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a b s t r a c t 

Various AI functionalities such as pattern recognition and prediction can effectively be used to diagnose 

(recognize) and predict coronavirus disease 2019 (COVID-19) infections and propose timely response (re- 

medial action) to minimize the spread and impact of the virus. Motivated by this, an AI system based 

on deep meta learning has been proposed in this research to accelerate analysis of chest X-ray (CXR) im- 

ages in automatic detection of COVID-19 cases. We present a synergistic approach to integrate contrastive 

learning with a fine-tuned pre-trained ConvNet encoder to capture unbiased feature representations and 

leverage a Siamese network for final classification of COVID-19 cases. We validate the effectiveness of 

our proposed model using two publicly available datasets comprising images from normal, COVID-19 and 

other pneumonia infected categories. Our model achieves 95.6% accuracy and AUC of 0.97 in diagnosing 

COVID-19 from CXR images even with a limited number of training samples. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coronavirus disease 2019 (COVID-19) initially identified in 

ecember 2019 in the city of Wuhan in China has rapidly spread 

hroughout the world within a very short period of time resulting 

n an ongoing pandemic. Since the outbreak it has affected over 

wo hundred countries and territories across the globe with more 

han 14.5 million cases reported. Fig. 1 depicts the global trend of 

OVID-19 as of July 20, 2020 including total number of confirmed, 

ctive, death, and recovered cases [1] . The outbreak was declared 

s Public Health Emergency of International Concern (PHEIC) by 

he World Health Organization (WHO) [2] on January 30, 2020. The 

irus is extremely contagious and is mostly transmitted between 

ndividuals through close contact. To stop its rapid transmission, it 

s crucial to gain a good understanding of the genetic characteris- 

ics of the virus. The genome size of the virus varies from approx- 

mately 26 to 32 kgbases being one of the largest among single 

tranded RNA (ribonucleic acid) viruses. The average diameter of 

he particle of the virus is around 120 nm [3] . Various common 

ymptoms are found in the infected patients such as cough, fever, 
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hortness of breath, fatigue, loss of smell, and pneumonia. Health 

omplications include pneumonia, acute respiratory distress syn- 

rome, and other infections. Precise and on time diagnosis are be- 

ng hampered due to undiscovered treatment, scarcity of resources, 

nd harsh conditions of laboratory environment. This has height- 

ned the challenges to reduce the spread of the virus. Accurate 

nd speedy identification of suspected patients at the early phase 

ay possibly play a critical role in timely quarantine and progres- 

ive cure. Thus, swift identification of potential infection by coron- 

virus is incredibly crucial for timely control of epidemic and pub- 

ic health welfare. 

Identification of coronavirus infection is primarily done by nu- 

leic acid test also called a PCR (polymerase chain reaction) test 

hich examines for the existence of antibodies for an infec- 

ion. However, results from recent studies show that this type of 

athogenic laboratory testing though being a diagnostic gold stan- 

ard suffers from limitations since it is time-consuming and pro- 

uces high false negative cases [5] . Furthermore, deploying COVID- 

9 tests at a large scale is very expensive and is not affordable 

y many developing and underdeveloped countries. Hence, devel- 

pment of Artificial Intelligence (AI) based diagnosis and testing 

ethods will be very beneficial. Variety of such AI based med- 

cal applications include cancer detection [15] , Epilepsy Seizure 

etection [16] , pathology detection [26] multi-modal skin lesion 

https://doi.org/10.1016/j.patcog.2020.107700
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107700&domain=pdf
mailto:m.shorf@tu.edu.sa
mailto:mshossain@ksu.edu.sa
https://doi.org/10.1016/j.patcog.2020.107700


M. Shorfuzzaman and M.S. Hossain Pattern Recognition 113 (2021) 107700 

Fig. 1. COVID-19 trend in global scale. Graph shows total number of confirmed, active, death, and recovered cases. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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lassification [17] , polyp detection [23] and so on. In favor of this, 

esearchers are taking global initiatives to use AI as a potentially 

owerful tool to come up with cost-effective and fast diagnostic 

rocedures to control the ongoing epidemic [32] . The key research 

oals include COVID-19 transmission, its early diagnosis, develop- 

ent of effective treatment, and understanding its socio-economic 

mpact [4] . 

Computer aided diagnosis (CAD) systems capable of processing 

hest X-ray (CXR) images and computed tomography (CT) scans 

long with state-of-the-art deep learning techniques could be very 

eneficial for the health professionals in diagnosing COVID-19 

ases. Some studies in the literature have already demonstrated 

he effectiveness of using various deep learning techniques [27] to 

dentify positive COVID-19 cases from chest X-ray (CXR) images 

nd computed tomography (CT) scans [24] and to monitor the dis- 

ase progress over time. Since deep learning algorithms generally 

equire huge amount of training data to produce effective predic- 

ion results, the existing methods trained on limited training sam- 

les (due to the lack of large COVID-19 public dataset availability) 

re likely to suffer from model generalizability to new data. To al- 

eviate this problem of data scarcity, researchers adopted various 

echniques such as data augmentation and generative adversarial 

etwork (GAN) [6,7] . Nevertheless, these techniques are highly de- 

endent on the appropriate selection of parameters. Various hand- 

uned data augmentation technique suffers from over-fitting prob- 

em [6] whereas techniques related to generating images through 

AN face challenges in emulating real patient data which leads 

o unanticipated bias during model testing [7] . Furthermore, some 

tudies have adopted transfer learning technique by using various 

re-trained CNN models. Since these CNN models are pre-trained 

n a large non-medical dataset (i.e., ImageNet), substantial amount 

f fine-tuning which generally requires longer training period is 

ecessary to produce promising diagnostic results. 

Lately, n -shot (specially, one-shot and few-shot) learning has 

ained immense popularity in research community for analyzing 

edical images with a limited sample size. In general terms, for 

xample, one-shot learning refers to the task of classifying an im- 

ge to a particular class given a single (or few) training samples 

f each class. Specifically, one or more samples from each im- 

ge class are used to prepare (train) the model which in turn can 

lassify unseen images in future. One of the meta learning mod- 

ls that recently gained success in implementing few-shot learn- 

ng (especially one-shot) in various domains is Siamese network. 

n a Siamese network architecture, identical deep convolutional 

eural networks (CNNs) are trained to extract feature vectors dis- 

riminating between samples of each image class which are then 

ontrasted to verify the similarity of the input images. This paper 
2 
resents a trainable n- shot deep meta learning framework to clas- 

ify COVID-19 cases with limited training CXR images. We use a 

ne-tuned CNN model called VGG16 [8] as backbone encoder net- 

ork to generate feature embeddings from the input images and 

everage pairwise contrastive loss function to adjust the network 

eights. More specifically, we have used CXR images from two 

ublic datasets to pre-train the embedding CNN network to gener- 

te feature representations that are used by the Siamese network 

hich learns a metric space for n- shot classification of unseen im- 

ges without any retraining. In summary, following are the contri- 

utions of our work: (a) A meta learning framework called Meta- 

OVID based on Siamese neural network is presented for diagnosis 

f COVID-19 patients from chest X-ray images, (b) The proposed 

ork focuses on the benefit of using contrastive loss and n- shot 

earning in framework design, (c) A fine-tuned pre-trained VGG 

ncoder is used to capture unbiased feature representations to im- 

rove feature embeddings from the input images, (d) The COVID- 

9 diagnosis problem is formulated as a k- way, n -shot classification 

roblem where k and n represent the number of class labels and 

ata samples used for model training, (e) Performance evaluation 

s presented to demonstrate the efficacy of the proposed frame- 

ork with a limited dataset. 

The remainder of the paper is organized as follows. Re- 

ated work is presented in Section 2 . Section 3 and 4 present 

ethod, dataset, and experiments with performance results. Lastly, 

ection 5 concludes the paper with future work. 

. Related work 

Relevant to the proposed research, our literature study will 

argely contain existing research effort in the area of COVID-19 di- 

gnosis using AI techniques. Deep learning which is a specialized 

orm of machine learning in the domain of AI has shown great po- 

ential in medical image analysis during the last decade [9] . Sub- 

tantial research has been conducted using deep learning in var- 

ous medical fields such as disease prediction, diagnosis of pul- 

onary nodules, and classification of benign and malignant tumors 

nd so on. According a recent study from the researchers at UN 

lobal Pulse [10] , it is shown that AI applications can be as accu- 

ate as humans in detecting COVID-19 and offer faster and cheaper 

olutions in diagnosing the virus than standard test kits thus sav- 

ng radiologists’ valuable time. As part of this, researchers are pri- 

arily concentrating on techniques based on statistical learning for 

he detection of potential coronavirus infection from CXR images 

nd computed tomography (CT scans). Some research initiatives in 

rogress are provided below. 
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A relatively earlier (in the beginning of the outbreak) effort 

one by a group of researchers in Renmin University of Wuhan, 

hina [11] proposed an AI model for the diagnosis of COVID-19 

ases using CT scans. The model uses UNet ++ [12] architecture 

or coronavirus detection using CT scan features and makes use 

f more than 40,0 0 0 images from 106 patients for model training. 

xperimental results demonstrate that the radiologists’ efforts in 

erms of time can substantially be decreased by using this model. 

Xu et al. [13] presented a deep learning model to screen coro- 

avirus disease from viral pneumonia (of type Influenza-A) and 

ormal cases with pulmonary CT scans. They have first identi- 

ed candidate infection regions using segmentation and the sepa- 

ated images are then classified using a classification model based 

n location attention. The model was trained and evaluated us- 

ng 618 CT samples consisting of 219 COVID-19, 224 Influenza-A, 

nd 175 healthy cases. The samples were collected from three hos- 

itals in China that are designated for COVID-19 treatment. The 

odel showed only a moderate level (86.7%) of accuracy score us- 

ng the curated dataset. In a subsequent effort, Wang et al. [5] pro- 

osed a robust diagnostic model based on deep neural network 

hich works based on graphical features generated from CT scans 

nd saves crucial disease control time. They used a fine-tuned In- 

eption [14] pre-trained model in their architecture and utilized 

 dataset containing CT scans of COVID-19 patients and patients 

ith other non-COVID viral pneumonia. Mei et al. [46] proposed 

 framework that leverages deep learning techniques to diagnose 

OVID-19 from CT scans using deep neural networks from scratch. 

Besides CT scans, several studies have used CXR images for the 

etection of COVID-19. Since it is relatively easier to find CXR im- 

ges than CT scans especially in rural areas, they can be a vi- 

ble alternative to CT images. Wang and Wong [18] proposed an 

I system called COVID-Net to diagnose COVID-19 from chest X- 

ay images containing samples from healthy, COVID-19 and other 

neumonia infected patients. The limitation of this study is that 

he authors trained and tested their model using an imbalanced 

ataset which contains very few (less than 100) COVID-19 images 

s opposed to about 16,0 0 0 images from healthy and other non- 

OVID pneumonia patients. Additionally, authors in [19] presented 

 similar study that uses CXR images to detect coronavirus infec- 

ion through transfer learning mechanism. Chakraborty [20] also 

eveloped a CXR based model using deep neural network that can 

chieve significant performance improvement even when the size 

f the dataset is limited. Nevertheless, the model lacks generaliz- 

bility and needs fine-tuning to produce more stable results. 

Another laudable effort made by researchers from Delft Imaging 

roject [21] which developed an AI model for diagnosing COVID- 

9 from CXR images. Their model is called CAD4COVID which is 

uilt upon an existing AI model previously developed for diagnos- 

ng tuberculosis. It triages COVID-19 suspected patients. Hossain 

t al. [38] presented a healthcare framework based on 5 G network 

hat makes use of CXR and CT images for COVID-19 in interpreting 

heir predictions by extracting critical features related to COVID-19 

o gain deeper understanding. Abbas et al. [22] have also leveraged 

eep learning techniques for the diagnosis of COVID-19 from CXR 

mages using CNN and other pre-trained models such as ResNet 

25] . 

Although a recent report [28] has shown the success of a num- 

er of Chinese hospitals in deploying AI-assisted radiology tech- 

ologies in combating COVID-19, radiologists have shown their 

oncern [29] that the shortage of available data to train the AI di- 

gnostic models is a major challenge. This is substantiated by the 

act that large body of the AI models in the literature have used 

atasets containing limited COVID-19 samples. 

To address the challenge of limited training samples, He et al. 

30] proposed a framework based on deep neural network that is 

ble to attain significant improvement in accuracy in COVID-19 de- 
3 
ection with a limited dataset consisting of CT scans. They have de- 

eloped a synergistic approach to combine transfer learning with 

elf-supervised contrastive learning to extract unbiased features to 

void overfitting problem. The experimental results demonstrate 

he superiority of their approach in comparison with several state- 

f-the-art models. In a subsequent effort, Chen et al. [31] develop 

 meta learning model with prototypical network to predict coron- 

virus infections from chest CT images that requires a small dataset 

or training. They have used momentum based contrastive learn- 

ng to extract feature vectors form the input images that are used 

y the prototypical network to make predictions on unseen CT 

mages for potential COVID-19 encounters. Validation results with 

wo publicly available CT scans datasets suggest the effectiveness 

f their model compared to several other relevant methods. 

Existing techniques in the literature that use CXR images for 

OVID-19 diagnosis mostly use custom CNN architecture or pre- 

rained transfer learning models which require large training data 

o produce rich feature encoding. In contrast, we have proposed an 

nd-to-end trainable n-shot deep meta learning framework based 

n Siamese neural network to classify COVID-19 cases with limited 

raining CXR images. Our proposed model is computationally ef- 

cient that can achieve better or the same level of performance 

s the pre-trained and other custom CNN models that require 

onger training time. Also, techniques in the literature mostly use 

e-facto categorical or binary cross entropy loss function. In con- 

rast, we have used contrastive loss function which results in faster 

odel convergence with fewer experiments and hyperparameter 

pdates. Furthermore, most of the existing models use image aug- 

entation to improve model generalizability even with prolonged 

raining time. Alternatively, the proposed meta learning framework 

hows faster model convergence and greater generalizability by us- 

ng contrastive loss function and appropriate hyper-parameter op- 

imization such as learning schedule and regularization through 

ropout technique used in various layers in the model. 

. Problem formulation 

The shortage of COVID-19 CXR images brings substantial chal- 

enges in developing tools for effectively diagnosing COVID-19 

ases using deep learning based techniques. To tackle this chal- 

enge, we leverage deep meta learning and devise the diagno- 

is problem of COVID-19 from CXR images as a n- shot classifica- 

ion problem which can be considered as an instantiation of meta 

earning in the paradigm of supervised learning. Meta learning has 

ecently emerged as a trending research area in the field of Artifi- 

ial Intelligence (AI) and is believed to be a steppingstone for at- 

aining Artificial General Intelligence (AGI). It is often referred to as 

learning to learn” and is capable of learning new skills and gener- 

lizing to new tasks quickly by means of limited training samples. 

he aim of n- short learning is to make classification of unseen data 

iven only a limited set of training examples (of size n ). At one 

nd, if there is only a single example of each class it is referred to

s one-shot learning. On the other hand, few-shot learning requires 

hat each class should have a few training examples, typically, up 

o five. 

The problem of n- shot image classification can be defined as 

 -way N- shot episodic task where K denotes the number of tar- 

et class labels in the dataset and N denotes the number of avail- 

ble images (samples) for each of the classes. Given, we have a 

ataset, D , we sample N data points (images) from each of the K 

lasses present in our data set and we call it as support set . Sim-

larly, we sample Q different images from each of the classes and 

all it as query set . The goal is to classify the images of the query

et based on K classes and KN total images available in the sup- 

ort set. Fig. 2 demonstrates an n- shot classification scenario in vi- 

ual form. In our case, we have three different types CXR images 
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Fig. 2. An example of a K -way N -shot learning problem where K = 3 and N = 2 in the support set. Query set images need to be classified from 3 available classes { normal, 

COVID-19 positive, and non-COVID pneumonia }. 
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n our dataset, namely, normal, COVID-19 positive, and non-COVID 

neumonia cases. Hence, we view the diagnosis problem both as 

-class (images from all three categories) and 2-class (normal and 

OVID-19 positive images) classification problem. In this context, 

ur COVID-19 diagnosis problem can be identified as three-way N- 

hot and two-way N -shot learning problem. 

. Methodology 

This section presents the generic high-level architecture of our 

eep Siamese network (as shown in Fig. 3 ) for n -shot learning 

o diagnose COVID-19 cases which is widely known as metric 

earning-based approach to meta learning. We will describe all ma- 

or components of the architecture including base CNN encoder for 

eature embedding, contrastive learning, and training strategies. 

.1. Metric-based learning 

In the metric-based meta learning setting, the goal is to learn 

he appropriate metric space. The fundamental concept is mostly 

elated to nearest neighbors techniques and kernel density estima- 

ion where the predicted probability is calculated across a set of 

iven output labels, y, as a weighted sum of labels of the exam- 

les from the support set. A kernel function, f ϴ, is used to create

he weight which essentially estimates the similarity between two 

ifferent input data points. The predicted probability over the sam- 

les of a support set, S , can be formulated as: 

 θ ( yx, S ) = 

∑ 

( x i , y i ) ∈ S 
y i . f θ ( x, x i ) (1) 

The performance of a metric-based meta learning model largely 

epends on learning an appropriate kernel. A useful metric would 

epresent the relationship among the inputs such as similarity in 

he latent space to facilitate highly accurate predictions. In our 

ase, we want to learn the similarity between two images. For this 

urpose, a convolutional neural network is used to extract the fea- 

ures from two images and finds the similarity by computing the 

istance between features of these two images. This approach is 

idely used in metric-based learning algorithms such as Siamese 

etworks that we have used in our meta learning framework be- 

ides other metric-based networks such as matching, relation and 

rototypical networks. 
4 
.2. Deep Siamese network model 

As shown in the preceding diagram, a Siamese network con- 

ains two identical parallel networks both sharing the same 

eights and architecture where each of the networks accepts a 

ifferent input image and the output from them are combined to 

ake the final prediction. More specifically, the goal is to have two 

dentical base neural networks that take an actual image and an- 

ther candidate image as input and can learn a function to pro- 

uce the similarity output between these two images. The con- 

ern is that how we can essentially train such a neural network 

ncoder that can learn this similarity function. Ideally, a convolu- 

ional neural network could be used without any constraints. Ap- 

arently, it would be desirable to use a custom CNN model which 

s smaller and computationally efficient and can achieve the same 

evel of performance in feature encoding as the pre-trained mod- 

ls. However, such a CNN model requires large training data to pro- 

uce rich feature encoding. Since we have a limited dataset, we 

everage the power of CNN models pre-trained on large ImageNet 

39] data which in recent times have shown promising results in 

olving computer vision problems such as medical imaging. Hence, 

e have used a fine-tuned pre- trained VGG-16 [8] as base encoder 

o obtain feature embeddings from the input images to ultimately 

ompute similarity among them. 

Let’s consider that we have two input images, x 1 and x 2 . Af- 

er passing the image first image, x 1 , through the top encoder, 

e receive a feature embedding of x 1 denoted as z 1 ( x 1 ) = VGG16

 x 1 ) where z 1 ( x 1 ) is the output generated from the average pooling

ayer. Similarly, the second image, x 2 is fed to the identical bot- 

om encoder sharing the same weights, w, to get a different fea- 

ure embedding of x 2 denoted as z 2 ( x 2 ). Then, in the latent space

f feature embeddings, we feed these two embeddings to an en- 

rgy function, E , which will give us the similarity between the two 

nputs. We use L 1 component wise distance as our energy function 

hich can be expressed as follows: 

 w 

( x 1 , x 2 ) = d w 

( x 1 , x 2 ) = ‖ z 1 ( x 1 , x 2 ) − z 2 ( x 1 , x 2 ) ‖ (2) 

The value of E will be smaller if the input images ( x 1 and

 2 ) are similar and vice versa. In reality, if it is less than a sup-

lied threshold value the images are similar and, if not, they are 

ifferent. Finally, this distance value can be incorporated in loss 

unction (described in the next subsection) to tune the base en- 

oder through back propagation for improved feature embeddings. 

 feedforward linear layer and sigmoid activation function are used 
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Fig. 3. High-level architecture of deep Siamese neural network for n- shot COVID-19 classification. (Zooming may be required for superior view). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o convert the distance to a probability, p , which indicates whether 

he input images belong to the same target class or not. Given the 

nput images from a support set, S , and a test image, t , the pre-

icted target class is computed as follows where o ( t ) denotes the 

rue class of the test image and ˆ o (. ) is the predicted class. 

ˆ 
 S ( t ) = o ( argmax p ( t, x i ) ) , x i ∈ S (3) 

.3. Loss function 

Through the use of an appropriate loss function, the base en- 

oder network can learn parameters to obtain a better encoding of 

he input image. Since Siamese networks make binary classification 

y classifying if the input images are similar or not, using binary 

ross-entropy loss function would be a natural choice. However, we 

ave also considered using contrastive loss function due to the na- 

ure of classification strategy adopted by Siamese networks based 

n the similarity of pairs of input images. Hence, we have used 

oth the loss functions in this study for performance evaluation. 

.3.1. Contrastive loss 

Originally proposed by Hadsell et al. [33] , the contrastive loss 

unction requires pairs of input samples as opposed to individual 

amples. The idea is that the base encoder network is penalized 

ifferently by the loss function in accordance with the classes of 

he input images. In particular, the loss function makes the model 

roduce more similar feature embeddings if the target classes are 

he same and less similar feature embeddings if the classes are 

ifferent. Mathematically, the contrastive loss is formulated as fol- 

ows: 

oss = ( 1 − y ) ∗ 1 

( d w 

) 2 + ( y ) ∗ 1 { max ( 0 , m − d w 

) } 2 (4) 

2 2 

5 
In the preceding equation, the value of y is the true label, which 

ill be 0 when the two input images are similar and 1 if they are

issimilar, and d w 

is the distance measure between feature em- 

eddings of the input images. Now, y equals to 0 implies that the 

mount of loss contributed by similar pairs would be simplified to 

he first term only and d w 

is minimized. On the contrary if y = 1 

hen the loss will be simplified to the second term and d w 

is max- 

mized to m , a hyperparameter called margin. Thus, when input 

airs are dissimilar, and if their distance is greater than the mar- 

in, they do not incur a loss (as shown in Fig. 4 ). 

.3.2. Binary cross entropy 

Binary cross entropy loss also called log loss is used to estimate 

he performance of a classifier with an output probability ranging 

rom 0 to 1. The loss value will increase if the predicted probabil- 

ty deviates from the true label. This can be formulated as follows 

here y and p represent the class label and prediction probability, 

espectively: 

 = −y log p + ( 1 − y ) log ( 1 − p ) (5) 

This loss function is used to train the network so that it can dif- 

erentiate between similar and dissimilar images if we provide one 

raining example from positive and negative categories and aggre- 

ate both the losses as below: 

 = L pos + L neg (6) 

.4. Training strategy 

Formally, we have in our hand a k -way, n -shot classification 

roblem for classifying CXR images. We have our dataset, D , with 
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Algorithm 1 

Training algorithm for k -way n- shot learning. 

Input : Batch size N , Number of epochs numEpochs , Dataset D , fine-tuned VGG-16 encoder model M with parameter ϴ, Loss function L , margin m 

Initialize posPairs, negPairs, posDist, negDist for training and validation 

D train , D test = split dataset, D 

ϴ0 = w 0 

for i do numEpochs 

for b do getBatches() 

X b , Y b = random batch from D train 

posPairs = getPositivePairs ( X b , Y b ) 

negPairs = getNegativePairs ( X b , Y b ) 

posDist b = L1_distance ( M ( posPairs, ϴb )) using Eq. (2) 

negDist b = L1_distance ( M ( negPairs, ϴb )) using Eq. (2) 

dist b = concat( posDist b , negDist b ) 

L b = Loss ( dist b , m, posPairs, negPairs ) using Eq. (4) 

Update parameter ϴb with new weight, w 

end for 

end for 

Fig. 4. Contrastive loss showing the margin m . The blue solid line signifies the loss 

function for the dissimilar pairs and the dotted red line refers to the same for sim- 

ilar pairs [33] . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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 training ( D train ) and a test ( D test ) split. Now, the training set will

ontain n samples form each of k classes thus totaling k.n exam- 

les in D train and D test consists of several samples for evaluation. 

e train our model in an episodic fashion which dictates that in 

ach episode, we sample a few data points from our meta-training 

ataset, D train , prepare our support set and query set, and train 

n the support set and test on the query set. So, over series of 

pisodes, our model will learn how to learn from a smaller dataset. 

Now, our model will be trained using a batch of training tasks 

 Task b }to ultimately solve a test task, Task test . We can consider that

n episode consists of a classification tasks, Task b , from the batch 

f tasks for training which is identical to the classification task, 

ask test and will use k.n number of image samples for training 

nd Q query images for evaluation. At the end of each episode 

he model parameters will be updated with the goal to maximize 

he classification performance of our model on Q query images 

hrough backpropagation of the calculated loss. In this way, our 

odel will learn to solve an unseen task by gaining experience 

hrough a series of training tasks. An example n -shot classifica- 

ion training scenario is given in Fig. 5 where we create episodes 

onsisting of tasks each of which is defined by a support set and 

 query set containing sample images from meta-training dataset. 

oreover, each of these tasks is similar to the test n -shot classifica- 
6 
ion task containing images for support and query sets. Finally, the 

etailed training strategy of our model is shown in Algorithm 1 . 

. Experiments 

To demonstrate the effectiveness of our n -shot meta learning 

pproach to COVID-19 diagnosis and inspect the effects of using 

ifferent k -way, n -shot variants and loss functions, we extensively 

valuate our proposed Siamese network model with two publicly 

vailable CXR datasets. Doctors frequently use CXR and CT scans 

or the diagnosis of various common diseases such as pneumonia, 

ancers, lung inflammation, and internal organ injuries. Given the 

act that CXR imaging machines are available in nearly all hospitals 

e decide to use CXR images instead of using CT scans or other 

ypes of image data. In the subsequent sections, we will present 

he datasets used with preprocessing, experimental settings, and 

esults with discussion. 

.1. Dataset description and preprocessing 

In this study, we use COVID-19 patients’ CXR images that are 

cquired from an open source database created by Dr. Joseph Co- 

en [34] in his GitHub repository. Dr. Joseph Cohen is continu- 

usly uploading CXR pictures of COVID-19 patients having acute 

espiratory distress syndrome (ARDS), COVID-19, pneumonia, Mid- 

le East respiratory syndrome (MERS), and severe acute respiratory 

yndrome (SARS). At present, there are about 230 CXR images of 

OVID-19 patients. In general, the CXR images of confirmed COVID- 

9 cases show various shapes of “pure ground glass” also referred 

o as hazy lung opacity during the disease development. To cre- 

te a classifier from CXR images it is also necessary to have re- 

ated CXR images of patients who do not have COVID-19. Fortu- 

ately, Kaggle [35] has a repository of CXR images of pneumonia 

nd healthy patients. This dataset contains a total of 5856 images 

rom both pneumonia and healthy categories. We have considered 

oth image sources as a dataset to build, train, and test the pro- 

osed model. Since the second data source contains samples of 

ealthy and other non-COVID pneumonia CXR images which are 

ar more than COVID-19 positive image samples. To avoid creating 

n imbalanced dataset which may lead to ambiguous accuracies, 

e have only gathered 226 CXR images from each of all three cat- 

gories such as normal, non-COVID pneumonia, and COVID-19 pos- 

tive in the curated dataset. Thus, we build a final balanced dataset 

ontaining a total of 678 CXR. We divide the dataset for generat- 

ng Support set and Query set based on various values of n in n -

hot classification task. To pre-train the base VGG-16 encoder to 

e used in generating feature embeddings on the input images to 

he Siamese network, we use the same dataset consisting of CXR 

https://github.com/ieee8023/covid-chestxray-dataset
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Fig. 5. An example training strategy for 2-shot, 3-class image classification task. 

Table 1 

Dataset split statistics. 

Class Pre-training of VGG-16 encoder network Siamese network ( n -shot learning) 

Training Testing Training Testing 

Normal 160 66 10 216 

Non-COVID pneumonia 160 66 10 216 

COVID-19 160 66 10 216 

Total 480 198 30 648 
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mages as mentioned above and split the dataset into training and 

alidation sets with a ratio of 0.7:0.3. Table 1 shows the statistics 

f the dataset split. 

.1.1. Pre-processing 

Due to the fact that the images in the dataset were collected 

rom different locations with various clinical settings, the intensity 

nd quality of images vary considerably. Nevertheless, we avoid ex- 

ensive pre-processing of our CXR images in the dataset to gain 

mproved generalization ability of our proposed Siamese network 

odel. This in turn makes our model further robust to artifacts 

nd noises present in the images while extracting feature embed- 

ings from the input images. Thus, we only used few standard 

re-processing tasks including image resizing, normalization, and 

istogram-equalization to optimize the model training method. 

he size of the CXR images in the dataset varies from 365 × 465 

o 1125 × 859 pixels. Hence, we re-scale all images to a size of 

00 × 100 pixels to get a consistent image dimension for the en- 

ire dataset. Additionally, we perform intensity normalization also 

alled scaling which is an important pre-processing task to expe- 

ite model convergence by eliminating feature biases and attaining 

 uniform distribution for the dataset. We convert the image pixel 

alues from [0, 255] to [0, 1] to obtain a standard normal distri- 

ution by using min-max normalization technique. Finally, we ap- 

ly histogram equalization on the input images in all three RGB 

hannels to improve image contrast. This is usually done by effec- 

ively stretching out the most often used intensity values which 

llows the areas with poorer local contrast to achieve a better 

ontrast. 
7 
.2. Experimental settings 

The pre-trained base encoder network and the proposed 

iamese network models are implemented using TensorFlow. We 

se Google Colab notebook environment for model training and 

esting which provides free GPU access. It currently provides 

VIDIA Tesla P100 GPU with 16GB RAM and comes with pre- 

nstalled Python 3.x packages and Keras API with backend Tensor- 

low. 

Towards the end of the pretrained model we add a flatten layer 

hich is followed by a dense layer with 5120 neurons, sigmoid ac- 

ivation function, and L2 kernel regularizer which is reported to 

ave achieved significant performance improvement with a large 

umber of kernels. Encodings (feature vectors) of the two input 

mages are generated using this preceding dense layer. Then, we 

dd a customized layer to the model to compute L1 distance by 

aking the absolute difference between the encodings. Finally, we 

dd a dense layer with a sigmoid unit to generate the similarity 

core. We have used both contrastive and binary cross-entropy loss 

unctions for model learning. In addition, Adam optimizer is used 

or model training and optimizing with an initial learning rate of 

.0 0 01. Subsequently, the learning rate is updated using ReduceL- 

OnPlateau callback provided by Keras which monitors the perfor- 

ance metric and if no improvement is observed for a ‘patience’ 

umber of epochs the learning rate is reduced. Furthermore, we 

ave used another callback from Keras called EarlyStopping to stop 

he training process when triggered upon monitoring some perfor- 

ance measure. 

We evaluate our model using the following six metrics: accu- 

acy, recall, precision, specificity, F1-score, and AUC (Area Under 

urve). Here, accuracy calculates the proportion of predictions that 
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Table 2 

Performance results for various n- shot settings with contrastive loss. 3-way represents 3-class labels. 

Model Accuracy Precision Recall Specificity F1-score AUC 

MetaCOVID (3-way, 7-shot) 0.925 0.945 0.936 0.953 0.940 0.955 

MetaCOVID (3-way, 8-shot) 0.936 0.951 0.945 0.965 0.938 0.962 

MetaCOVID (3-way, 9-shot) 0.948 0.966 0.955 0.975 0.947 0.974 

MetaCOVID 3-way, 10-shot) 0.956 0.970 0.960 0.980 0.965 0.975 

Table 3 

Performance results for various 3-way, n- shot settings with cross entropy loss. 

Model Accuracy Precision Recall Specificity F1-score AUC 

MetaCOVID (3-way, 7-shot) 0.890 0.927 0.915 0.935 0.916 0.933 

MetaCOVID (3-way, 8-shot) 0.915 0.935 0.919 0.940 0.922 0.948 

MetaCOVID (3-way, 9-shot) 0.923 0.938 0.939 0.948 0.938 0.954 

MetaCOVID 3-way, 10-shot) 0.938 0.949 0.953 0.964 0.950 0.957 

Table 4 

Performance comparison between the proposed Siamese network model (with 3-way, 10-shot learn- 

ing) and other pre-trained CNN models. 

Model Acc. Precision Recall Specificity F1-score AUC 

InceptionV3 0.875 0.826 0.950 0.800 0.883 0.900 

Xception 0.955 0.977 0.956 0.988 0.966 0.980 

InceptionResNetV2 0.900 0.833 1.00 0.800 0.908 0.900 

VGG-16 0.933 0.956 0.956 0.976 0.956 0.954 

MetaCOVID (3-way, 10-shot) 0.956 0.970 0.960 0.980 0.965 0.975 
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recisely matches with the real values. Precision also called pos- 

tive predictive value (PPV) is the fraction of true positive cases 

ver all positive predictions. Recall or sensitivity also called true 

ositive rate (TPR) which is very critical in medical applications 

efers to the fraction of all COVID-19 positive incidents that are 

ccurately categorized as positive. Specificity also called true neg- 

tive rate (TNR) refers to the proportion of all negative cases that 

re accurately categorized as negative. For example, the percent- 

ge of healthy people who are correctly diagnosed as not carry- 

ng the virus. F1-score denotes the harmonic mean which is calcu- 

ated from precision and recall by taking their weighted average. 

inally, AUC refers to the area under the receive operating charac- 

eristic (ROC) curve that demonstrates how TPR increases with the 

ecrease in false positive rate (FPR). 

.3. Evaluation results and discussion 

To evaluate the efficacy of our proposed meta-learning model 

n diagnosing COVID-19 cases we took the following approach. We 

tart by evaluating our model for various 3-way, n -shot learning 

ettings with both contrastive and cross-entropy losses. A com- 

arison of performance results is also done with different pre- 

rained CNN models such as Inception [36] , Xception [37] , Incep- 

ion ResNet v2 [36] , VGG-16 [8] . Finally, we present the results ob-

ained from 2-class (normal, COVID-19) variant of our classification 

roblem with different n -shot learning settings. 

Since our method is based on multi-shot learning, we are inter- 

sted in investigating how does model performance change with 

he number of shots. As such, we carry a number of experiments 

o observe the relationship between the number of shots and the 

erformance. 

Table 2 shows the performance results of our Siamese network 

odel for 3-class detection problem including normal, non-COVID 

neumonia, and COVID-19 cases using n -shot meta learning strat- 

gy with contrastive loss where n varies from 7 to 10. It is appar-

nt from the results that the accuracy of the model and other per- 

ormance metrics gradually increase with the increased number of 

hots. This is due to the fact that with increased shots the model 
8 
xploits the benefit of more available pairs of images where it has 

o distinguish a similar image from different ones. 

We also produce performance results (as shown in Table 3 ) 

ith similar learning settings but with binary cross-entropy loss 

hich is usually deemed to be a natural choice for classification 

roblem. Generally, the performance results obtained with con- 

rastive loss function seem to be better than the results obtained 

ith cross-entropy loss function. This is due to the fact that our 

iamese network model works based on similarity of pairs of im- 

ges and contrastive loss function is reported in the literature to 

e more effective than cross-entropy loss. Moreover, as shown 

n Fig. 6 , the model training and validation with contrastive loss 

unction appears to be more stable and further shows better con- 

ergence even though with longer training epochs (approximately 

75 epochs in contrast with approximately 100 epochs with cross- 

ntropy loss). To make sure that our model does not overfit to 

raining data, we have used dropout regularization technique in 

he fine-tuned base encoder. In addition, early stopping coupled 

ith a learning schedule (ReduceLROnPlateau callback from Keras) 

s used to stop the training process at the right moment to reduce 

verfitting. 

We also compare (as shown in Table 4 ) the performance of our 

iamese network model with other pre-trained CNN models. It is 

oticed that our model (MetaCOVID) with 10-shot learning setting 

hows comparable or in some cases better performance than the 

est performing pre-trained Xception model in performance met- 

ics including specificity, sensitivity, and accuracy. The proposed 

odel produces impressive values of sensitivity (96.0%) and speci- 

city (98.0%) which are deemed to be very critical performance es- 

imates for applications in medical settings. This is promising ow- 

ng to the fact that our Siamese meta learning model is trained 

nly with a limited sample (10) of training examples from each 

ategory of CXR images. In addition, the proposed meta learn- 

ng model is relatively smaller in size and contains comparatively 

ewer trainable parameters. It clearly shows the benefit of using 

eta learning approach to classifying COVID-19 patients over other 

ontemporary methods. 

Finally, to evaluate the effectiveness of our model in identify- 

ng COVID-19 cases from normal CXR images only (2-class prob- 
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Fig. 6. Training and validation accuracy and loss for 3-way, 10-shot learning settings with (a) contrastive loss (b) cross-entropy loss. 

Table 5 

Performance results of our model with contrastive loss for various 2-way, n- shot settings for 2-class 

(normal, COVID-19) classification. 

Model Accuracy Precision Recall Specificity F1-score AUC 

MetaCOVID (2-way, 7-shot) 0.940 0.955 0.945 0.958 0.949 0.965 

MetaCOVID (2-way, 8-shot) 0.948 0.963 0.955 0.975 0.958 0.975 

MetaCOVID (2-way, 9-shot) 0.950 0.975 0.965 0.980 0.969 0.982 

MetaCOVID 2-way, 10-shot) 0.965 0.980 0.970 0.984 0.974 0.989 
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em) we perform experiments with similar settings in 3-class prob- 

em. Table 5 shows the performance results with contrastive loss 

nd various n -shot settings in classifying healthy and COVID-19 

atients. As expected, the model shows better performance in all 

etrics for diagnosing COVID-19 patients in 2-class scenario. 

. Conclusions and future work 

This study is one step towards better understanding of the dy- 

amics of COVID-19 pandemic and proposing a state-of-the-art AI 

ased solution for efficient and fast diagnosis system for COVID-19 

nfections which is the need of the time. The proposed research 

ims to achieve this through the integration of a meta learning 
9 
etwork model with contrastive loss and pre-trained CNN encoder. 

pecifically, we use a fine-tuned pre-trained VGG-16 network en- 

oder to capture unbiased feature representations that are robust 

o overfitting and leverage a Siamese network for final classifica- 

ion of COVID-19 cases. We show that our proposed model with 

ontrastive loss and various n -shot learning settings offer a highly 

ccurate yet practical solution for automatically diagnosing COVID- 

9 cases to accelerate line of treatment for patients. Our best 

odel with 10-shot learning setting achieves an accuracy of 95.6% 

n diagnosing COVID-19 cases with impressive values of sensitiv- 

ty (96.0%) and specificity (98.0%) which are deemed to be very 

ritical performance estimates for applications in medical settings. 

urthermore, our proposed model exhibits comparable or in some 
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ases better performance than the studied fine-tuned pre-trained 

NN models. This is promising due to the fact that our meta learn- 

ng model is trained only with a limited sample (10) of training 

xamples from each category of CXR images. Simultaneously, it is 

ssential to pinpoint some of the shortcomings of this work which 

an possibly be tackled in future research. The major drawback is 

he inadequate interpretability of our model since effective diagno- 

is requires that results obtained from such interpretability study 

hould be clinically verified by an expert radiologist. As an im- 

ediate future work, we plan to extend our work by producing 

ualitative results with the aid of a model interpretation tool to 

ain deeper understanding of what our model is learning from the 

nput data during training and validation. We also plan to better 

ackle COVID-19 diagnosis problem as a multi-modal data fusion 

roblem where various types of clinical data such as patient vitals, 

ocation, and population density will be used in addition to image 

ata. 
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