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Abstract 

Background:  Cancer atlases often provide estimates of cancer incidence, mortality or survival across small areas of 
a region or country. A recent example of a cancer atlas is the Australian cancer atlas (ACA), that provides interactive 
maps to visualise spatially smoothed estimates of cancer incidence and survival for 20 different cancer types over 
2148 small areas across Australia.

Methods:  The present study proposes a multivariate Bayesian meta-analysis model, which can model multiple can-
cers jointly using summary measures without requiring access to the unit record data. This new approach is illustrated 
by modelling the publicly available spatially smoothed standardised incidence ratios for multiple cancers in the ACA 
divided into three groups: common, rare/less common and smoking-related. The multivariate Bayesian meta-analysis 
models are fitted to each group in order to explore any possible association between the cancers in three remote-
ness regions: major cities, regional and remote areas across Australia. The correlation between the pairs of cancers 
included in each multivariate model for a group was examined by computing the posterior correlation matrix for 
each cancer group in each region. The posterior correlation matrices in different remoteness regions were compared 
using Jennrich’s test of equality of correlation matrices (Jennrich in J Am Stat Assoc. 1970;65(330):904–12. https​://doi.
org/10.1080/01621​459.1970.10481​133).

Results:  Substantive correlation was observed among some cancer types. There was evidence that the magnitude of 
this correlation varied according to remoteness of a region. For example, there has been significant negative correla-
tion between prostate and lung cancer in major cities, but zero correlation found in regional and remote areas for 
the same pair of cancer types. High risk areas for specific combinations of cancer types were identified and visualised 
from the proposed model.

Conclusions:  Publicly available spatially smoothed disease estimates can be used to explore additional research 
questions by modelling multiple cancer types jointly. These proposed multivariate meta-analysis models could be 
useful when unit record data are unavailable because of privacy and confidentiality requirements.

Keywords:  Cancer incidence, Cancer atlas, Online estimates

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cancer atlases are the geographical representation of 
cancer incidence, mortality or survival to describe the 
cancer burden scenario across/between areas of a coun-
try, sub-region or group of countries with accompanying 
descriptive and analytical statistics [1, 2]. The atlases are 
useful tools for showing geographic patterns of cancers 
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[3] and have made significant contributions in cancer 
research [4]. A cancer atlas can be one of the methods 
to identify cancer patterns or risk factors [2]. Examples 
of early cancer atlases include, National Atlas of Disease 
Mortality in the United Kingdom [5], the Atlas of cancer 
mortality for U.S. counties, 1950–1969 [6], Atlas of U.S. 
cancer mortality among whites, 1950–1980 [7], U.S. can-
cer mortality rates and trends, 1950–1979 [8], Atlas of 
cancer mortality in the People’s Republic of China [9], 
Atlas of U.S. cancer mortality among non-whites, 1950–
1980 [10] and; Atlas of cancer mortality in the European 
Economic Community [11]. Cancer atlases started to be 
published online in recent times, such as: Atlas of Can-
cer in India [12], NCI Cancer Atlas [13], Cancer Atlas of 
the United Kingdom and Ireland [14], the U.S. Atlas of 
Cancer Mortality [15], Atlas of Cancer in Queensland 
[16] and the Australian Cancer Atlas (ACA) [17]. These 
atlases not only provide important information about 
the geographical variation in cancer burden but can also 
motivate different etiological questions about cancers. 
Most of the available cancer atlases modelled each can-
cer separately (univariate modelling) to obtain age stand-
ardised rates or indirect standardised ratios for incidence 
and hazard ratios or similar for survival for each cancer 
across the small areas.

One recent cancer atlas is the ACA [17]. The ACA pro-
vides point and interval estimates of cancer incidence 
and relative survival for 20 cancers over 2148 small areas 
(Statistical area level 2, SA2 [18]) across Australia along 
with interactive maps to visualise geographic patterns in 
cancer incidence and survival. The estimates used to pro-
duce the maps are based on an underlying Bayesian spa-
tial model of the observed population data aggregated to 
the SA2 level; for details of the underlying methodology, 
please see [19]. All the smoothed estimates of cancer inci-
dence and survival available in the ACA were obtained 
by univariate modelling of each cancer type separately. 
To calculate the summary estimates for 14 cancer types 
(oesophageal, stomach, liver, pancreatic, cervical, uterine, 
ovarian, kidney, brain, thyroid, non-Hodgkin lymphoma, 
leukaemia, myeloma and head and neck), data on a 10-yr 
time period (2005–2014) were used. For the remaining 
six cancer types (bowel, lung, melanoma, breast, pros-
trate, all cancers combined), data on a 5-yr time period 
(2010–2014) were used.

There has been growing interest in joint modelling of 
two or more cancer types in order to explore the shared 
and divergent trends among the cancers in terms of geo-
graphic patterns and risk factors [20]. The most popular 
joint model for identifying the common risk factors of 
multiple disease is the shared component model [21], 
where instead of a multivariate model for jointly model-
ling two diseases, the underlying risk surface is separated 

into a disease specific risk component and a shared com-
ponent. For example, Mahaki et al. [22] applied multivar-
iate disease mapping of seven prevalent cancer types in 
Iran using a shared component model. A joint-analysis of 
the spatio-temporal variation of the six age-gender (three 
ages groups (0–14, 15–64, and 65 and over) and gender 
(male, female)) mortality risks was performed by [23] 
using a shared component spatio-temporal model. Bayes-
ian shared component spatio-temporal models for male 
and female lung cancer was applied to analyse the spatio-
temporal variation of lung cancer diagnosis [24, 25].

Other multivariate approaches for modelling multiple 
cancers are also available. Use of mixture factor models 
in modelling multivariate cancer outcomes was intro-
duced by [26]. Hewson and Bailey [27] also developed 
a latent mixture model for modelling four types of car-
cinoma and explored the spatial correlation structures 
among the cancer types between 300 geographic units in 
England, Scotland and Wales. A spatio-temporal mixture 
model was proposed to analyse the space-time variation 
in respiratory cancers in the state of South Carolina [28]. 
Mezzetti M. [29] proposed a hierarchical Bayesian fac-
tor model for spatially correlated data to explain across 
and within county correlations of cancer incidence rates 
by assuming that all different cancer types (12 for females 
and 10 for males) share one or more spatially correlated 
common factors. The model was to age-standardised 
cancer incidence rates by sex in 56 counties of Scotland. 
Most of these modelling approaches used unit level data 
from population based cancer registries, but this data can 
be difficult to access due to confidentiality and privacy 
requirements of data custodians.

More recent work has proposed ways to use summary 
measures, instead of raw unit record files, when model-
ling, such as by applying an extended Gamma-Poisson 
model [30]. The authors showed an algorithm to extract 
data from several sources and analyse the summary sta-
tistics. However, the algorithm and model is applicable 
for univariate response variable. Additionally, Beranger 
and Sisson [31] proposed new statistical models for anal-
ysis of summary estimates for symbolic data analysis. 
These models considered any symbols, such as random 
lists, histogram or intervals, derived from aggregating 
individual level data and performed statistical inferences 
for the symbols. One of the limitations of the symbolic 
data analysis approach is the problem of evaluating high 
dimensional integral over data space. There is further 
scope for improvement to existing methods and devel-
opment of new methods in order to model the estimated 
summary information without accessing the unit record 
data.

In an earlier study, Bayesian hierarchical meta-analysis 
models for each of the 20 cancers were fitted separately 
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and the pattern of incidence according to remoteness 
categories (major cities, regional and remote areas) was 
explored [32]. The univariate meta-analysis model, if 
extended to accommodate multiple selected cancers in 
the same model, can be employed to identify possible 
association between selected cancers and could also help 
in detecting small areas where multiple cancer types have 
higher incidence rates jointly.

There has been only one study, to the best of our 
knowledge, which has studied the relationship between 
two cancers, namely colorectal and breast cancer, using 
summary measures from a cancer atlas to explore the 
factors responsible for the observed association [33]. This 
was a simplistic graphical comparison of ranked age-
standardised cancer death rates, supplemented with a lit-
erature review to provide some etiologic hypotheses and 
suggest new opportunities of research in order to explore 
the association between the two cancers.

In the present study, instead of considering only two 
specific cancer types, multiple cancers from the ACA 
were chosen and the relationship is evaluated using pos-
terior correlation matrices obtained by fitting a multi-
variate Bayesian hierarchical meta-analysis model. In 
addition to investigating the relationship among multiple 
cancers, the areas with higher risk of multiple cancers 
are also identified. The meta-analysis uses the spatially 
smoothed estimates from ACA, since these are publicly 
available. The proposed multivariate models in this study 
are expected to provide a more comprehensive under-
standing of relationships between the incidence of dif-
ferent cancer types. Using the hierarchical structure, we 
examine differences or similarities in observed relation-
ships among groups of cancers across broad remoteness 
regions in Australia.

Methods
The proposed multivariate Bayesian meta-analysis model 
is described in the context of the ACA. The ACA is a 
freely accessible and interactive online platform, show-
ing the spatial variation in standardised incidence and 
survival for 20 cancer types across Australia (for a com-
plete list, please see Appendix A1). The ACA provides 
the point estimates for the standardised incidence ratios 
(SIRs) and excess hazard ratios and their 95% credible 
intervals for each of the 20 cancer types in each of 2148 
geographical areas (SA2) covering Australia.

Whereas a typical meta-analysis combines outcomes 
from different studies, the proposed method adopts the 
same meta-analysis principles and techniques to com-
bine the estimated summary measures from each of the 
2148 areas. These summary measures, comprising esti-
mated SIRs and corresponding 95% credible intervals, are 
results of Bayesian spatial models using observed cancer 

incidence data in each area. Hence, instead of modelling 
outputs from multiple studies, we are modelling outputs 
from multiple small areas.

Model formulation
Let yijk and s2ijk denote the estimated mean and variance 
of the log(SIR) respectively for the ith cancer, jth small 
area and kth category, where i = 1, 2, 3, ..., n and n is the 
number of cancers included in the multivariate model, 
j = 1, 2, 3, ..., J  , J is the total number of areas and 
k = 1, 2, ...,K  and K is the number of categories of inter-
est. In our analysis of the ACA, J = 2148 and K = 3 (the 
number of remoteness categories), where k = 1 if the jth 
SA2 is a major city, k = 2 if the jth SA2 is a regional area 
and k = 3 if the jth SA2 is a remote area, and n takes on 
different values according to the analysis; see below.

The remoteness information is obtained from the 
remoteness structure provided by Australian Bureau 
of Statistics in each Statistical Area level 1 (SA1, which 
aggregate to form SA2s) as a five-category index (major 
cities, inner regional, outer regional, remote and very 
remote) [34]. We assigned one remoteness area to each 
SA2 based on SA1 population sizes before combining 
the inner and outer regional areas, as well as remote and 
very remote areas, into regional and remote, respectively. 
Among the 2148 SA2s considered in the ACA, 1242 are 
major cities, 810 are regional and 96 are classified as 
remote areas.

In the ACA, the values of yijk and s2ijk are the outputs of 
a Bayesian spatial model. Hence, we model yijk as follows:

where, µijk is the true value of the log(SIR) for the ith can-
cer, jth SA2 and kth region with associated variance σ 2

ijk . 
Here we are not modelling the raw data but the estimated 
statistics for each small area which are provided by the 
ACA.

Now, µijk can be further modelled as a multivariate 
normal distribution:

where, µi(k) is the region-specific means for kth region 
and ith cancer and �(k) denotes the covariance matrix 
accounting for the covariance among the means in the 
same region and different cancers. This hierarchy is 
added in the model to address the research question 
involving identifying patterns of cancer incidence in dif-
ferent regions.

The region-specific means for the ith cancer, µi(k) can 
be further modelled hierarchically (see Appendix A2), 
but for the sake of this study, we will consider modelling 
up to this level and will focus on the posterior means and 

(1)yijk ∼ N (µijk , σ
2
ijk)

(2)µij(k) ∼ MVN (µi(k),�(k))
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the posterior covariance matrices associated with differ-
ent cancers in each region. The aim is to explain how the 
relationship between the cancers varies with respect to 
major cities, regional and rural/remote areas.

The priors for the model parameters can be specified as 
follows:
σ 2
ijk can take a prior that utilises the uncertainty infor-

mation from the estimates available in the atlas as,

where χ2
(ν) denotes the χ2 distribution with ν degrees of 

freedom. The degrees of freedom, ν , of the χ2 distribution 
are chosen to reflect the prior degree of certainty in these 
estimates [35]. Following the rationale of [35], a common 
choice of ν is 2, which will be used in this study.

The prior for the variance covariance matrix �k is 
described by an inverse Wishart distribution as

where V is a (fixed) symmetric positive definite matrix of 
size n× n . The equation (4) can be written equivalently 
as:

where τ(k) = �−1

k  , is the precision matrix for kth region, 
which is a Wishart prior with degrees of freedom n set 
equal to the number of cancers considered in the model 
and the scale matrix Ŵ is specified as an identity matrix so 
that the priors are minimally informative [36].

Selection of cancer types for multivariate model
The proposed multivariate models are fitted for each of 
the groups mentioned below. The groups suggested here 
are suggestive and there could be other possible group-
ings. In this study, the first two groups are made from 
generic point of view, grouping the most common can-
cers and less common and rare cancers in two groups. 
The third group is chosen from epidemiological context, 
according to a common risk factor, namely smoking. We 
acknowledge that cancers can be grouped according to 
many attributable factors such as: alcohol consumption, 
UV radiation, insufficient physical activities, hormone 
etc. [37]. We have included results of the multivariate 
models fitted to two more potential groups of cancers 
(hormone related cancers, overweight and obesity related 
cancers) in Additional file 1.

Group 1: Most common cancer types
Among the cancer types reported in ACA, the most com-
mon are, prostate, breast, colorectal (bowel), melanoma 

(3)σ 2
ijk ∼

νs2ijk

χ2
(ν)

(4)�(k) ∼ IW (V , n)

(5)τ(k) ∼ W (Ŵ, n)

and lung cancer. These five cancer types account for 
around 60% of all cancers diagnosed in Australia [38]. To 
fit the proposed multivariate model, we grouped these 
common cancer types into subgroups as follows:

•	 Model 1: Lung, melanoma and bowel cancers : 1(a): 
for males, 1(b): for females and 1(c): for all persons

•	 Model 2: Lung, melanoma, bowel and prostate can-
cers for males

•	 Model 3: Lung, melanoma, bowel and breast cancers 
for females

Group 2: Less common and rare cancers
According to Cancer Australia, most cancer types, 
except breast, prostate, bowel, lung and melanoma, can 
be classified as rare or less common [39]. A rare cancer 
is defined as a type of cancer that has less than 6 cases 
per year per 100,000 population, whereas a less common 
cancer is defined as one that has between 6 and 12 cases 
per year per 100,000 population [39].

According to the age standardised incidence rates per 
100,000 population for Australia for the year 2016, the 
rare cancer types, among the selected cancer types in 
ACA, include liver cancer for females (4.7) and oesopha-
geal cancer for females (3.6). The less common cancers 
include brain cancer (males: 9.1, females: 6.0 and all 
persons: 7.5), cervical cancer for females (7.1), head and 
neck cancer for females (8.6), kidney cancer for females 
(9.4), liver cancer for all persons (8.7), oesophageal can-
cer for males (8.7) and all persons (6.2), stomach cancer 
for females (6.4) and all persons (9.3) and thyroid cancer 
for males (6.5). We created the following subgroups for 
the less common/rare cancers to fit the proposed model 
to each group:

•	 Model 4: Liver and oesophageal cancer for females
•	 Model 5: Brain, oesophageal and thyroid cancers for 

males
•	 Model 6: Brain, Cervical, head and neck, kidney and 

stomach cancers for females
•	 Model 7: Brain, liver, oesophageal and stomach can-

cer for all persons

Group 3: Cancers associated with smoking
One of the most studied cancer risk factors is smoking, 
which has been shown to cause several types of cancer. 
The following cancers are found to be related to smok-
ing [40–45], which form the last group for fitting the pro-
posed model:
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•	 Model 8: Lung, liver, pancreatic, stomach, kidney, 
oesophageal and head and neck cancers : 8(a): for 
males, 8(b): for females and 8(c): for all persons

Model implementation
A total of 12 multivariate Bayesian meta-analysis models 
were run for the different combinations of cancer types 
in  R version 3.6.0 [46] using the package R2jags 
version 0.5-7 [47]. The Markov Chain Monte Carlo 
(MCMC) model output was summarised in R using the 
coda package [48]. The JAGS code for the model is given 
in Appendix A3.

Three parallel MCMC chains, each with 100,000 itera-
tions with a burn in period of 10,000 iterations were run 
to fit the proposed models. Convergence was examined 
using visual diagnostics for the parameters of interest 
µij(k),µi(k) and �k.

Model inferences
From the posterior distributions of the parameters of 
interest from each of the fitted Bayesian meta-analysis 
models, the following inferences were drawn in this 
study.

Comparing the posterior mean log(SIR) ( µij(k) ) for the 
group of cancers for each SA2, we identified those SA2s 
for which all cancers in a group had higher incidence 
compared to the Australian average.

From the matrix of posterior means, we were able to 
evaluate the behaviour of a group of cancers in different 
regions. The posterior covariance matrix for each of the 
regions was used to obtain the correlation between all 
possible pairs of cancers in a group within and across dif-
ferent regions (major cities, regional and remote areas). 
An asymptotic χ2 test was used to test the equality of 
multiple correlation matrices [1].

where, tr(.) denotes the trace of a matrix, 
Zi =

√
niR̄

−1(Ri − R̄) , R̄ = (n1Ra + ...+ nkRk)/n = r̄ij , 
S = (δij + r̄ij r̄

ij) , r̄ij = r̄−1
ij  , R1,R2, ...,Rk are sample corre-

lation matrices based on k independent samples of sizes 
n1, n2, ..., nk from p−variate normal populations, δij is 
the Kronecker delta and dg(Zi) denotes the diagonal of a 
square matrix Zi of correlation coefficients.

Using Jennrich’s test, we identified which cancers had 
substantially different correlation matrices in urban, 
regional and remote Australia.

Using the model inferences, high risk areas for each 
cancer and the groups of cancer types are identified. High 
risk areas are defined as the SA2s having an SIR likely to 

(6)

C2 =
k

∑

i=1

(

1

2
tr(Z2

i )− dg
′
(Zi)S

−1dg(Zi)

)

∼ χ2
(k−1)p(p−1)/2

be greater than one, which means the incidence rate for 
that area is higher than among the reference population 
(the Australian national average). Several options are 
possible to identify the areas, but here posterior prob-
abilities (PPs) are used. The PP that an estimated SIR of 
a particular cancer is greater than the national average 
can be calculated for each SA2. It is defined as the ratio 
of the number of MCMC iterations in which the mod-
elled SIR is above 1, divided by the the total number of 
iterations [19]. SA2s with PP ≥ 0.80 can be considered as 
a high risk area for a cancer [49]. An area with high risk 
for more than one cancer (high PP for SIR greater than 1) 
was defined as high risk for multiple cancers. In contrast, 
the low risk areas for a group of cancer types are defined 
as the SA2s where none of the cancer types in the group 
is defined as being high risk.

Results
The posterior means with 95% credible interval for µi(k) 
of each group of cancer types in each of the 3 remote-
ness categories (namely major cities, regional and remote 
areas) under each of the 12 models are shown in Figs. 1, 2 
and 3 (for the actual values of posterior means, see Addi-
tional file 1).

Figures  1, 2 and 3 demonstrate how different cancers 
have different incidence patterns over different regions of 
Australia. For example, Fig. 1, the highest melanoma inci-
dence has occured in regional areas, whereas lung cancer 
has higher incidence in remote areas (for males, females 
and all persons). Figure 2 (Model 6), remote areas had the 
highest incidence of cervical and head and neck cancers 
among all persons on average.

The mean posterior correlation matrices for each 
model in the three different regions are shown in Figs. 4, 
5 and 6. When two cancers have positive correlation, it 
means that incidence patterns for both cancer types 
are similar in that particular region. If the 95% cred-
ible interval of the correlation coefficient includes zero, 
it is assumed that no substantive correlation is present 
between the incidence patterns of the pair of cancer 
types under consideration.

The posterior correlation matrices for most common 
cancer types (Models 1a, 1b, 1c, 2 & 3) are presented in 
Fig.  4. In Fig.  4, we can see that the correlation coeffi-
cients of melanoma and lung cancer are negative in major 
cities (for males: model 1(a) and all persons: model 1(c)) 
and these are not substantially correlated in regional and 
remote areas. Some more examples of correlation in dif-
ferent regions: negative correlation between prostate 
and lung cancers in cities and no correlation in regional 
and remote areas (Fig. 4: Model 2) and significant posi-
tive correlation between breast cancer and melanoma 
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in cities and no substantive correlation in regional and 
remote areas (Fig. 4: Model 3).

In Fig. 5, the posterior correlation matrices for rare and 
less common cancers are reported. We can observe no 
substantive correlation between liver and oesophageal 
cancer for females in all three regions (Model 4). Thyroid 
and brain cancer have negative correlation in major cities 
but no correlation in regional and remote areas (Model 
5). Head and neck cancer and cervical cancer have a sig-
nificant positive correlation in major cities and regional 
areas but none in remote areas (Model 6).

Figure  6 shows the 7× 7 correlation matrices for 
smoking related cancers for males, females and all 
persons (Model 8a, 8b and 8c). As can be seen, corre-
lation can substantially differ between the same pairs 
of cancers across major cities, regional and remote 

areas. For example, stomach and lung cancers have sig-
nificant positive correlations for males and all persons 
(model 8a and 8c) in major cities but there is no sub-
stantive correlation between these cancers in regional 
and remote areas. Similarly, lung and kidney cancers 
for males, females and all persons (Model 8a, 8b and 
8c) have significant positive correlation in major cit-
ies and weak or no correlation in regional and remote 
areas. There are also similar correlations across dif-
ferent regions among pairs of cancers. For instance, 
lung, head and neck cancers are positively correlated in 
major cities, regional and remote areas for all persons 
(Model 8c).

Clearly, different models have some similarities and dis-
similarities according to pairwise correlation. From Jen-
nrich’s test (Table  1), substantive differences among the 

Fig. 1  Posterior means with 95% credible intervals of SIR for the most common cancers (Group 1) over remoteness regions, Australia
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correlation matrices were found for the majority of mod-
els including most common cancers (Models 1a, 1b, 1c, 2 
& 3), rare and less common cancers (Models 6 & 7) and 
smoking related cancers (Models 8a, 8b & 8c) (Table 1). 
For the other less common/rare cancers (Models 4 and 5) 
care should be taken due to small sample sizes.

Using the model inferences, we have identified small 
areas (SA2s) with higher incidence of a cancer or a 
group of cancer types; namely high risk areas. Figs.  7, 
8, 9 and 10 show some examples of high-risk areas for 
each group of cancer types around Australia. For most 
common cancers (group 1, model 1), the spatial map in 
Fig.  7 shows high risk areas for each cancer type of the 
group individually as well as jointly, (lung, melanoma 
and bowel individually; lung and melanoma; lung and 
bowel; lung, melanoma and bowel jointly, for all persons, 
Model 1c). While identifying an area with high risk for 

multiple cancers in a group, for example, an area was 
identified as high risk areas for both lung and melanoma 
are those areas which were identified as high risk areas 
(have higher PP for estimated SIR to be greater than 1) 
for both lung and melanoma cancer types. The cluster of 
areas having high risk for group of cancers are also iden-
tified similarly under each model (see Figs. 7, 8, 9 and 10 
and Tables 2 and 3). To enable a clearer view, four insets 
of the full map are shown alongside. A map of Australia 
with locations of states and capitals of each state in Aus-
tralia is shown in Additional file 1: Figure S16). This map 
is intended to help the readers interpreting the spatial 
maps visualising high and low risk areas for groups of 
cancers.

From Table 2, we can see 76 SA2s out of 2148 are iden-
tified as high risk areas for all three cancers considered 
in Model 1 (for all persons). There are 22 SA2s around 

Fig. 2  Posterior means and 95% credible intervals of SIR for the less common cancers/rare cancers (Group 2) over remoteness regions, Australia
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Australia which have higher incidence for lung and mela-
noma, 123 SA2s for lung and bowel, 116 SA2s for mela-
noma and bowel jointly. For more information on the 
number of SA2s having substantially higher SIRs for indi-
vidual and joint cancers under selected models, refer to 
Tables  2 and 3. Only four models out of the twelve are 
illustrated to show the high risk areas in maps in this 
section. In Fig. 9, only groups of cancer types with 20 or 
more SA2s are showed in the map. The groups of cancers 
with less than 20 areas in each group are combined as 
other clusters. For more details of the groups included in 
other clusters, please see Table 3.

Discussion
A multivariate Bayesian meta-analysis model was pro-
posed in the present study to model multiple cancers 
jointly to identify any existent relationships among 
the cancers. The advantages of this model include that 
it incorporates the uncertainty of the modelled sum-
mary estimates, it allows for easy identification and 

visualisation of areas with high risk for different combi-
nations of cancer types, and it is readily extendable.

The proposed model was illustrated by joint model-
ling of multiple cancers in different groups formed from 
the 20 cancers included in the ACA. The most common 
cancers (Models 1,2,3) and the smoking related cancers 
(Model 8) were found to have significantly different cor-
relation matrices across major cities, regional and remote 
areas. These findings imply that additional factors influ-
encing cancer incidence in the three different regions 
may be present. Some of the cancers could be associ-
ated with other environmental and socio-economic fac-
tors which could be different in different regions. Among 
the less common and rare cancers group, models 6 and 
7 have a significantly different correlation matrix in each 
of the three regions. The correlation coefficients in each 
of the correlation matrices represent the correlation 
between incidences of pairs of cancer types within each 
cancer group and region.

Mostly in the published literature, multivariate 
meta-analyses of cancer have focused on exploring the 

Fig. 3  Posterior means and 95% credible intervals of SIR for the smoking related cancers (Group 3) over remoteness regions, Australia
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Fig. 4  Posterior Correlation matrices with 95% credible intervals for most common cancers (Model 1(a,b,c),2 & 3) by region
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Fig. 5  Posterior Correlation matrices with 95% credible intervals for smoking related cancers (Model 4,5,6,& 7) by region
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relationship between risk factors/prognostic factors and 
specific cancers [42, 50–54]. The present study is the first 
of its kind identifying correlation between the incidence 
of pairs of cancer types in selected groups. While some 

of the obtained results support the already known facts, 
some of the results are new and could create opportu-
nities for further investigation into the reasons for the 
observed patterns. For instance, the smoking related 
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Fig. 6  Posterior Correlation matrices with 95% credible intervals for smoking related cancers (Model 8) by region
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cancers are modelled jointly (Model 8) for males, females 
and all persons. These cancers are expected to have posi-
tive correlation, yet significant negative correlation was 
observed between oesophageal and liver cancer inci-
dence (for males & all persons in major cities) as well as 
kidney, head and neck cancers (for all persons in remote 
areas). It may be that these cancers are predominantly 
driven by risk factors that could not be included in our 
analysis, such as obesity (for oesophageal cancer) or 
chronic hepatitis viral infection (for liver cancer). These 
models can be used to identify unexpected negative cor-
relations for further investigation.

The proposed multivariate Bayesian hierarchical meta-
analysis model is applied to model the publicly available 
smoothed estimates of multiple cancers jointly. Such an 
approach is useful when the raw data are unavailable 
and can be used to answer additional research questions 
of interest. In the present scenario, we do not consider 

Table 1  Results of  Jennrich’s Test of  differences 
in  Correlation matrices applied to  each group of  cancers 
in different remoteness regions

a Null Hypothesis: Equality of correlation matrices in major cities, regional and 
remote areas for each group of cancers are tested

Group Model Test Statistic a P value

Most common cancers 1(a) 114.74 < 0.0001

1(b) 155.91 < 0.0001

1(c) 111.42 < 0.0001

2 282.87 < 0.0001

3 250.55 < 0.0001

Less common and rare cancers 4 0.65 0.7225

5 2.68 0.8481

6 44.31 < 0.0001

7 384.79 < 0.0001

Smoking related cancers 8(a) 767.74 < 0.0001

8(b) 226.35 < 0.0001

8(c) 1005.75 < 0.0001

Fig. 7  High and low risk areas for individuals and multiple cancers (most common cancers for all persons: Model 1(c))
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multiple testing as a limitation of this study since the 
various inferences were derived from the full joint pos-
terior distributions as is appropriate under the Bayesian 
paradigm. In terms of the tests for equality of correla-
tion matrices, only one hypothesis test was undertaken 
for each multivariate model and each model had differ-
ent groups of cancers, hence a different dataset. How-
ever, when applying these models to groups of cancers, 
one consideration is that the choice of cancers can have 
a noticeable impact on estimates obtained (see   Addi-
tional File 1). For instance, in Fig.  1, Melanoma for 
females has slightly different estimates in model 1(b) 

and model 3. This results from the multivariate nature of 
the proposed model and the covariance structure within 
the group. Since correlation is a standardised form of 
covariance, the precision of estimates and the correlation 
between cancers are related. Since the choice of cancer 
types included may influence the results, we recommend 
comparing the multivariate results with the univariate 
results (using an approach such as [32]). Also, because 
this model was developed for summarised modelled 
estimates the proposed model cannot be applied to raw 
incidence rates without modifying, such as introducing 

Fig. 8  High and low risk areas for individuals and multiple cancers (less common/rare cancers for females: Model 6)
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some form of spatial smoothing and changing the distri-
butional assumptions at different levels.

The hierarchy introduced in the model using the 
remoteness structure of each of the small areas could also 
be replaced by any other factor of interest. For example, 
in the present model, if we wanted to check how the cor-
relation among the multiple cancers differs in different 
states across Australia, we could use states as the hierar-
chy instead of the remoteness regions. The hierarchical 
stage could also be extended in a straightforward manner 
to include more than one factor. For example, we could 
use both states and regions in the model by including 

one more hierarchy in the existing model. We could also 
extend the model by using socio-economic status of each 
area as another factor of interest.

Although the proposed model is illustrated for explor-
ing the relationship of multiple cancers in different 
remoteness regions in Australia, this approach can be 
used in a straightforward manner for any other cancer 
atlases from any country or region. The approach pro-
vides a multivariate Bayesian meta-analysis model frame-
work that can combine multiple outcomes from any 
available online sources where summary measures are 
available. For instance, the Atlas of Cancer Mortality in 

Fig. 9  High and low risk areas for individuals and multiple cancers (smoking related cancers for males: Model 8(a))
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the European Union and the European Economic Area, 
1993-1997 [55], provides estimates of age standardised 
mortality rates of 30 different cancer types in 1278 small 
areas in 28 different member countries of EU. A similar 
approach can be taken to model the multiple cancers 
jointly and a possible hierarchy could be the different 
countries (members of EU) to identify any patterns.

Conclusions
This study presents a novel use of Bayesian meta-
analysis for multivariate modelling of reported can-
cer incidence estimates. The modelling technique can 
be generalised for other disease maps or atlases. The 
proposed modelling approach is flexible for joint mod-
elling of multiple estimated disease outcomes with dif-
ferent research questions of interest. The scope for this 
model is vast, and we anticipate it being a useful addi-
tion for analysing summary estimates in more detail.

Fig. 10  High and low risk areas for multiple cancers (smoking related cancers for females: Model 8(b))

Table 2  Number of SA2s with higher incidence for groups 
of cancers jointly and individually, models 19(c) and 6

Group Cancer No. of SA2s

Most Common Cancers 
(for all persons): 
Model 1(c)

Lung only 143

Melanoma only 442

Lung & melanoma 22

Bowel only 238

Lung & bowel 123

Melanoma & bowel 116

Lung, melanoma & bowel 76

Less Common/ Rare 
Cancers (for females): 
Model 6

Head & neck only 378

Cervical & Head and neck 79

Stomach only 13
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Table 3  Number of SA2s with higher incidence of Smoking related cancers (for males), Model 8(a) jointly and individually

Group Cancer No. of SA2s

Model 8(a): for males Low risk areas 990

Lung 21

Liver 24

Lung & Liver 1

Stomach 20

Lung & Stomach 11

Liver and Stomach 113

Lung, Liver & Stomach 51

Kidney 26

Lung & Kidney 17

Kidney & Stomach 2

Lung, Kidney & Stomach 5

Lung, Liver, Stomach & Kidney 10

Oesophageal 200

Lung and Oesophageal 1

Head & Neck 36

Lung & Head and Neck 7

Lung, Liver, Stomach & Head and Neck 1

Lung, Kidney & Head and Neck 13

Lung, Stomach, Kidney & Head and Neck 2

Lung, Liver, Stomach, Kidney & Head and Neck 1

Oesophageal & Head and Neck 294

Lung,Oesophageal & Head and Neck 284

Lung, Liver, Oesophageal & Head and Neck 18

Model 8(b): for females Stomach only 98

Liver & Stomach 71

Head and Neck only 434

Lung & Head and Neck 14

Liver& Head and Neck 5

Lung, Liver & Head and Neck 5
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Appendices
A1. Cancers included in ACA by sex

Cancer International 
Classification 
of Diseases 
(ICD)-10 codes

Description Sex

All C00–C97, D45, 
D46, D47.1, 
D47.3–D47.5

All malignant 
cancers com-
bined

Males, Females, 
all persons

Bowel C18-–C20 Inner lining 
of the large 
bowel (colon) 
or rectum.

Males, Females, 
all persons

Brain C71 Brain. Excluding 
cranial nerves 
and retrobul-
bar tissue

Males, Females, 
all persons

Breast C50 Breast (exclud-
ing skin)

Females

Cervical C53 Lining of the 
cervix

Females

Head and Neck C00–C14, C30–
C32

Tissue or lymph 
nodes in the 
head and 
neck area

Males, Females, 
all persons

Kidney C64 Kidney. Except 
renal pelvis

Males, Females, 
all persons

Leukaemia C91-C95 White blood 
cells of the 
bone marrow

Males, Females, 
all persons

Liver C22 Liver and intra-
hepatic bile 
ducts

Males, Females, 
all persons

Lung C33-C34 Lung, trachea, 
bronchus

Males, Females, 
all persons

Melanoma C43 Melanocytes 
(pigmented 
cells) of the 
skin

Males, Females, 
all persons

Myeloma C90 Plasma cells 
of the bone 
marrow

Males, Females, 
all persons

Non-Hodgkin 
Lymphoma

C82-C86 Lymphatic 
system

Males, Females, 
all persons

Oesophageal C15 Oesophagus Males, Females, 
all persons

Ovarian C56 Ovaries Females

Pancreatic C25 Pancreas Males, Females, 
all persons

Prostate C61 Prostate gland Males

Stomach C16 Lining of the 
upper part of 
the stomach

Males, Females, 
all persons

Thyroid C73 Thyroid gland Males, Females, 
all persons

Uterine C54-C55 Lining of the 
uterus, the 
muscle or the 
connective 
tissue

Females

A2. More hierarchy in the multivariate meta‑analysis model

The possible hierarchical modelling after equation (2) is 
shown below using the usual Bayesian hierarchical frame-
work below. Although the parameters therein are not of 
interest for this particular case study, it can be appropriate 
for other types of data and/or research questions.

where µi is the overall mean of ith cancer and ωi be 
the variance covariance term accounting for variation 
between the means of different regions and same cancers. 
We are not interested in these parameters as we already 
performed univariate analysis to see the means and vari-
ation due to remoteness for each cancer separately [32].

The overall mean of ith cancer, µi can then be modelled 
as:

where, µ0 is the overall mean of all cancers in Australia, 
and σ 2

0
 is the variance among the means of different 

cancers.
We can choose to expand the model differently as well. 

Instead of modelling each cancer separately, we can choose 
to model mean of cancer incidence in each region sepa-
rately as:

where µk is the overall mean of the kth region and ωk is 
the variance covariance term accounting for variation 
between the means of different cancers and same regions. 
The above equation could be used instead of equation 
(7) and the equation (8) could be updated accordingly. 
The choice of model representation depends on which 
parameters we are of interest and the desired inferences.

A3. Model code in R

A.3 Model code in R
library(R2jags)
model<-"model{
for(n in 1: Nobs){
for(j in 1:Ncancer){
d[n,j]~dnorm(mu[n,j],tau.d[n,j])
tau.d[n,j]<- 1/sigma.d[n,j]
sigma.d[n,j]<-(2*se[n,j]^2)/a[n,j]
a[n,j] ~ dchisqr(2)}
mu[n,1:Ncancer]~dmnorm(theta.i[region[n],],tau.i[region[n],,])}
for(i in 1:Nregion){
theta.i[i,1:Ncancer]~dmnorm(mu.0[],tau.0[,])
tau.i[i,1:Ncancer,1:Ncancer] ~ dwish(Gamma.i[,],Ncancer)
}
}"

(7)µi(k) ∼ MVN (µi,ωi)

(8)µi ∼ N (µ0, σ
2
0 )

(9)µi(k) ∼ MVN (µk ,ωk)
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Additional file  1. Additional material of Multivariate Bayesian meta-
analysis: joint modelling of multiple cancers using summary measures. 
More results from the proposed model in form of tables and figures are 
provided in this additional file.
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