′β ′

+ π ′) and
1
2
b′

+
1
2
(α′γ ′

+ µ′),

ith approximate deviations controlled by the normal laws, with standard deviations that can be approximated by the
ootstrap resampling of observational units i. Under correct specification the target quantities reduce to

α′β ′
+ π ′ and α′γ ′

+ µ′,

respectively.20

.3. Counterfactual policy analysis

We also consider simple counterfactual exercises, where we examine the effects of setting a sequence of counterfactual
olicies for each state:

{P⋆it}
T
t=1, i = 1, . . . ,N. (CF-P)

e assume that the SEM remains invariant, except for the policy equation.21 The assumption of invariance captures the
dea that counterfactual policy interventions would not change the structural functions within the period of the study.
he assumption is strong but is necessary to conduct counterfactual experiments, e.g. Sims (1972) and Strotz and Wold
1960). To make the assumption more plausible we limited our study to the early pandemic period.22

Given the policies, we generate the counterfactual outcomes, behavior, and information by propagating the dynamic
quations:

Y ⋆i,t+ℓ :=Yi,t+ℓ(B⋆it , P
⋆
it , I

⋆
it ),

B⋆it :=Bit (P⋆it , I
⋆
it ),

I⋆it :=It (Y ⋆it , I
⋆
i,t−ℓ),

(CF-SEM)

ith the same initialization as the factual system up to t ≤ 0. In stating this counterfactual system of equations, we
ssume that structural outcome equations (SO) and information equations (I) remain invariant and so do the stochastic
hocks, decomposed into observable and unobservable parts. Formally, we record this assumption and above discussion
s follows.

Counterfactual Structural Equations Model (CF-SEM). Let i ∈ {1, . . . ,N} be the observational unit, t be time
periods, and ℓ be the time delay. (1) For each i and t ≤ 0, the confounder, information, behavior, policy, and outcome
variables are determined as previously stated in SEM: W ⋆

it = Wit , I⋆it = Iit , B⋆it = Bit , P⋆it = Pit , Y ⋆it = Yit . (2) For each
i and t ≥ 0, confounders W ⋆

it = Wit are determined as in SEM, and information variables I⋆it are determined by (I);
policy variables P⋆it are set in (CF-P); behavior variables B⋆it are determined by setting ι = I⋆it and p = P⋆it in (SO) with
the same stochastic shock εbit in (SO); the counterfactual outcome Y ⋆i,t+ℓ is realized by setting ι = I⋆it , p = P⋆it , and
b = B⋆it in (SO) with the same stochastic shock εyit in (SO).

Figs. 6 and 7 present the causal path diagram for CF-SEM as well as the dynamics of counterfactual information in
CF-SEM.

20 This construction is not as efficient as generalized method of moments but has a nicer interpretation under possible misspecification of the
model: we are combining predictions from two models, one motivated via the causal path, reflecting contextual knowledge, and another from a
‘‘reduced form’’ model not exploiting the path. The combined estimator can improve on precision of either estimator.
21 It is possible to consider counterfactual exercises in which policy responds to information through the policy equation if we are interested in
endogenous policy responses to information. Counterfactual experiments with endogenous government policy would be important, for example, to
understand the issues related to the lagged response of government policies to higher infection rates due to incomplete information.
22 Furthermore, we conducted several stability checks, for example, checking if the coefficients on mask policies remain stable (reported in the
previous version) and also looking at more recent data during reopening, beyond early pandemic, to examine the stability of the model.
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Fig. 6. Causal path diagram for CF-SEM.

Fig. 7. A Diagram for Counterfactual Information Dynamics in CF-SEM.

The counterfactual outcome Y ⋆i,t+ℓ and factual outcome Yi,t+ℓ are given by:

Y ⋆i,t+ℓ = (α′β ′
+ π ′)P⋆it + (α′γ ′

+ µ′)I⋆it + δ̄′Wit + ε̄
y
it ,

Yi,t+ℓ = (α′β ′
+ π ′)Pit + (α′γ ′

+ µ′)Iit + δ̄′Wit + ε̄
y
it .

In generating these predictions, we explore the assumption of invariance stated above. We can write the counterfactual
contrast into the sum of three components:

Y ⋆i,t+ℓ − Yi,t+ℓ

CF Change

= α′β ′
(
P⋆it − Pit

)
CF Policy Effect via Behavior

+π ′
(
P⋆it − Pit

)
CF Direct Effect

+ α′γ ′
(
I⋆it − Iit

)
+ µ′

(
I⋆it − Iit

)
CF Dynamic Effect

=: PEB⋆it + PED⋆it + DynE⋆it , (3)

which describe the immediate indirect effect of the policy via behavior, the direct effect of the policy, and the dynamic
effect of the policy. By recursive substitutions the dynamic effect can be further decomposed into a weighted sum of
delayed policy effects via behavior and a weighted sum of delayed policy effects via direct impact.

All counterfactual quantities and contrasts can be computed from the expressions given above. For examples, given
∆Ci0 > 0, new confirmed cases are linked to growth rates via relation (taking t divisible by ℓ for simplicity):

∆C⋆it
∆Ci0

= exp

( t/ℓ∑
m=1

Y ⋆i,mℓ

)
and

∆Cit

∆Ci0
= exp

( t/ℓ∑
m=1

Yi,mℓ

)
.

The cumulative cases can be constructed by summing over the new cases. Various contrasts are then calculated from
these quantities. For example, the relative contrast of counterfactual new confirmed cases to the factual confirmed cases
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is given by:

∆C⋆it
∆Cit

= exp

( t/ℓ∑
m=1

(Y ⋆i,mℓ − Yi,mℓ)

)
.

e refer to the appendix for further details. Similar calculations apply for fatalities. Note that our analysis is conditional
n the factual history and structural stochastic shocks.23
The estimated counterfactuals are smooth functionals of the underlying parameter estimates. Therefore, we construct

he confidence intervals for counterfactual quantities and contrasts by bootstrapping the parameter estimates. We refer
o the appendix for further details.

.4. Outcome and key confounders via SIRD model

We next provide details of our key measurement equations, defining the outcomes and key confounders. We motivate
he structural outcome equations via the fundamental epidemiological model for the spread of infectious decease called
he Susceptible–Infected–Recovered–Dead (SIRD) model with testing.

Letting Cit denote the cumulative number of confirmed cases in state i at time t , our outcome

Yit = ∆ log(∆Cit ) := log(∆Cit ) − log(∆Ci,t−7) (4)

approximates the weekly growth rate in new cases from t − 7 to t . Here ∆ denotes the differencing operator over 7 days
rom t to t − 7, so that ∆Cit := Cit − Ci,t−7 is the number of new confirmed cases in the past 7 days.

We chose this metric as this is the key metric for policy makers deciding when to relax Covid mitigation policies. The
U.S. government’s guidelines for state reopening recommend that states display a ‘‘downward trajectory of documented
cases within a 14-day period’’ (The White House, 2020). A negative value of Yit is an indication of meeting this criteria
for reopening. By focusing on weekly cases rather than daily cases, we smooth idiosyncratic daily fluctuations as well as
periodic fluctuations associated with days of the week.

Our measurement equation for estimating Eqs. (BPI→Y) and (PI→Y) will take the form:

∆ log(∆Cit ) = X ′

i,t−14θ − γ + δT∆ log(Tit ) + ϵit , (M-C)

where i is state, t is day, Cit is cumulative confirmed cases, Tit is the number of tests over 7 days, ∆ is a 7-days
differencing operator, and ϵit is an unobserved error term. Xi,t−14 collects other behavioral, policy, and confounding
variables, depending on whether we estimate (BPI→Y) or (PI→Y), where the lag of 14 days captures the time lag between
infection and confirmed case (see Appendix A.6). Here

∆ log(Tit ) := log(Tit ) − log(Ti,t−7)

is the key confounding variable, derived from considering the SIRD model below. We are treating the change in testing
rate as exogenous.24 We describe other confounders in the empirical section.

Our main measurement equation (M-C) is motivated by a variant of SIRD model, where we add confirmed cases and
infection detection via testing. Let S, I, R, and D denote the number of susceptible, infected, recovered, and deceased
individuals in a given state. Each of these variables are a function of time. We model them as evolving as

Ṡ(t) = −
S(t)
N
β(t)I(t) (5)

İ(t) =
S(t)
N
β(t)I(t) − γ I(t) (6)

Ṙ(t) = (1 − κ)γ I(t) (7)

Ḋ(t) = κγ I(t) (8)

where N is the population, β(t) is the rate of infection spread, γ is the rate of recovery or death, and κ is the probability
of death conditional on infection.

Confirmed cases, C(t), evolve as

Ċ(t) = τ (t)I(t), (9)

where τ (t) is the rate that infections are detected.

23 For unconditional counterfactual, we need to make assumptions about the evolution of stochastic shocks appearing in Yit . See, e.g., previous
ersions of our paper in ArXiv, where unconditional counterfactuals were calculated by assuming stochastic shocks are i.i.d. and resampling them
rom the empirical distribution. The differences between conditional and unconditional contrasts were small in our empirical analysis.
24 To check sensitivity to this assumption we performed robustness checks, where we used the further lag of ∆ log(Tit ) as a proxy for exogenous
hange in the testing rate, and we also used that as an instrument for ∆ log(Tit ); this did not affect the results on policy effects, although the
nstrument was not sufficiently strong.
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Our goal is to examine how the rate of infection β(t) varies with observed policies and measures of social distancing
behavior. A key challenge is that we only observed C(t) and D(t), but not I(t). The unobserved I(t) can be eliminated by
differentiating (9) and using (6) as

C̈(t)
Ċ(t)

=
S(t)
N
β(t) − γ +

τ̇ (t)
τ (t)

. (10)

e consider a discrete-time analogue of Eq. (10) to motivate our empirical specification by relating the detection rate
(t) to the number of tests Tit while specifying S(t)

N β(t) as a linear function of variables Xi,t−14. This results in

∆ log(∆Cit )
C̈(t)
Ċ(t)

= X ′

i,t−14θ + ϵit

S(t)
N β(t)−γ

+ δT∆ log(T )it
τ̇ (t)
τ (t)

which is equation (M-C), where Xi,t−14 captures a vector of variables related to β(t).

Structural Interpretation. Early in the pandemic, when the number of susceptibles is approximately the same
as the entire population, i.e. Sit/Nit ≈ 1, the component X ′

i,t−14θ is the projection of infection rate βi(t) on Xi,t−14
(policy, behavioral, information, and confounders other than testing rate), provided the stochastic component ϵit is
orthogonal to Xi,t−14 and the testing variables:

βi(t)Sit/Nit − γ = X ′

i,t−14θ + ϵit , ϵit ⊥ Xi,t−14.

The specification for growth rate in deaths as the outcome is motivated by SIRD as follows. By differentiating (8) and
(9) with respect to t and using (10), we obtain

D̈(t)
Ḋ(t)

=
C̈(t)
Ċ(t)

−
τ̇ (t)
τ (t)

=
S(t)
N
β(t) − γ . (11)

ur measurement equation for the growth rate of deaths is based on Eq. (11) but accounts for a 21 day lag between
nfection and death as

∆ log(∆Dit ) = X ′

i,t−21θ + ϵit , (M-D)

where

∆ log(∆Dit ) := log(∆Dit ) − log(∆Di,t−7) (12)

approximates the weekly growth rate in deaths from t − 7 to t in state i.

3. Empirical analysis

3.1. Data

All code is available at https://github.com/ubcecon/covid-impact. Our baseline measures for daily Covid-19 cases and
deaths are from The New York Times (NYT). When there are missing values in NYT, we use reported cases and deaths
from JHU CSSE, and then the Covid Tracking Project. The number of tests for each state is from Covid Tracking Project.
As shown in the lower right panel of Fig. A.17 in the appendix, there was a rapid increase in testing in the second half of
March and then the number of tests increased very slowly in each state in April.

We use the database on US state policies created by Raifman et al. (2020). In our analysis, we focus on 6 policies: stay-
at-home, closed nonessential businesses, closed K-12 schools, closed restaurants except takeout, closed movie theaters,
and face mask mandates for employees in public facing businesses. We believe that the first four of these policies are
the most widespread and important. Closed movie theaters is included because it captures common bans on gatherings
of more than a handful of people. We also include mandatory face mask use by employees because its effectiveness on
slowing down Covid-19 spread is a controversial policy issue (Howard et al., 2020; Greenhalgh et al., 2020; Zhang et al.,
2020b). Table 1 provides summary statistics, where N is the number of states that have ever implemented the policy.
We also obtain information on state-level covariates mostly from Raifman et al. (2020), which include population size,
total area, unemployment rate, poverty rate, a percentage of people who are subject to illness, and state governor’s party
affiliations. These confounders are motivated by Wheaton and Thompson (2020) who find that case growth is associated
with residential density and per capita income.

We obtain social distancing behavior measures from ‘‘Google COVID-19 Community Mobility Reports’’ (Google LLC,
2020). The dataset provides six measures of ‘‘mobility trends’’ that report a percentage change in visits and length of stay
at different places relative to a baseline computed by their median values of the same day of the week from January 3 to
34
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Table 1
State policies.

N Min Median Max

Date closed K 12 schools 51 2020-03–13 2020-03–17 2020-04-03
Stay at home shelter in place 42 2020-03–19 2020-03–28 2020-04-07
Closed movie theaters 49 2020-03–16 2020-03–21 2020-04-06
Closed restaurants except take out 48 2020-03–15 2020-03–17 2020-04-03
Closed non essential businesses 43 2020-03–19 2020-03–25 2020-04-06
Mandate face mask use by employees 44 2020-04–03 2020-05–01 2020-08-03

Fig. 8. The Evolution of Google Mobility Measures: Transit stations and Workplaces. This figure shows the evolution of ‘‘Transit stations’’ and
‘‘Workplaces’’ of Google Mobility Reports. Thin gray lines are the value in each state and date. Thicker colored lines are quantiles of the variables
conditional on date. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

February 6, 2020. Our analysis focuses on the following four measures: ‘‘Grocery & pharmacy’’, ‘‘Transit stations’’, ‘‘Retail
& recreation’’, and ‘‘Workplaces’’.25

Fig. 8 shows the evolution of ‘‘Transit stations’’ and ‘‘Workplaces’’, where thin lines are the value in each state and date
hile thicker colored lines are quantiles conditional on date. The figures illustrate a sharp decline in people’s movements
tarting from mid-March as well as differences in their evolutions across states. They also reveal periodic fluctuations
ssociated with days of the week, which motivates our use of weekly measures.
In our empirical analysis, we use weekly measures for cases, deaths, and tests by summing up their daily measures

rom day t to t − 6. We focus on weekly cases and deaths because daily new cases and deaths are affected by the timing
f reporting and testing and are quite volatile as shown in the upper right panel of Fig. A.17 in the appendix. Aggregating
o weekly new cases/deaths/tests smooths out idiosyncratic daily noises as well as periodic fluctuations associated with
ays of the week. We also construct weekly policy and behavior variables by taking 7 day moving averages from day
− 14 to t − 21 for case growth, where the delay reflects the time lag between infection and case confirmation. The

four weekly behavior variables are referred to ‘‘Transit Intensity’’, ‘‘Workplace Intensity’’, ‘‘Retail Intensity’’, and ‘‘Grocery
Intensity’’. Consequently, our empirical analysis uses 7 day moving averages of all variables recorded at daily frequencies.
Our sample period is from March 7, 2020 to June 3, 2020.

Table 2 reports that weekly policy and behavior variables are highly correlated with each other, except for the‘‘masks
or employees’’ policy. High correlations may cause multicolinearity problems and could limit our ability to separately
dentify the effect of each policy or behavior variable on case growth. For this reason, we define the ‘‘business closure
olicies’’ variable by the average of closed movie theaters, closed restaurants, and closed non-essential businesses variables
nd consider a specification that includes business closure policies in place of these three policy variables separately.
Fig. 9 shows the portion of states that have each policy in place at each date. For most policies, there is considerable

ariation across states in the time in which the policies are active. The one exception is K-12 school closures. About 80%
f states closed schools within a day or two of March 15th, and all states closed schools by early April. This makes the
ffect of school closings difficult to separate from aggregate time series variation.

.2. The effect of policies and information on behavior

We first examine how policies and information affect social distancing behaviors by estimating a version of (PI→B):

Bj
it = (β j)′Pit + (γ j)′Iit + (δjB)

′Wit + ε
bj
it ,

where Bj
it represents behavior variable j in state i at time t . Pit collects the Covid related policies in state i at t . Confounders,

Wit , include state-level covariates, month indicators, and their interactions. Iit is a set of information variables that affect

25 The other two measures are ‘‘Residential’’ and ‘‘Parks’’. We drop ‘‘Residential’’ because it is highly correlated with ‘‘Workplaces’’ and ‘‘Retail
& recreation’’ at correlation coefficients of −0.98 and −0.97, respectively. We also drop ‘‘Parks’’ because it does not have clear implication on the
pread of Covid-19.
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Table 2
Correlations among policies and behavior.
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workplaces 1.00
retail 0.93 1.00
grocery 0.75 0.83 1.00
transit 0.89 0.92 0.83 1.00
masks for employees −0.32 −0.17 −0.15 −0.29 1.00
closed K-12 schools −0.91 −0.79 −0.55 −0.72 0.43 1.00
stay at home −0.69 −0.69 −0.70 −0.71 0.28 0.62 1.00
closed movie theaters −0.81 −0.76 −0.64 −0.71 0.34 0.82 0.72 1.00
closed restaurants −0.77 −0.82 −0.68 −0.76 0.21 0.74 0.72 0.82 1.00
closed non-essent bus −0.65 −0.68 −0.68 −0.64 0.08 0.56 0.76 0.68 0.71 1.00
business closure policies −0.84 −0.84 −0.75 −0.79 0.24 0.78 0.81 0.92 0.93 0.87 1.00

ach off-diagonal entry reports a correlation coefficient of a pair of policy and behavior variables. ‘‘business closure policies’’ is defined by the average
f closured movie theaters, closured restaurants, and closured non-essential businesses.

Fig. 9. Portion of states with each policy.

eople’s behaviors at t . As information, we include each state’s growth of cases (in panel (a)) or deaths (in panel (b)), and
og cases or deaths. Additionally, in columns (5)–(8) of Table 3, we include national growth and log of cases or deaths.

Table 3 reports the estimates with standard errors clustered at the state level. Across different specifications, our results
mply that policies have large effects on behavior. Comparing columns (1)–(4) with columns (5)–(8), the magnitude of
olicy effects are sensitive to whether national cases or deaths are included as information. The coefficient on school
losures is particularly sensitive to the inclusion of national information variables. As shown in Fig. 9, there is little
ariation across states in the timing of school closures. Consequently, it is difficult to separate the effect of school closures
rom a behavioral response to the national trend in cases and deaths.

The other policy coefficients are less sensitive to the inclusion of national case/death variables. After school closures,
usiness closure policies have the next largest effect followed by stay-at-home orders. The effect of masks for employees
s small.26

The row ‘‘
∑

j Policyj’’ reports the sum of the estimated effect of all policies, which is substantial and can account for a
arge fraction of the observed declines in behavior variables. For example, in Fig. 8, transit intensity for a median state was
pproximately -50% at its lowest point in early April. The estimated policy coefficients in columns imply that imposing all
olicies would lead to roughly 75% (in column 4) or roughly 35% (in column 8) of the observed decline. The large impact
f policies on transit intensity suggests that the policies may have reduced the Covid-19 infection by reducing people’s
se of public transportation.27

26 Similar to our finding, Kovacs et al. (2020) find no evidence that introduction of compulsory face mask policies affect community mobility in
ermany.
27 Analyzing the New York City’s subway ridership, Harris (2020) finds a strong link between public transit and spread of infection.
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Table 3
The effect of policies and information on behavior (PI→B).
(a) Cases as Information

Dependent variable:

workplaces retail grocery transit workplaces retail grocery transit
(1) (2) (3) (4) (5) (6) (7) (8)

masks for employees 0.023∗ 0.033∗ 0.012 0.015 0.005 0.0005 0.003 −0.010
(0.012) (0.020) (0.012) (0.025) (0.008) (0.015) (0.011) (0.023)

closed K-12 schools −0.196∗∗∗
−0.253∗∗∗

−0.143∗∗∗
−0.243∗∗∗

−0.044∗∗∗
−0.025 −0.069∗∗

−0.047
(0.030) (0.048) (0.027) (0.050) (0.013) (0.018) (0.027) (0.041)

stay at home −0.028∗∗
−0.024 −0.068∗∗∗

−0.062∗∗
−0.034∗∗∗

−0.047∗∗∗
−0.071∗∗∗

−0.074∗∗∗

(0.013) (0.017) (0.015) (0.028) (0.011) (0.013) (0.015) (0.028)
business closure policies −0.081∗∗∗

−0.136∗∗∗
−0.088∗∗∗

−0.080∗∗
−0.049∗∗∗

−0.094∗∗∗
−0.073∗∗∗

−0.042
(0.017) (0.028) (0.017) (0.038) (0.012) (0.020) (0.018) (0.036)

∆ log∆Cit 0.015∗∗∗
−0.002 0.016∗∗∗ 0.014∗∗∗ 0.017∗∗∗ 0.014∗∗∗ 0.018∗∗∗ 0.020∗∗∗

(0.003) (0.005) (0.004) (0.005) (0.002) (0.004) (0.004) (0.005)
log∆Cit −0.024∗∗∗

−0.022∗∗∗
−0.0002 −0.018∗

−0.005 −0.001 0.009 0.004
(0.005) (0.008) (0.005) (0.010) (0.004) (0.007) (0.006) (0.011)

∆ log∆Cit .national −0.033∗∗∗
−0.086∗∗∗

−0.018∗∗
−0.053∗∗∗

(0.005) (0.008) (0.008) (0.012)
log∆Cit .national −0.072∗∗∗

−0.103∗∗∗
−0.035∗∗∗

−0.091∗∗∗

(0.004) (0.008) (0.008) (0.012)

state variables Yes Yes Yes Yes Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes Yes Yes Yes Yes∑

j Policyj −0.282∗∗∗
−0.380∗∗∗

−0.287∗∗∗
−0.371∗∗∗

−0.122∗∗∗
−0.166∗∗∗

−0.211∗∗∗
−0.172∗∗∗

(0.041) (0.066) (0.040) (0.078) (0.022) (0.035) (0.037) (0.060)
Observations 3,825 3,825 3,825 3,825 3,825 3,825 3,825 3,825
R2 0.913 0.829 0.749 0.818 0.953 0.906 0.765 0.856
Adjusted R2 0.912 0.829 0.748 0.817 0.952 0.905 0.764 0.855

(b) Deaths as Information

Dependent variable:

workplaces retail grocery transit workplaces retail grocery transit
(1) (2) (3) (4) (5) (6) (7) (8)

masks for employees 0.018 0.027 0.006 0.006 0.007 0.012 0.002 −0.005
(0.011) (0.017) (0.014) (0.026) (0.009) (0.016) (0.012) (0.025)

closed K-12 schools −0.226∗∗∗
−0.261∗∗∗

−0.114∗∗∗
−0.240∗∗∗

−0.045∗∗∗
−0.033∗

−0.024 −0.050
(0.024) (0.033) (0.018) (0.035) (0.014) (0.019) (0.020) (0.039)

stay at home −0.031∗∗
−0.035∗∗

−0.082∗∗∗
−0.072∗∗

−0.024∗
−0.032∗∗

−0.073∗∗∗
−0.066∗∗

(0.012) (0.017) (0.016) (0.031) (0.012) (0.015) (0.017) (0.032)
business closure policies −0.101∗∗∗

−0.156∗∗∗
−0.101∗∗∗

−0.111∗∗∗
−0.044∗∗∗

−0.091∗∗∗
−0.067∗∗∗

−0.054
(0.022) (0.033) (0.020) (0.041) (0.012) (0.021) (0.020) (0.039)

∆ log∆Dit −0.012∗∗∗
−0.031∗∗∗

−0.001 −0.021∗∗∗
−0.003 −0.012∗∗∗

−0.002 −0.009∗

(0.005) (0.006) (0.004) (0.006) (0.002) (0.004) (0.004) (0.005)
log∆Dit −0.013∗∗∗

−0.001 −0.005 −0.006 −0.007 0.003 0.002 −0.0003
(0.004) (0.006) (0.005) (0.009) (0.004) (0.007) (0.005) (0.010)

∆ log∆Dit .national −0.058∗∗∗
−0.095∗∗∗

−0.008 −0.067∗∗∗

(0.005) (0.008) (0.006) (0.010)
log∆Dit .national −0.056∗∗∗

−0.065∗∗∗
−0.033∗∗∗

−0.057∗∗∗

(0.004) (0.007) (0.006) (0.010)

state variables Yes Yes Yes Yes Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes Yes Yes Yes Yes∑

j Policyj −0.340∗∗∗
−0.425∗∗∗

−0.292∗∗∗
−0.417∗∗∗

−0.105∗∗∗
−0.144∗∗∗

−0.162∗∗∗
−0.176∗∗∗

(0.026) (0.036) (0.033) (0.060) (0.024) (0.039) (0.034) (0.068)
Observations 3,468 3,468 3,468 3,468 3,468 3,468 3,468 3,468
R2 0.908 0.836 0.760 0.826 0.953 0.899 0.783 0.856
Adjusted R2 0.907 0.835 0.759 0.825 0.953 0.898 0.782 0.855

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
ependent variables are ‘‘Transit Intensity,’’ ‘‘Workplace Intensity,’’ ‘‘Retail Intensity,’’ and ‘‘Grocery Intensity’’ defined as 7 days moving averages
f corresponding daily measures obtained from Google Mobility Reports. All specifications include state-level characteristics (population, area,
nemployment rate, poverty rate, a percentage of people subject to illness, and governor’s party) as well as their interactions with the log of
ays since Jan 15, 2020. The row ‘‘

∑
j Policyj ’’ reports the sum of four policy coefficients. Standard errors are clustered at the state level.

In Table 3(b), estimated coefficients of deaths and death growth are generally negative. This suggests that the
igher number of deaths reduces social interactions measured by Google Mobility Reports perhaps because people are
ncreasingly aware of prevalence of Covid-19 (Maloney and Taskin, 2020). The coefficients on log cases and case growth
37



V. Chernozhukov, H. Kasahara and P. Schrimpf Journal of Econometrics 220 (2021) 23–62

n
c
m

3

s
c
a
w

a
t
c
o

o

w

t
i
b
g
f
a
d
g
E

(
c
b

p

a

Fig. 10. Case and death growth conditional on mask mandates. In these figures, red points are the case or death growth rate in states without a
mask mandate. Blue points are states with a mask mandate 14 (21 for deaths) days prior. The red line is the average across states without a mask
mandate 14 (21 for deaths) days earlier. The blue line is the average across states with a mask mandate 14 (21 for deaths) earlier. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

in Table 3(a) are more mixed.28 In columns (5)–(8) of both panels, we see that national case/death variables have large,
egative coefficients. This suggests that behavior responded to national conditions although it is also likely that national
ase/death variables capture unobserved aggregate time effects beyond information which are not fully controlled by
onth dummies (e.g., latent policy variables and time-varying confounders that are common across states).

.3. The direct effect of policies and behavior on case and death growth

We now analyze how behavior and policies together influence case and death growth rates. We begin with some
imple graphical evidence of the effect of policies on case and death growth. Fig. 10 shows average case and death growth
onditional on date and whether masks are mandatory for employees.29 The left panel of the figure shows that states with
mask mandate consistently have 0–0.2 lower case growth than states without. The right panel also illustrates that states
ith a mask mandate tend to have lower average death growth than states without a mask mandate.
Similar plots are shown for other policies in Figs. A.20 and A.21 in the appendix. The figures for stay-at-home orders

nd closure of nonessential businesses are qualitatively similar to that for masks. States with these two policies appear
o have about 0.1 percentage point lower case growth than states without. The effects of school closures, movie theater
losures, and restaurant closures are not clearly visible in these figures. These figures are merely suggestive; the patterns
bserved in them may be driven by confounders.
We more formally analyze the effect of policies by estimating regressions. We first look at the direct effect of policies

n case and death growth conditional on behavior by estimating equation (BPI→Y):

Yi,t+ℓ = α′Bit + π ′Pit + µ′Iit + δ′

YWit + ε
y
it , (13)

here the outcome variable, Yi,t+ℓ, is either case growth or death growth.
For case growth as the outcome, we choose a lag length of ℓ = 14 days for behavior, policy, and information variables

o reflect the delay between infection and confirmation of case.30 Bit = (B1
it , . . . , B

4
it )

′ is a vector of four behavior variables
n state i. Pit includes the Covid-related policies in state i that directly affect the spread of Covid-19 after controlling for
ehavior variables (e.g., masks for employees). We include information variables, Iit , that include the past cases and case
rowths because the past cases may be correlated with (latent) government policies or people’s behaviors that are not
ully captured by our observed policy and behavior variables. We also consider a specification that includes the past cases
nd case growth at the national level as additional information variables. Wit is a set of confounders that includes month
ummies, state-level covariates, and the interaction terms between month dummies and state-level covariates.31 For case
rowth, Wit also includes the test rate growth ∆ log(T )it to capture the effect of changing test rates on confirmed cases.
q. (13) corresponds to (M-C) derived from the SIR model.

28 Rewrite a regression specification after omitting other variables as Bit = γ1∆ log∆Cit +γ2 log∆Cit = (γ1 +γ2) log∆Cit −γ1 log∆Ci,t−7 . In columns
1)–(4) of Table 3(a), the estimated values of both (γ1 + γ2) and −γ1 are negative except for grocery. This suggests that a higher level of confirmed
ases reduces people’s mobility in workplaces, retails, and transit. For grocery, the positive estimated coefficient of (γ1 + γ2) may reflect stock-piling
ehavior in early pandemic periods.
29 We take 14 and 21 day lags of mask policies for case and death growths, respectively, to identify the states with a mask mandate because
olicies affect cases and deaths with time lags. See our discussion in Appendix A.6.
30 As we review in Appendix A.6, a lag length of 14 days between exposure and case reporting, as well as a lag length of 21 days between exposure
nd deaths, is broadly consistent with currently available evidence. Section 4 provides a sensitivity analysis under different timing assumptions.
31 Month dummies also represent the latent information that is not fully captured by the past cases and growths.
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Table 4
The direct effect of behavior and policies on case and death growth (BPI→Y).

Dependent variable:

∆ log∆Cit
(1) (2) (3) (4)

lag(masks for employees, 14) −0.090∗∗∗
−0.091∗∗∗

−0.100∗∗∗
−0.100∗∗∗

(0.031) (0.032) (0.029) (0.030)
lag(closed K-12 schools, 14) −0.074 −0.083 0.043 0.031

(0.080) (0.090) (0.096) (0.103)
lag(stay at home, 14) −0.063 −0.058 −0.079 −0.071

(0.050) (0.048) (0.052) (0.050)
lag(business closure policies, 14) 0.051 0.045

(0.062) (0.060)
lag(closed movie theaters, 14) 0.032 0.045

(0.050) (0.049)
lag(closed restaurants, 14) 0.023 0.022

(0.044) (0.043)
lag(closed non-essent bus, 14) −0.001 −0.016

(0.040) (0.040)
lag(workplaces, 14) 1.055∗ 1.042∗ 0.391 0.355

(0.543) (0.556) (0.610) (0.618)
lag(retail, 14) 0.594∗ 0.611∗∗ 0.316 0.342

(0.303) (0.309) (0.316) (0.317)
lag(grocery, 14) −0.471∗

−0.478∗
−0.259 −0.266

(0.284) (0.288) (0.282) (0.284)
lag(transit, 14) 0.347 0.339 0.355 0.339

(0.258) (0.268) (0.247) (0.253)
lag(∆ log∆Cit , 14) 0.015 0.015 0.024 0.024

(0.026) (0.025) (0.028) (0.028)
lag(log∆Cit , 14) −0.105∗∗∗

−0.105∗∗∗
−0.088∗∗∗

−0.087∗∗∗

(0.019) (0.019) (0.021) (0.021)
lag(∆ log∆Cit .national, 14) −0.095∗∗

−0.095∗∗

(0.042) (0.043)
lag(log∆Cit .national, 14) −0.177∗∗∗

−0.180∗∗∗

(0.049) (0.050)
∆ log Tit 0.152∗∗∗ 0.153∗∗∗ 0.155∗∗∗ 0.156∗∗∗

(0.043) (0.043) (0.042) (0.041)

state variables Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes∑

j Policyj −0.176 −0.178 −0.091 −0.090
(0.128) (0.133) (0.153) (0.158)∑

k wkBehaviork −0.804∗∗∗
−0.801∗∗∗

−0.425∗∗∗
−0.413∗∗∗

(0.140) (0.140) (0.157) (0.160)
Observations 3,825 3,825 3,825 3,825
R2 0.761 0.761 0.766 0.766
Adjusted R2 0.759 0.759 0.763 0.764

Dependent variable:

∆ log∆Dit
(1) (2) (3) (4)

lag(masks for employees, 21) −0.146∗∗∗
−0.150∗∗∗

−0.147∗∗∗
−0.150∗∗∗

(0.050) (0.050) (0.049) (0.049)
lag(closed K-12 schools, 21) −0.232∗∗

−0.250∗∗
−0.178∗

−0.198∗∗

(0.102) (0.098) (0.103) (0.100)
lag(stay at home, 21) −0.066 −0.050 −0.065 −0.050

(0.067) (0.065) (0.067) (0.064)
lag(business closure policies, 21) 0.098 0.107

(0.087) (0.092)
lag(closed movie theaters, 21) 0.006 0.021

(0.090) (0.088)
lag(closed restaurants, 21) 0.087 0.083

(0.072) (0.070)
lag(closed non-essent bus, 21) −0.001 −0.001

(0.058) (0.059)
lag(workplaces, 21) 1.297∗∗ 1.279∗∗ 0.896 0.889

(0.515) (0.510) (0.554) (0.558)
lag(retail, 21) 0.572 0.598 0.523 0.546

(0.441) (0.460) (0.438) (0.455)
lag(grocery, 21) −0.935∗∗

−0.966∗∗
−0.887∗∗

−0.912∗∗

(0.388) (0.397) (0.368) (0.377)

(continued on next page)
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Table 4 (continued).
Dependent variable:

∆ log∆Dit
(1) (2) (3) (4)

lag(transit, 21) 0.348 0.368 0.384 0.396
(0.284) (0.273) (0.283) (0.272)

lag(∆ log∆Dit , 21) 0.016 0.015 0.016 0.015
(0.035) (0.035) (0.037) (0.037)

lag(log∆Dit , 21) −0.055∗∗
−0.052∗∗

−0.053∗∗
−0.050∗∗

(0.024) (0.025) (0.024) (0.024)
lag(∆ log∆Dit .national, 21) −0.034 −0.036

(0.044) (0.046)
lag(log∆Dit .national, 21) −0.047 −0.046

(0.039) (0.038)

state variables Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes∑

j Policyj −0.346∗∗
−0.358∗∗

−0.283∗
−0.296∗

(0.162) (0.164) (0.172) (0.175)∑
k wkBehaviork −0.837∗∗∗

−0.845∗∗∗
−0.661∗∗∗

−0.670∗∗∗

(0.164) (0.170) (0.176) (0.179)
Observations 3,468 3,468 3,468 3,468
R2 0.518 0.518 0.518 0.519
Adjusted R2 0.512 0.512 0.513 0.513

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
ependent variable is the weekly growth rate of confirmed cases (in the upper panel) or deaths (in the lower panel) as defined in Eq. (4). The
ovariates include lagged policy and behavior variables, which are constructed as 7 day moving averages between t to t − 7 of corresponding daily
easures. The row ‘‘

∑
j Policiesj ’’ reports the sum of all policy coefficients. The row ‘‘

∑
k wkBehaviork ’’ reports the sum of four coefficients of behavior

ariables weighted by the average of each behavioral variable from April 1st-10th. ‘‘business closure policies’’ is defined by the average of closured
ovie theaters, closured restaurants, and closured non-essential businesses. Standard errors are clustered at the state level.

For death growth as the outcome, we take a lag length of ℓ = 21 days. The information variables Iit include past deaths
and death growth rates; Wit is the same as that of the case growth equation except that the growth rate of test rates is
excluded from Wit as implied by Eq. (M-D).

Table 4 shows the results of estimating (13) for case and death growth rates.
Column (1) represents our baseline specification while column (2) replaces business closure policies with closed movie

theaters, closed restaurants, and closed non-essential businesses. Columns (3) and (4) include past cases/deaths and
growth rates at national level as additional regressors.

The estimates indicate that mandatory face masks for employees reduce the growth rate of infections and deaths by 9–
15 percent, while holding behavior constant. This suggests that requiring masks for employees in public-facing businesses
may be an effective preventive measure.32 The estimated effect of masks on death growth is larger than the effect on case
growth, but this difference between the two estimated effects is not statistically significant.

Closing schools has a large and statistically significant coefficient in the death growth regressions. As discussed above,
however, there is little cross-state variation in the timing of school closures, making estimates of its effect less reliable.

Neither the effect of stay-at-home orders nor that of business closure policies is estimated significantly different from
zero, suggesting that these lockdown policies may have little direct effect on case or death growth when behavior is held
constant.

The row ‘‘
∑

kwkBehaviork’’ reports the sum of estimated coefficients weighted by the average of the behavioral
variables from April 1st-10th. The estimates of −0.80 and −0.84 for ‘‘

∑
kwkBehaviork’’ in column (1) imply that a

reduction in mobility measures relative to the baseline in January and February have induced a decrease in case and death
growth rates by 80 and 84 percent, respectively, suggesting an importance of social distancing for reducing the spread
of Covid-19. When including national cases and deaths in information, as shown in columns (3) and (4), the estimated
aggregate impact of behavior is substantially smaller but remains large and statistically significant.

A useful practical implication of these results is that Google Mobility Reports and similar data might be useful as a
leading indicator of potential case or death growth. This should be done with caution, however, because other changes
in the environment might alter the relationship between behavior and infections. Preventative measures, including
mandatory face masks, and changes in habit that are not captured in our data might alter the future relationship between
Google Mobility Reports and case/death growth.

32 Note that we are not evaluating the effect of universal mask-wearing for the public but that of mask-wearing for employees. The effect of
niversal mask-wearing for the public could be larger if people comply with such a policy measure. Tian et al. (2020) considered a model in which
ask wearing reduces the reproduction number by a factor (1 − e · pm)2 , where e is the efficacy of trapping viral particles inside the mask and pm

s the percentage of mask-wearing population. Given an estimate of R0 = 2.4, Howard et al. (2020) argue that 50% mask usage and a 50% mask
fficacy level would reduce the reproduction number from 2.4 to 1.35, an order of magnitude impact.
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Table 5
The total effect of policies on case and death growth (PI→Y).

Dependent variable:

∆ log∆Cit
(1) (2) (3) (4)

lag(masks for employees, 14) −0.083∗∗
−0.081∗∗

−0.103∗∗∗
−0.102∗∗∗

(0.038) (0.040) (0.033) (0.035)
lag(closed K-12 schools, 14) −0.226∗∗

−0.236∗∗ 0.029 0.017
(0.089) (0.097) (0.102) (0.107)

lag(stay at home, 14) −0.127∗∗
−0.121∗∗

−0.115∗∗
−0.103∗∗

(0.057) (0.054) (0.054) (0.052)
lag(business closure policies, 14) −0.076 −0.001

(0.068) (0.061)
lag(closed movie theaters, 14) 0.027 0.062

(0.051) (0.046)
lag(closed restaurants, 14) −0.041 −0.011

(0.049) (0.045)
lag(closed non-essent bus, 14) −0.051 −0.038

(0.050) (0.043)
lag(∆ log∆Cit , 14) 0.040 0.041∗ 0.036 0.035

(0.024) (0.025) (0.028) (0.028)
lag(log∆Cit , 14) −0.137∗∗∗

−0.137∗∗∗
−0.091∗∗∗

−0.090∗∗∗

(0.022) (0.022) (0.026) (0.026)
lag(∆ log∆Cit .national, 14) −0.128∗∗∗

−0.123∗∗∗

(0.039) (0.041)
lag(log∆Cit .national, 14) −0.243∗∗∗

−0.245∗∗∗

(0.045) (0.045)
∆ log Tit 0.156∗∗∗ 0.157∗∗∗ 0.158∗∗∗ 0.160∗∗∗

(0.044) (0.044) (0.042) (0.041)

state variables Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes∑

j Policyj −0.512∗∗∗
−0.504∗∗∗

−0.190 −0.175
(0.150) (0.154) (0.156) (0.159)

Observations 3,825 3,825 3,825 3,825
R2 0.749 0.750 0.763 0.763
Adjusted R2 0.747 0.747 0.760 0.761

Dependent variable:

∆ log∆Dit
(1) (2) (3) (4)

lag(masks for employees, 21) −0.134∗∗∗
−0.133∗∗

−0.156∗∗∗
−0.155∗∗∗

(0.051) (0.053) (0.050) (0.052)
lag(closed K-12 schools, 21) −0.610∗∗∗

−0.621∗∗∗
−0.234∗∗

−0.248∗∗

(0.115) (0.121) (0.111) (0.109)
lag(stay at home, 21) −0.082 −0.075 −0.068 −0.057

(0.066) (0.064) (0.066) (0.062)
lag(business closure policies, 21) −0.059 0.059

(0.086) (0.086)
lag(closed movie theaters, 21) −0.006 0.050

(0.089) (0.082)
lag(closed restaurants, 21) −0.012 0.030

(0.061) (0.055)
lag(closed non-essent bus, 21) −0.040 −0.016

(0.066) (0.063)
lag(∆ log∆Dit , 21) −0.001 −0.001 0.017 0.016

(0.033) (0.033) (0.036) (0.037)
lag(log∆Dit , 21) −0.078∗∗∗

−0.078∗∗∗
−0.064∗∗

−0.063∗∗

(0.026) (0.027) (0.027) (0.027)
lag(∆ log∆Dit .national, 21) −0.147∗∗∗

−0.148∗∗

(0.056) (0.057)
lag(log∆Dit .national, 21) −0.116∗∗∗

−0.117∗∗∗

(0.032) (0.032)

state variables Yes Yes Yes Yes
Month ×state variables Yes Yes Yes Yes

(continued on next page)

The negative coefficients of the log of past cases or deaths in Table 4 is consistent with a hypothesis that higher

reported cases and deaths change people’s behavior to reduce transmission risks. Such behavioral changes in response to
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Table 5 (continued).
Dependent variable:

∆ log∆Dit
(1) (2) (3) (4)∑

j Policyj −0.885∗∗∗
−0.887∗∗∗

−0.399∗∗
−0.396∗∗

(0.159) (0.166) (0.183) (0.188)
Observations 3,468 3,468 3,468 3,468
R2 0.502 0.502 0.512 0.512
Adjusted R2 0.497 0.497 0.507 0.507

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
ependent variable is the weekly growth rate of confirmed cases (in the upper panel) or deaths (in the lower panel) as defined in Eq. (4). The
ovariates include lagged policy variables, which are constructed as 7 day moving averages between t to t − 7 of corresponding daily measures. The
ow ‘‘

∑
j Policiesj ’’ reports the sum of all policy coefficients. ‘‘business closure policies’’ is defined by the average of closed movie theaters, closed

estaurants, and closed non-essential businesses. Standard errors are clustered at the state level.

able 6
irect and indirect policy effects without national case/death variables.
Cases

Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.090∗∗∗ 0.043 −0.047 −0.083∗∗
−0.065 0.036∗∗

(0.031) (0.028) (0.043) (0.038) (0.040) (0.015)
closed K-12 schools −0.074 −0.374∗∗∗

−0.448∗∗∗
−0.226∗∗∗

−0.337∗∗∗
−0.223∗∗∗

(0.080) (0.095) (0.116) (0.086) (0.098) (0.055)
stay at home −0.063 −0.034 −0.096∗

−0.127∗∗
−0.112∗∗ 0.031∗∗

(0.049) (0.029) (0.055) (0.058) (0.056) (0.015)
business closure policies 0.051 −0.153∗∗∗

−0.101 −0.076 −0.089 −0.025
(0.062) (0.045) (0.068) (0.067) (0.067) (0.021)∑

j Policyj −0.176 −0.517∗∗∗
−0.693∗∗∗

−0.512∗∗∗
−0.603∗∗∗

−0.181∗∗∗

(0.129) (0.145) (0.182) (0.147) (0.162) (0.061)
∆ log∆Cit 0.015 0.012 0.027 0.040 0.033 −0.013∗∗

(0.026) (0.009) (0.025) (0.025) (0.025) (0.007)
log∆Cit −0.105∗∗∗

−0.045∗∗∗
−0.150∗∗∗

−0.137∗∗∗
−0.144∗∗∗

−0.013∗

(0.018) (0.015) (0.025) (0.021) (0.023) (0.008)

Deaths
Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.146∗∗∗ 0.035∗∗∗
−0.111∗∗

−0.134∗∗∗
−0.122∗∗ 0.022

(0.049) (0.000) (0.049) (0.051) (0.049) (0.021)
closed K-12 schools −0.232∗∗

−0.420∗∗∗
−0.653∗∗∗

−0.610∗∗∗
−0.632∗∗∗

−0.042∗

(0.095) (0.084) (0.111) (0.109) (0.109) (0.023)
stay at home −0.066 −0.008 −0.073 −0.082 −0.078 0.008

(0.068) (0.031) (0.067) (0.067) (0.067) (0.016)
business closure policies 0.098∗∗∗

−0.163∗∗
−0.065 −0.059 −0.062 −0.006

(0.000) (0.065) (0.065) (0.086) (0.061) (0.089)∑
j Policyj −0.346∗∗∗

−0.557∗∗∗
−0.902∗∗∗

−0.885∗∗∗
−0.894∗∗∗

−0.018
(0.122) (0.137) (0.156) (0.157) (0.147) (0.106)

∆ log∆Dit 0.016 −0.040∗∗∗
−0.024 −0.001 −0.012 −0.023∗∗∗

(0.034) (0.011) (0.030) (0.032) (0.031) (0.005)
log∆Dit −0.055∗∗

−0.015 −0.070∗∗
−0.078∗∗∗

−0.074∗∗∗ 0.009
(0.024) (0.009) (0.028) (0.026) (0.027) (0.005)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant. Direct effects are given by π
n Eq. (BPI→Y). Indirect effects capture how policy changes behavior and behavior shift case growth. They are given by α from (BPI→Y) times β
rom (PI→B). The total effect is π + βα. Column ‘‘PI→Y Coefficients’’ shows the coefficient estimates from (PI→Y). Columns ‘‘Difference’’ are the
ifferences between the estimates from (PI→Y) and the combination of (BPI→Y) and (PI→B) while column ‘‘Average’’ are their averages. Standard

errors are computed by bootstrap and clustered on state.

new information are partly captured by Google mobility measures, but the negative estimated coefficient of past cases or
deaths imply that other latent behavioral changes that are not fully captured by Google mobility measures (e.g., frequent
hand-washing, wearing masks, and keeping 6ft/2m distancing) are also important for reducing future cases and deaths.

If policies are enacted and behavior changes, then future cases/deaths and information will change, which will induce
further behavior changes. However, since the model includes lags of cases/deaths as well as their growth rates, computing
a long-run effect is not completely straightforward. We investigate dynamic effects that incorporate feedback through
information in Section 5.
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Table 7
Direct and Indirect Policy Effects without national case/death variables, restrictions imposed.
Cases

Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.096∗∗∗ 0.000 −0.096∗∗∗
−0.083∗∗

−0.089∗∗∗
−0.013

(0.030) (0.000) (0.030) (0.039) (0.032) (0.025)
closed K-12 schools −0.073 −0.364∗∗∗

−0.436∗∗∗
−0.226∗∗

−0.331∗∗∗
−0.210∗∗∗

(0.078) (0.094) (0.119) (0.092) (0.102) (0.056)
stay at home −0.053 −0.032 −0.085 −0.127∗∗

−0.106∗ 0.042∗∗

(0.052) (0.028) (0.058) (0.057) (0.057) (0.020)
business closure policies 0.000 −0.157∗∗∗

−0.157∗∗∗
−0.076 −0.117∗∗

−0.081
(0.000) (0.042) (0.042) (0.066) (0.048) (0.054)∑

j Policyj −0.221∗∗
−0.553∗∗∗

−0.774∗∗∗
−0.512∗∗∗

−0.643∗∗∗
−0.262∗∗∗

(0.108) (0.124) (0.166) (0.151) (0.156) (0.061)
∆ log∆Cit 0.013 0.009 0.021 0.040∗ 0.031 −0.019∗∗∗

(0.026) (0.009) (0.024) (0.024) (0.024) (0.007)
log∆Cit −0.104∗∗∗

−0.042∗∗∗
−0.147∗∗∗

−0.137∗∗∗
−0.142∗∗∗

−0.010
(0.017) (0.015) (0.024) (0.021) (0.023) (0.007)

Deaths
Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.152∗∗∗ 0.000 −0.152∗∗∗
−0.134∗∗∗

−0.143∗∗∗
−0.019

(0.048) (0.000) (0.048) (0.051) (0.049) (0.020)
closed K-12 schools −0.228∗∗

−0.391∗∗∗
−0.619∗∗∗

−0.610∗∗∗
−0.615∗∗∗

−0.009
(0.101) (0.079) (0.117) (0.112) (0.114) (0.031)

stay at home −0.047 −0.006 −0.054 −0.082 −0.068 0.028
(0.063) (0.031) (0.063) (0.067) (0.064) (0.023)

business closure policies 0.000 −0.154∗∗∗
−0.154∗∗∗

−0.059 −0.106∗
−0.095

(0.000) (0.059) (0.059) (0.084) (0.061) (0.078)∑
j Policyj −0.427∗∗∗

−0.551∗∗∗
−0.978∗∗∗

−0.885∗∗∗
−0.931∗∗∗

−0.093
(0.123) (0.124) (0.149) (0.158) (0.150) (0.060)

∆ log∆Dit 0.014 −0.040∗∗∗
−0.025 −0.001 −0.013 −0.025∗∗∗

(0.035) (0.010) (0.032) (0.033) (0.032) (0.005)
log∆Dit −0.052∗∗

−0.012 −0.064∗∗
−0.078∗∗∗

−0.071∗∗∗ 0.014∗∗

(0.023) (0.010) (0.026) (0.026) (0.026) (0.007)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant. Direct effects are given by π
n Eq. (BPI→Y). Indirect effects capture how policy changes behavior and behavior shift case growth. They are given by α from (BPI→Y) times β
rom (PI→B). The total effect is π + βα. Column ‘‘PI→Y Coefficients’’ shows the coefficient estimates from (PI→Y). Columns ‘‘Difference’’ are the
ifferences between the estimates from (PI→Y) and the combination of (BPI→Y) and (PI→B) while column ‘‘Average’’ are their averages. Standard

errors are computed by bootstrap and clustered on state.

3.4. The total effect of policies on case growth

In this section, we focus our analysis on policy effects when we hold information constant. The estimated effect of
policy on behavior in Table 3 and those of policies and behavior on case/death growth in Table 4 can be combined to
calculate the total effect of policy as well as its decomposition into direct and indirect effects.

The first three columns of Table 6 show the direct (holding behavior constant) and indirect (through behavior
changes) effects of policy under a specification that excludes national information variables. These are computed from
the specification with national cases or deaths included as information (columns (1)–(4) of Table 3 and column (1) of
Table 4). The estimates imply that all policies combined would reduce the growth rate of cases and deaths by 0.69 and
0.90, respectively, out of which more than one-half to two-third is attributable to the indirect effect through their impact
on behavior. The estimate also indicates that the effect of mandatory masks for employees is mostly direct.

We can also examine the total effect of policies and information on case or death growth, by estimating (PI→Y). The
oefficients on policy in this regression combine both the direct and indirect effects.
Table 5 shows the full set of coefficient estimates for (PI→Y). The results are broadly consistent with what we found

bove. As in Table 3, the effect of school closures is sensitive to the inclusion of national information variables. Also as
bove, mask mandates have a significant negative effect on growth rates.
Similarly to Table 6, the first three columns of Table 7 report the estimated direct and indirect effects of policy but

mpose that masks for employees only affect cases/deaths directly without affecting behavior and that business closure
olicies only affect cases/deaths indirectly through their effects on behavior.33 The estimated total effect of masks for
mployees in the third column of Table 7 is higher than that of Table 6. Similarly, the total effect of business closure
olicies is estimated to be larger in Table 7 than in Table 6.

33 These are computed from estimating the specification in columns (1)–(4) of Table 3 and column (1) of Table 4 but imposing that the coefficient
of masks for employees is zero in (BPI→Y) and that the coefficient of business closure policies is zero in (PI→B).
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Table 8
Direct and indirect policy effects with national case/death variables.
Cases

Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.100∗∗∗
−0.002 −0.102∗∗∗

−0.103∗∗∗
−0.103∗∗∗ 0.001

(0.028) (0.018) (0.035) (0.032) (0.033) (0.011)
closed K-12 schools 0.043 −0.024 0.019 0.029 0.024 −0.011

(0.092) (0.036) (0.101) (0.099) (0.100) (0.015)
stay at home −0.079 −0.036∗

−0.115∗∗
−0.115∗∗

−0.115∗∗ 0.000
(0.051) (0.019) (0.052) (0.054) (0.053) (0.011)

business closure policies 0.045 −0.045∗ 0.000 −0.001 −0.000 0.001
(0.057) (0.026) (0.059) (0.057) (0.058) (0.012)∑

j Policyj −0.091 −0.107∗
−0.198 −0.190 −0.194 −0.008

(0.151) (0.061) (0.159) (0.154) (0.156) (0.022)
∆ log∆Cit 0.024 0.014∗ 0.038 0.036 0.037 0.002

(0.028) (0.007) (0.027) (0.028) (0.027) (0.004)
log∆Cit −0.088∗∗∗

−0.003 −0.091∗∗∗
−0.091∗∗∗

−0.091∗∗∗
−0.000

(0.020) (0.010) (0.026) (0.025) (0.025) (0.005)
∆ log∆Cit .national −0.095∗∗

−0.054∗∗∗
−0.149∗∗∗

−0.128∗∗∗
−0.138∗∗∗

−0.022
(0.040) (0.016) (0.040) (0.037) (0.038) (0.013)

log∆Cit .national −0.177∗∗∗
−0.084∗∗∗

−0.261∗∗∗
−0.243∗∗∗

−0.252∗∗∗
−0.018∗

(0.048) (0.023) (0.044) (0.044) (0.043) (0.010)

Deaths
Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.147∗∗∗ 0.009∗∗∗
−0.138∗∗∗

−0.156∗∗∗
−0.147∗∗∗ 0.018

(0.050) (0.000) (0.050) (0.052) (0.050) (0.017)
closed K-12 schools −0.178∗

−0.055 −0.234∗∗
−0.234∗∗

−0.234∗∗ 0.000
(0.100) (0.038) (0.112) (0.108) (0.110) (0.019)

stay at home −0.065 0.001 −0.063 −0.068 −0.066 0.005
(0.067) (0.029) (0.066) (0.067) (0.066) (0.015)

business closure policies 0.107∗∗∗
−0.048 0.059 0.059 0.059 −0.001

(0.000) (0.036) (0.036) (0.082) (0.044) (0.091)∑
j Policyj −0.283∗∗

−0.094 −0.377∗∗
−0.399∗∗

−0.388∗∗ 0.023
(0.130) (0.069) (0.151) (0.186) (0.163) (0.092)

∆ log∆Dit 0.016 −0.010∗∗ 0.006 0.017 0.012 −0.010∗∗∗

(0.037) (0.005) (0.036) (0.036) (0.036) (0.004)
log∆Dit −0.053∗∗

−0.006 −0.059∗∗
−0.064∗∗

−0.062∗∗ 0.005
(0.023) (0.009) (0.026) (0.026) (0.026) (0.005)

∆ log∆Dit .national −0.034 −0.120∗∗∗
−0.154∗∗∗

−0.147∗∗∗
−0.151∗∗∗

−0.007
(0.043) (0.022) (0.048) (0.054) (0.051) (0.013)

log∆Dit .national −0.047 −0.077∗∗
−0.124∗∗∗

−0.116∗∗∗
−0.120∗∗∗

−0.008
(0.038) (0.030) (0.035) (0.032) (0.033) (0.013)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant. Direct effects are given by π
n Eq. (BPI→Y). Indirect effects capture how policy changes behavior and behavior shift case growth. They are given by α from (BPI→Y) times β
rom (PI→B). The total effect is π + βα. Column ‘‘PI→Y Coefficients’’ shows the coefficient estimates from (PI→Y). Columns ‘‘Difference’’ are the
ifferences between the estimates from (PI→Y) and the combination of (BPI→Y) and (PI→B) while column ‘‘Average’’ are their averages. Standard

errors are computed by bootstrap and clustered on state.

Column ‘‘Difference’’ in Tables 6 and 7 show the difference between the estimate of (PI→Y) in column ‘‘PI→Y
Coefficient’’ and the implied estimate from (BPI→Y)–(PI→B) in column ‘‘Total’’. Differences are generally small except
for the coefficient of closed K-12 schools and the sum of all policies in Table 6. The large differences in school closures
may be due to the difficulty in identifying the effect of school closures given a lack of cross-sectional variation. Imposing
the coefficients of masks for employees and business closure policies to be zero in (BPI→Y) and (PI→B), respectively,
oes not increase differences between ‘‘Total’’ and ‘‘PI→Y Coefficient’’ as reported in the last column of Table 7.
Tables 8 and 9 present the results for a specification that includes national information variables, where the estimates

n masks for employees are similar to those in Tables 6 and 7. Column ‘‘Difference’’ of Table 9 indicates that the restrictions
f zero coefficients for masks for employees in (BPI→Y) and for business closure policies in (PI→B) are not statistically
ejected.

Column ‘‘Average’’ of Tables 6 and 8 reports the average of ‘‘Total’’ and ‘‘PI→Y Coefficient’’ columns. The average is
n appealing and simple way to combine the two estimates of the total effect: one relying on the causal structure and
nother inferred from a direct estimation of equation (PI → Y). We shall be using the average estimate in generating
he counterfactuals in the next section. Turning to the results, the estimates of Tables 6 and 8 imply that all policies
ombined would reduce ∆ log∆D by 0.93 and 0.39, respectively. For comparison, the median of ∆ log∆Dit reached its
eak in mid-March of about 1.3 (see Fig. A.18 in the appendix). Since then it has declined to near 0. Therefore, −0.93
nd −0.39 imply that policy changes can account for roughly one-third to two-third of the observed decrease in death
rowth. The remainder of the decline is likely due to changes in behavior from information.
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Table 9
Direct and Indirect Policy Effects with national case/death variables, restrictions imposed.
Cases

Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.105∗∗∗ 0.000 −0.105∗∗∗
−0.103∗∗∗

−0.104∗∗∗
−0.001

(0.027) (0.000) (0.027) (0.031) (0.028) (0.016)
closed K-12 schools 0.045 −0.022 0.023 0.029 0.026 −0.007

(0.092) (0.034) (0.101) (0.099) (0.100) (0.015)
stay at home −0.071 −0.033∗

−0.104∗
−0.115∗∗

−0.110∗∗ 0.011
(0.052) (0.019) (0.056) (0.052) (0.053) (0.017)

business closure policies 0.000 −0.038 −0.038 −0.001 −0.019 −0.038
(0.000) (0.024) (0.024) (0.061) (0.038) (0.054)∑

j Policyj −0.131 −0.094∗
−0.225∗

−0.190 −0.207 −0.035
(0.123) (0.049) (0.134) (0.155) (0.143) (0.047)

∆ log∆Cit 0.023 0.013∗∗ 0.036 0.036 0.036 0.000
(0.028) (0.007) (0.027) (0.027) (0.027) (0.004)

log∆Cit −0.087∗∗∗
−0.003 −0.090∗∗∗

−0.091∗∗∗
−0.091∗∗∗ 0.000

(0.021) (0.011) (0.027) (0.025) (0.026) (0.005)
∆ log∆Cit .national −0.098∗∗

−0.050∗∗∗
−0.147∗∗∗

−0.128∗∗∗
−0.137∗∗∗

−0.020
(0.040) (0.016) (0.040) (0.037) (0.038) (0.014)

log∆Cit .national −0.178∗∗∗
−0.078∗∗∗

−0.256∗∗∗
−0.243∗∗∗

−0.249∗∗∗
−0.013

(0.048) (0.024) (0.042) (0.044) (0.043) (0.011)

Deaths
Direct Indirect Total PI→Y Coef. Average Difference

masks for employees −0.154∗∗∗ 0.000 −0.154∗∗∗
−0.156∗∗∗

−0.155∗∗∗ 0.002
(0.046) (0.000) (0.046) (0.048) (0.047) (0.018)

closed K-12 schools −0.177∗
−0.051 −0.227∗∗

−0.234∗∗
−0.231∗∗ 0.006

(0.102) (0.036) (0.113) (0.109) (0.111) (0.025)
stay at home −0.046 0.004 −0.043 −0.068 −0.055 0.026

(0.063) (0.027) (0.062) (0.065) (0.063) (0.020)
business closure policies 0.000 −0.040 −0.040 0.059 0.009 −0.099

(0.000) (0.032) (0.032) (0.084) (0.048) (0.084)∑
j Policyj −0.377∗∗∗

−0.087 −0.464∗∗∗
−0.399∗∗

−0.432∗∗∗
−0.065

(0.124) (0.063) (0.144) (0.178) (0.157) (0.074)
∆ log∆Dit 0.015 −0.010∗∗ 0.006 0.017 0.011 −0.011∗∗∗

(0.037) (0.005) (0.036) (0.036) (0.036) (0.004)
log∆Dit −0.050∗∗

−0.006 −0.056∗∗
−0.064∗∗

−0.060∗∗ 0.008
(0.023) (0.008) (0.026) (0.026) (0.026) (0.006)

∆ log∆Dit .national −0.039 −0.112∗∗∗
−0.151∗∗∗

−0.147∗∗∗
−0.149∗∗∗

−0.004
(0.044) (0.020) (0.048) (0.054) (0.051) (0.013)

log∆Dit .national −0.043 −0.070∗∗
−0.113∗∗∗

−0.116∗∗∗
−0.114∗∗∗ 0.002

(0.036) (0.029) (0.030) (0.031) (0.030) (0.013)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant. Direct effects are given by π
n Eq. (BPI→Y). Indirect effects capture how policy changes behavior and behavior shift case growth. They are given by α from (BPI→Y) times β
rom (PI→B). The total effect is π + βα. Column ‘‘PI→Y Coefficients’’ shows the coefficient estimates from (PI→Y). Columns ‘‘Difference’’ are the
ifferences between the estimates from (PI→Y) and the combination of (BPI→Y) and (PI→B) while column ‘‘Average’’ are their averages. Standard

errors are computed by bootstrap and clustered on state.

4. Sensitivity analysis

4.1. Specifications, timings, and flexible controls via machine learning

In this section, we provide sensitivity analysis by estimating (PI→Y) with alternative specifications and methods. Fig. 11
shows the 90% confidence intervals of coefficients of (A) masks for employees, (B) closed K-12 school, (C) stay-at-home,
and (D) the average variable of closed movie theaters, closed restaurants, and closed non-essential businesses for the
following specifications and estimation methods:

(1) Baseline specification in columns (1) and (3) of Table 5.
(2) Exclude the state of New York from the sample because it may be viewed as an outlier in the early pandemic period.
(3) Add the percentage of people who wear masks to protect themselves in March and April as a confounder for

unobserved personal risk-aversion and initial attitude toward mask wearing.34

34 The survey is conducted online by YouGov and is based on the interviews of 89,347 US adults aged 18 and over between March 26–April 29,
2020. The survey question is ‘‘Which, if any, of the following measures have you taken in the past 2 weeks to protect yourself from the Coronavirus
(COVID-19)?’’.
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(4) Add the log of Trump’s vote share in the 2016 presidential election as a confounder for unobserved private behavioral
response.

(5) Add past behavior variables as information used to set policies. Under this specification, our causal interpretation is
valid when policy variables are sufficiently random conditional on past behavior variables.

(6) Include all additional controls in (3)–(5) with the sample that excludes New York as in (2).
(7) Add weekly dummies to the baseline specification.
(8) Baseline specification estimated by instrumenting ∆ log Tit with one week lagged logarithm value of the number of

tests per 1000 people.
(9) Estimated by Double Machine Learning (DML) (e.g., Chernozhukov et al., 2018) with Lasso to reduce dimensionality

while including all additional controls in (3)–(5).
(10) Estimated by DML with Random Forest to reduce dimensionality and capture some nonlinearities while including

all additional controls in (3)–(5).

n Fig. 11, ‘‘red’’, ‘‘green’’, ‘‘blue’’, and ‘‘purple’’ indicate the regression models for case growth without national information
ariables, case growth with national information variables, death growth without national information variables, and
eath growth with national information variables, respectively. The left panel of ‘‘(i) baseline timing’’ assume that the
imes from exposure to case confirmation and death reporting are 14 and 21 days, respectively, while they are 7 and 24
ays, respectively, in the right panel of ‘‘(ii) alternative timing’’.35
Panel (A) of Fig. 11 illustrates that the estimated coefficients of mask mandates are negative and significant in most

specifications, methods, and timing assumptions, confirming the importance of mask policy on reducing case and death
growths.

In Panel (B) of Fig. 11, many estimates of closures of K-12 schools suggest that the effect of school closures is large.
The visual evidence on growth rates for states with and without school closures in Fig. 12 also suggests that there may
be a potentially large effect, though the history is very short. This evidence is consistent with the emerging evidence of
prevalence of Covid-19 among children (Lee et al., 2020b; Szablewski et al., 2020). Davies et al. (2020) find that although
children’s transmission and susceptibility rates are half that of ages 20–30, children’s contact rates are much higher. This
type of evidence, as well as, evidence that children carry viral loads similar to older people (Jones et al., 2020), led Germany
to make the early decision of closing schools.

Our estimates of school closures substantially vary across specifications, however. In particular, the estimated effects
of school closures on case/death growth become notably smaller once national cases/deaths or weekly dummies are
controlled for. In the US state-level data, there is little variation across states in the timing of school closures. Consequently,
its estimate is particularly sensitive to an inclusion of some aggregate variables such as national cases or weekly dummies.
Given this sensitivity, there still exists a lot of uncertainty as to the magnitude of the effect of school closures. Any analyses
of re-opening plans need to be aware of this uncertainty. An important research question is how to resolve this uncertainty
using additional data sources.

Panel (C) of Fig. 11 indicates that the estimated coefficients of stay-at-home orders are generally negative and often
significant, providing evidence that stay-at-home orders reduce the spread of COVID-19, although the estimates are
sometimes sensitive to timing assumptions. Panel (D) shows that the estimated coefficients of business closure policies
substantially vary across specifications, providing a mixed evidence for the effect of closures of businesses on case/death
growth.

4.2. Fixed effects specification

Table 10 presents the results of estimating (PI→Y) with state fixed effects and weekly dummies. Because fixed effects
stimator could be substantially biased when the time dimension is relatively short, we report not only the standard fixed
ffects estimator in columns (1) and (3) but also the debiased fixed effects estimator (e.g., Chen et al., 2019) in columns
2) and (4), where the state-level clustered bootstrap standard errors are reported in all columns.

The estimated coefficients of masks for employees largely confirm our finding that mandatory mask policies reduce the
ase and death growths. The estimated coefficients of stay-at-home orders and business closures are negative in columns
1) and (2) but their magnitudes as well as statistical significance are somewhat sensitive to whether bias corrections are
pplied or not.
The results in Table 10 should be interpreted with caution. The fixed effects approach may not be preferred to random

ffects approach here because the former relies on long time and cross-sectional histories but, in our data, the effective
ime-dimension is short and the number of states is not large. Furthermore, the fixed effects approach could suffer more
rom measurement errors, which could be a concern for our behavior and policy variables.

35 This alternative timing assumption is motivated by the lower bound estimate of median times from exposure to case confirmation or death
reporting in Table 2 of https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html, which are based on data received by CDC through
June 29, 2020. We thank C. Jessica E. Metcalf for recommending us to do a sensitivity analysis on the timing assumption while suggesting this
reference to us.
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Fig. 11. Estimated Coefficients for Policy Variables: Sensitivity Analysis. †The times from exposure to case confirmation and death reporting are
ssumed to be 14 and 21 days, respectively. ‡The times from exposure to case confirmation and death reporting are assumed to be 7 and 24 days,

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Empirical evaluation of counterfactual policies

We now turn our focus to dynamic feedback effects. Policy and behavior changes that reduce case and death growth
today can lead to a more optimistic, riskier behavior in the future, attenuating longer run effects. We perform the main
counterfactual experiments using the average of two estimated coefficients as reported in column ‘‘Average’’ of Table 7
under a specification that excludes the number of past national cases and deaths from information variables and constrains
masks to have only direct effects and business policies only indirect effects.36 Details of the counterfactual computations
re in Appendix B.4.

.1. Business mask mandate

We first consider the impact of a nationwide mask mandate for employees beginning on March 14th. As discussed
arlier, we find that mask mandates reduce case and death growth even when holding behavior constant. In other words,
ask mandates may reduce infections with relatively little economic disruption. This makes mask mandates a particularly
ttractive policy instrument. In this section we examine what would have happened to the number of cases if all states
ad imposed a mask mandate on March 14th.37

36 Results (not shown) using the unconstrained estimates in Table 6 are very similar.
37 We feel this is a plausible counterfactual policy. Many states began implement business restrictions and school closures in mid March. In a
paper made publicly available on April 1st, Abaluck et al. (2020) argued for mask usage based on comparisons between countries with and without
pre-existing norms of widespread mask usage.
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Fig. 11. (continued).

Fig. 12. Case and death growth conditional on school closures. In these figures, red points are the case or death growth rate in states without each
olicy 14 (or 21 for deaths) days earlier. Blue points are states with each policy 14 (or 21 for deaths) days earlier. The red line is the average across
tates without each policy. The blue line is the average across states with each policy. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

For illustrative purpose, we begin by focusing on Washington State. The left column of Fig. 13 shows the change in
rowth rate from mandating masks on March 14th. The shaded region is a 90% pointwise confidence interval. As shown,
andating masks on March 14th lowers the growth of cases or deaths 14 or 21 days later by 0.07 or 0.14. This effect

hen gradually declines due to information feedback. Mandatory masks reduce past cases or deaths, which leads to less
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Table 10
Fixed effects specification: the total effect of policies on case and death growth (PI→Y).

Dependent variable:

∆ log∆Cit
(1) (2) (3) (4)

lag(masks for employees, 14) −0.103∗∗
−0.271∗∗∗

−0.097∗∗
−0.255∗∗∗

(0.044) (0.075) (0.044) (0.071)
lag(closed K-12 schools, 14) −0.023 0.085 −0.050 0.042

(0.060) (0.098) (0.066) (0.094)
lag(stay at home, 14) −0.123∗∗

−0.088 −0.099∗∗
−0.055

(0.051) (0.068) (0.049) (0.075)
lag(business closure policies, 14) −0.080 −0.162∗

(0.076) (0.086)
lag(closed movie theaters, 14) 0.049 0.077

(0.068) (0.084)
lag(closed restaurants, 14) −0.031 −0.068

(0.053) (0.065)
lag(closed non-essent bus, 14) −0.099∗∗

−0.166∗∗∗

(0.047) (0.063)
lag(∆ log∆Cit , 14) 0.063∗∗ 0.079∗∗∗ 0.061∗∗ 0.076∗∗∗

(0.029) (0.026) (0.029) (0.028)
lag(log∆Cit , 14) −0.216∗∗∗

−0.185∗∗∗
−0.214∗∗∗

−0.181∗∗∗

(0.020) (0.032) (0.021) (0.033)
∆ log Tit 0.116∗∗∗ 0.116∗∗∗ 0.118∗∗∗ 0.147∗∗∗

(0.042) (0.042) (0.042) (0.047)

Observations 3,825 3,825 3,825 3,825
R2 0.782 0.782 0.782 0.782
Adjusted R2 0.778 0.778 0.778 0.778

Dependent variable:

∆ log∆Dit
(1) (2) (3) (4)

lag(masks for employees, 21) −0.136∗∗∗
−0.144∗

−0.129∗∗∗
−0.109

(0.047) (0.074) (0.047) (0.075)
lag(closed K-12 schools, 21) −0.115 −0.007 −0.161 −0.026

(0.108) (0.091) (0.123) (0.103)
lag(stay at home, 21) −0.047 −0.097 −0.010 −0.151

(0.077) (0.099) (0.072) (0.112)
lag(business closure policies, 21) −0.081 −0.166

(0.099) (0.137)
lag(closed movie theaters, 21) 0.041 −0.035

(0.099) (0.128)
lag(closed restaurants, 21) 0.015 −0.029

(0.086) (0.097)
lag(closed non-essent bus, 21) −0.143∗∗

−0.024
(0.067) (0.084)

lag(∆ log∆Dit , 21) 0.009 0.083∗ 0.006 0.084
(0.031) (0.045) (0.032) (0.055)

lag(log∆Dit , 21) −0.113∗∗∗
−0.113∗∗∗

−0.108∗∗∗
−0.232∗∗∗

(0.018) (0.018) (0.018) (0.040)

Observations 3468 3468 3468 3468
R2 0.536 0.536 0.537 0.537
Adjusted R2 0.527 0.527 0.528 0.528

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
ll specifications include weekly dummies and state fixed effects. Dependent variable is the weekly growth rate of confirmed cases (in the upper
anel) or deaths (in the lower panel) as defined in Eq. (4). Columns (1) and (3) report the standard fixed effects estimator while Columns (2) and
4) report the fixed effects estimator with bias corrections. Standard errors are computed by multiplier bootstrap clustered at the state level.

autious behavior, attenuating the impact of the policy. The reversal of the decrease in growth in late May is due to our
omparison of a mask mandate on March 14th with Washington’s actual mask mandate in early May. By late May, the
ounterfactual mask effect has decayed through information feedback, and we are comparing it to the undecayed impact
f Washington’s actual, later mask mandate.
The middle column of Fig. 13 shows how the changes in case and death growth translate into changes in daily cases

nd deaths. The estimates imply that mandating masks on March 14th would have led to about 70 fewer cases and 5
ewer deaths per day throughout April and May. Cumulatively, this implies 19% [9, 29]% fewer cases and 26% [14, 37]%
ewer deaths in Washington by the start of June.

The results for other states are similar to those for Washington. Fig. 14 shows the national effect of mask mandate on
arch 14th. The top panel shows the effect on cases and the bottom panel shows the effect on deaths. The left column
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Fig. 13. Effect of mandating masks on March 14th in Washington State. The vertical text denotes the dates that Washington imposed each policy.
o compute the estimated and counterfactual paths we use the average of two estimated coefficients as reported in column ‘‘Average’’ of Table 7.
e set initial ∆ log∆C and log∆C to their values first observed in the state we are simulating. We hold all other regressors at their observed

values. The shaded region is a point-wise 90% confidence interval. See Appendix B.4 for more details.

Fig. 14. Effect of nationally mandating masks for employees on March 14th in the US. In the left column, the dots are the average change in growth
in each state. The blue line is the average across states of the change in growth. The shaded region is a point-wise 90% confidence interval for the
national average change in growth. The middle column shows the total national change in daily cases and deaths. Black dots are the changes in
each state. The right column shows the change in cumulative cases or deaths relative to the baseline of actual policies.
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Fig. 15. Effect of having no business closure policies in the US. In the left column, the dots are the average change in growth in each state. The
blue line is the average across states of the change in growth. The shaded region is a point-wise 90% confidence interval for the national average
change in growth. The middle column shows the total national change in daily cases and deaths. Black dots are the changes in each state. The right
column shows the change in cumulative cases or deaths relative to the baseline of actual policies.

shows the change in growth rates. Dots are the average change in growth rate in each state (i.e. the dots are identical
to the solid line in the left panel of Fig. 13, except for each state instead of just Washington). The solid blue line is the
national average change in growth rate. The shaded region is a 90% pointwise confidence band for the national average
change in growth rate.

The middle column shows the changes in cases and deaths per day. Dots are the expected change in each state. The
thick line is the national total change in daily cases or deaths. The shaded region is a pointwise 90% confidence band for
the national total change. The estimates that a mask mandate in mid March would have decreased cases and deaths by
about 6000 and 600 respectively throughout April and May.

The right column of Fig. 14 shows how these daily changes compare to the total cumulative cases and deaths. The right
column shows the national relative change in cumulative cases or deaths. The point estimates indicate that mandating
masks on March 14th could have led to 21% fewer cumulative cases and 34% fewer deaths by the end of May with their
90 percent intervals given by [9, 32]% and [19, 47]%, respectively. The result roughly translates into 19 to 47 thousand
saved lives.

5.2. Business closure policies

Business closures are particularly controversial. We now examine a counterfactual where there are no business closure
policies (no restaurant, movie theater, or non-essential business closure). Fig. 15 shows the national effect of never
restricting businesses on cases and deaths. The point estimates imply that, without business closures, cases and deaths
would be about 40% higher at the end of May. The confidence intervals are wide. A 90 percent confidence interval for the
increase in cases at the end of May is [17, 78]%. The confidence interval for deaths is even wider, [1, 97]%.

5.3. Stay-at-home orders

We next examine a counterfactual where stay-at-home orders had been never issued. Fig. 16 shows the national effect
of no stay-at-home orders. On average, without stay-at-home orders, case growth rate would have been nearly 0.075
higher in late April. This translates to 37% [6, 63]% more cases per week by the start of June. The estimated effect for
deaths is a bit smaller, with no increase included in a 90 percent confidence interval, [−7, 50]%.
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Fig. 16. Effect of having no stay-at-home orders in the US. In the left column, the dots are the average change in growth in each state. The blue
line is the average across states of the change in growth. The shaded region is a point-wise 90% confidence interval for the national average change
in growth. The middle column shows the total national change in daily cases and deaths. Black dots are the changes in each state. The right column
shows the change in cumulative cases or deaths relative to the baseline of actual policies.

6. Conclusion

This paper assesses the effects of policies on the spread of Covid-19 in the US using state-level data on cases, tests,
policies, and social distancing behavior measures from Google Mobility Reports. Our findings are summarized as follows.

First, our empirical analysis robustly indicates that mandating face masks has reduced the spread of Covid-19
without affecting people’s social distancing behavior measured by Google Mobility Reports. Our counterfactual experiment
suggests that if all states had adopted mandatory face mask policies on March 14th of 2020, then the cumulative number
of deaths by the end of May would have been smaller by as much as 19 to 47%, which roughly translates into 19 to 47
thousand saved lives.

Second, our baseline counterfactual analysis suggests that keeping all businesses open would have led to 17 to 78%
more cases while not implementing stay-at-home orders would have increased cases by 6 to 63% by the end of May
although we should interpret these numbers with some caution given that the estimated effect of business closures and
stay-at-home orders vary across specifications in our sensitivity analysis.

Third, we find considerable uncertainty over the impact of school closures on case or death growth because it is difficult
to identify the effect of school closures from the US state-level data due to the lack of variation in the timing of school
closures across states.

Fourth, our analysis shows that people voluntarily reduce their visits to workplace, retail stores, grocery stores, and
people limit their use of public transit when they receive information on a higher number of new cases and deaths. This
suggests that individuals make decisions to voluntarily limit their contact with others in response to greater transmission
risks, leading to an important feedback mechanism that affects future cases and deaths. Model simulations that ignore
this voluntary behavioral response to information on transmission risks would over-predict the future number of cases
and deaths.

Beyond these findings, our paper presents a useful conceptual framework to investigate the relative roles of policies
and information on determining the spread of Covid-19 through their impact on people’s behavior. Our causal model
allows us to explicitly define counterfactual scenarios to properly evaluate the effect of alternative policies on the spread
of Covid-19. More broadly, our causal framework can be useful for quantitatively analyzing not only health outcomes but
also various economic outcomes (Bartik et al., 2020; Chetty et al., 2020).
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Table A.11
Correlation of cumulative cases.

NYT JHU CTP

NYT 1.00000 0.99985 0.99970
JHU 0.99985 1.00000 0.99985
CTP 0.99970 0.99985 1.00000

Table A.12
Portion of cumulative cases that are equal between data sets.

1 2 3

NYT 1.00 0.38 0.32
JHU 0.38 1.00 0.51
CTP 0.32 0.51 1.00

Table A.13
Correlation and variance of log daily new cases.

NYT JHU CTP

NYT 1.00 0.93 0.86
JHU 0.93 1.00 0.82
CTP 0.86 0.82 1.00
Variance 5.05 5.81 6.11

Table A.14
Correlation and variance of log weekly new cases.

NYT JHU CTP

NYT 1.00 1.00 0.98
JHU 1.00 1.00 0.98
CTP 0.98 0.98 1.00
Variance 3.68 3.76 3.47
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ppendix A. Data construction

.1. Measuring ∆C and ∆ log∆C

We have three data sets with information on daily cumulative confirmed cases in each state. As shown in Table A.11,
these cumulative case numbers are very highly correlated. However, Table A.12 shows that the numbers are different
more often than not.

The upper left panel of Fig. A.17 shows the evolution of new cases in the NYT data, where daily changes in cumulative
cases exhibit some excessive volatility. This is likely due to delays and bunching in testing and reporting of results.
Table A.13 shows the variance of log new cases in each data set, as well as their correlations. As shown, the correlations are
approximately 0.9. The NYT new case numbers have the lowest variance.38 In our subsequent results, we will primarily
use the case numbers from The New York Times.

For most of our results, we focus on new cases in a week instead of in a day. We do this for two reasons as discussed
in the main text. First, a decline in new cases over two weeks has become a key metric for decision makers. Secondly,
aggregating to weekly new cases smooths out the noise associated with the timing of reporting and testing.

Table A.14 reports the correlation and variance of weekly log new cases across the three data sets. The upper right
panel of Fig. A.17 shows the evolution of weekly new cases in each state over time from the NYT data. The upper panel
of Fig. A.18 shows the evolution of the weekly growth rate of new cases in each state over time.

38 This comparison is somewhat sensitive to how you handle negative and zero cases when taking logs. Here, we replaced log(0) with −1. In our
ain results, we work with weekly new cases, which are very rarely zero.
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Fig. A.17. Daily Cases, Weekly Cases, Weekly Deaths from NYT Data, and Weekly Tests from JHU. Thin gray lines are the log of cases, death, and
tests in each state and date. Thicker colored lines are their quantiles conditional on date. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table A.15
Correlation and variance of weekly deaths.

NYT JHU CTP

NYT 1.00 0.98 0.97
JHU 0.98 1.00 0.98
CTP 0.97 0.98 1.00
Variance 172292.15 174310.07 126952.94

A.2. Deaths

Table A.15 reports the correlation and variance of weekly deaths in the three data sets. The lower left panel of Fig. A.17
hows the evolution of weekly deaths in each state from the NYT data. As with cases, we use death data from The New
ork Times in our main results. The lower panel of Fig. A.18 shows the evolution of the weekly growth rate of new deaths
n each state over time.

.3. Tests

Our test data comes from The Covid Tracking Project. The lower right panel of Fig. A.17 shows the evolution of the
eekly number of tests over time.

.4. Social distancing measures

In measuring social distancing, we focus on Google Mobility Reports. This data has international coverage and is
ublicly available. Fig. A.19 shows the evolution of the four Google Mobility Reports variables that we use in our analysis.
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Fig. A.18. Case and death growth. Thin gray lines are case or death growth in each state and date. Thicker colored lines are quantiles of case or
death growth conditional on date. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

A.5. Policy variables

We use the database on US state policies created by Raifman et al. (2020). As discussed in the main text, our analysis
focuses on six policies. For stay-at-home orders, closed nonessential businesses, closed K-12 schools, closed restaurants
except takeout, and closed movie theaters, we double-checked any state for which Raifman et al. (2020) does not record
a date. We filled in a few missing dates. Our modified data is available here. Our modifications fill in 1 value for school
closures, 2 for stay-at-home orders, 3 for movie theater closure, and 4 for non-essential business closures. Table A.16
displays all 25 dated policy variables in Raifman et al. (2020)’s database with our modifications described above.

Figs. A.20–A.21 show the average case and death growth conditional on date and whether each of six policies is
implemented or not.

A.6. Timing

There is a delay between infection and when a person is tested and appears in our case data. MIDAS (2020) maintain
a list of estimates of the duration of various stages of Covid-19 infections. The incubation period, the time from infection
to symptom onset, is widely believed to be 5 days. For example, using data from Wuhan, Li et al. (2020) estimate a mean
incubation period of 5.2 days. Siordia (2020) reviews the literature and concludes the mean incubation period is 3–9 days.

Estimates of the time between symptom onset and case reporting or death are less common. Using Italian data, Cereda
et al. (2020) estimate an average of 7.3 days between symptom onset and reporting. Zhang et al. (2020a) find an average
of 7.4 days using Chinese data from December to early February, but they find this period declined from 8.9 days in
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Fig. A.19. Evolution of Google Mobility Reports. This figure shows the evolution of Google Mobility Reports over time. Thin gray lines are the value
of the variables in each state and date. Thicker colored lines are quantiles of the variables conditional on date. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table A.16
State Policies.

N Min Median Max

State of emergency 51 2020-02–29 2020-03–11 2020-03-16
Date closed K 12 schools 51 2020-03–13 2020-03–17 2020-04-03
Closed day cares 15 2020-03–16 2020-03–23 2020-04-06
Date banned visitors to nursing homes 30 2020-03–09 2020-03–16 2020-04-06
Closed non essential businesses 43 2020-03–19 2020-03–25 2020-04-06
Closed restaurants except take out 48 2020-03–15 2020-03–17 2020-04-03
Closed gyms 49 2020-03–16 2020-03–20 2020-04-03
Closed movie theaters 49 2020-03–16 2020-03–21 2020-04-06
Stay at home shelter in place 42 2020-03–19 2020-03–28 2020-04-07
End relax stay at home shelter in place 39 2020-04–24 2020-05–18 2020-06-19
Began to reopen businesses statewide 50 2020-04–20 2020-05–07 2020-06-05
Reopen restaurants 48 2020-04–24 2020-05–18 2020-06-22
Reopened gyms 44 2020-04–24 2020-05–18 2020-07-13
Reopened movie theaters 37 2020-04–27 2020-06–01 2020-07-13
Resumed elective medical procedures 35 2020-04–20 2020-04–30 2020-05-29
Mandate face mask use by all individuals in public spaces 35 2020-04–08 2020-06–26 2020-08-05
Mandate face mask use by employees in public facing businesses 44 2020-04–03 2020-05–01 2020-08-03
Stop Initiation of Evictions overall or due to COVID related issues 30 2020-03–16 2020-03–24 2020-05-30
Stop enforcement of evictions overall or due to COVID related issues 29 2020-03–15 2020-03–24 2020-06-08
Renter grace period or use of security deposit to pay rent 3 2020-04–10 2020-04–24 2020-05-20
Order freezing utility shut offs 34 2020-03–12 2020-03–19 2020-04-13
Froze mortgage payments 1 2020-03–21 2020-03–21 2020-03-21
Waived one week waiting period for unemployment insurance 36 2020-03–08 2020-03–18 2020-04-06

January to 5.4 days in the first week of February. Both of these papers on time from symptom onset to reporting have
large confidence intervals covering approximately 1 to 20 days.

Studying publicly available data on infected persons diagnosed outside of Wuhan, Linton et al. (2020) estimate an
verage of 15 days from onset to death. Similarly, using publicly available reports of 140 confirmed Covid-19 cases in
hina, mostly outside Hubei Province, Sanche et al. (2020) estimate the time from onset to death to be 16.1 days.
Based on the above, we expect a delay of roughly two weeks between changes in behavior or policies, and changes in

eported cases while a corresponding delay of roughly three weeks for deaths.
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Fig. A.20. Case and death growth conditional on policies. In these figures, red points are the case or death growth rate in states without each policy
4 (or 21 for deaths) days earlier. Blue points are states with each policy 14 (or 21 for deaths) days earlier. The red line is the average across states
ithout each policy. The blue line is the average across states with each policy. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

ppendix B. Additional results

.1. Direct and indirect policy effects with national case/death variables

Tables 8 and 9 present the estimates of direct and indirect effects of policies for the specification with past national
ase/death variables. The effects of school closures and the sum of policies are estimated substantially smaller in Table 8
hen national case/death variables are included than in Table 6. This sensitivity reflects the difficulty in identifying the
ggregate time effect—which is largely captured by national cases/deaths—given little cross-sectional variation in the
iming of school closures across states. On the other hand, the estimated effects of policies other than school closures are
imilar between Tables 6 and 8; the effect of other policies are well-identified from cross-sectional variations.
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Fig. A.21. Case and death growth conditional on policies. In these figures, red points are the case or death growth rate in states without each policy
4 (or 21 for deaths) days earlier. Blue points are states with each policy 14 (or 21 for deaths) days earlier. The red line is the average across states
ithout each policy. The blue line is the average across states with each policy. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.2. Double machine learning

To estimate the coefficient of the jth policy variable, P j
it , using double machine learning (Chernozhukov et al., 2018),

we consider a version of (PI→Y) as follows:

Yi,t+ℓ = P j
itθ0 + φ′Xit + g0(Wit ) + ξit , E[ξit |P

j
it , Xit ,Wit ] = 0,

P j
it = ψ ′Xit + m0(Wit ) + Vit , E[Vit |Xit ,Wit ] = 0,

where Xit = ((P−j
it )′, B′

it , I
′

it )
′ collects policy variables except for the jth policy variables P−j

it , behavior variables Bit , and
information variables Iit . The confounding factors Wit affect the policy variable P j

it via the function m0(W ) and the outcome
variable Yi,t+ℓ via the function g0(W ). We apply Lasso or Random Forests to estimate g0(W ) for dimension reductions or
for capturing non-linearity while the coefficients of X are estimated under linearity without imposing any dimension
it
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reductions. We omit the details of estimation procedure here. Please see the discussion in Example 1.1 of Chernozhukov
et al. (2018) for reference.

B.3. Debiased fixed effects estimator

We apply cross-over Jackknife bias correction as discussed in Chen et al. (2020) in detail. Here, we briefly describe our
ebiased fixed effects estimator.
Given our panel data with N = 51 states and T = 75 days for case growth equation (PI→Y), consider two subpanels

s follows:

S1 = {(i, t) : i ≤ ⌈N/2⌉, t ≤ ⌈T/2⌉} ∪ {(i, t) : i ≥ ⌊N/2 + 1⌋, t ≥ ⌊T/2 + 1⌋}

nd

S2 = {(i, t) : i ≤ ⌈N/2⌉, t ≥ ⌊T/2 + 1⌋} ∪ {(i, t) : i ≥ ⌊N/2 + 1⌋, t ≤ ⌈T/2⌉}

here ⌈.⌉ and ⌊.⌋ are the ceiling and floor functions. Each of these two subpanels includes observations for all
ross-sectional units and time periods.
We form the debiased fixed effects estimator as

β̂BC = 2β̂ − β̃S1∪S2 ,

here β̂ is the standard fixed effects estimator while β̃S1∪S2 denotes the fixed effects estimator using the data set S1∪S2 but
treats the states in S1 differently from those in S2 to form the fixed effects estimator; namely, we include approximately
twice more state fixed effects to compute β̃S1∪S2 .

39 We obtain bootstrap standard errors by using multiplier bootstrap
with state-level clustering.

B.4. Details for computing counterfactuals

We compute counterfactuals from the ‘‘total effect’’ version of the model, with behavior concentrated out.

Yi,t+ℓ = a′Pit + b′Iit + δ̃′Wit + ε̄it

We consider a counterfactual change of Pit to P⋆it , while Wit and ε̄it are held constant. In response to the policy change,
Yi,t+ℓ and the part of Iit that contains Yit , change to Y ⋆i,t+ℓ and I⋆it . To be specific, let Cit denote cumulative cases in state i
on day t . Our outcome is:

Yi,t+ℓ ≡ log
(
Ci,t+ℓ − Ci,t+ℓ−7

)
− log

(
Ci,t+ℓ−7 − Ci,t+ℓ−14

)
≡ ∆ log∆Ci,t+ℓ

where ∆ is a 7 day difference operator. Writing the model in terms of ∆ log∆C we have:

∆ log∆Ci,t+ℓ = a′Pit + bD∆ log∆Ci,t + bL log∆Ci,t + δ̃′Wit + ε̄it

To simplify computation, we rewrite this model in terms of log∆C:

log∆Ci,t+ℓ = a′Pit + log∆Ci,t+ℓ−7 + (bD + bL) log∆Ci,t − bD log∆Ci,t−7 + δ̃′Wit + ε̄it

This equation is used to iteratively compute log∆C⋆i,t+ℓ conditional on initial {log∆Ci,s}
0
s=−ℓ−7, and the entire sequence of

{Wi,t , P⋆i,t , ε̄it}
T
t=0.

Weekly cases instead of log weekly cases are given simply by

∆C⋆i,t+ℓ = exp(log∆C⋆i,t+ℓ)

Cumulative cases can be recursively computed as:

Ci,t = Ci,t−7 +∆Ci,t = Ci,t−7 + exp(log∆Ci,t )

given initial {Ci,s}
0
s=−7.

Note that log∆C⋆i,t+ℓ depends linearly on ε̄, so the residuals (and our decision to condition on versus integrate them
out) do not matter when considering linear constants of log∆Cit or ∆ log∆Cit , or when considering relative contrasts of
∆Cit .

39 Alternatively, we may form the cross-over jackknife corrected estimator as β̂CBC = 2β̂ − (̃βS1 + β̃S2 )/2, where β̃Sj denotes the fixed effect
estimator using the subpanel S for j = 1, 2. In our empirical analysis, these two cross-over jackknife bias corrected estimators give similar result.
j
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Inference
Let S(θ, ε) denote some counterfactual quantity or contrast of interest, where θ = (a, b, δ̃) are the parameters, and ε

s the vector of residuals. Examples of S that we compute include:

• Contrasts of growth rates: S(θ, ε) = ∆ log∆C⋆it −∆ log∆Cit

• Relative contrasts of weekly cases: S(θ, ε) = ∆C⋆it/∆Cit

• Relative contrasts of cumulative cases: S(θ, ε) =
C⋆it−Cit

Cit

The first two examples do not actually depend on ε, but the third one does. Inference is by simulation. Let θ̂ denote
ur point estimates and ε̂ the associated residuals. We draw θ̃j from the asymptotic distribution of θ̂ . Let ε̃j denote the
esiduals associated with θ̃j. We then compute s̃j = S(θ̃j, ε̃j) for j = 1, . . . , 200 and plots the mean across j as a point
estimate and quantiles across j for confidence intervals.
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