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Risk factors for type 1 diabetes, 
including environmental, 
behavioural and gut microbial 
factors: a case–control study
Deborah Traversi1,8*, Ivana Rabbone2,7, Giacomo Scaioli1,8, Camilla Vallini2, Giulia Carletto1,8, 
Irene Racca1, Ugo Ala5, Marilena Durazzo4, Alessandro Collo4,6, Arianna Ferro4, 
Deborah Carrera3, Silvia Savastio3, Francesco Cadario3, Roberta Siliquini1,8 & Franco Cerutti1,2

Type 1 diabetes (T1D) is a common autoimmune disease that is characterized by insufficient insulin 
production. The onset of T1D is the result of gene-environment interactions. Sociodemographic and 
behavioural factors may contribute to T1D, and the gut microbiota is proposed to be a driving factor 
of T1D. An integrated preventive strategy for T1D is not available at present. This case–control study 
attempted to estimate the exposure linked to T1D to identify significant risk factors for healthy 
children. Forty children with T1D and 56 healthy controls were included in this study. Anthropometric, 
socio-economic, nutritional, behavioural, and clinical data were collected. Faecal bacteria were 
investigated by molecular methods. The findings showed, in multivariable model, that the risk factors 
for T1D include higher Firmicutes levels (OR 7.30; IC 2.26–23.54) and higher carbohydrate intake (OR 
1.03; IC 1.01–1.05), whereas having a greater amount of Bifidobacterium in the gut (OR 0.13; IC 0.05 
– 0.34) was a protective factor for T1D. These findings may facilitate the development of preventive 
strategies for T1D, such as performing genetic screening, characterizing the gut microbiota, and 
managing nutritional and social factors.

Type 1 diabetes (T1D) is a multifactor disease caused by β-cell destruction (which is mostly immune-medi-
ated) and absolute insulin deficiency. At present, the management of T1D has been improved, but the disease 
remains incurable. T1D onset is most common in childhood. T1D represents approximately 5–10% of all diabetes 
diagnoses1. Between 70 and 90% of T1D patients at diagnosis exhibit evidence of an immune-mediated process 
with β-cell autoantibodies. T1D onset is preceded by a preclinical period that lasts approximately 3 years, in 
which autoantibodies appear in the circulatory system2. Immune destruction of the β-cells can be detected by 
the evaluation of some haematic markers3. The disease has strong HLA associations, which explain nearly half 
of the genetic disease predisposition, while the remainder is due to other genetic polymorphisms3,4.

Analysis of genetic disease susceptibility suggests that there is a greater risk of T1D development when the 
father is affected by the disease than when the mother is affected5. On the other hand, there is evidence that a 
critical role is played by non-genetic factors, including both environmental and host-related factors, which are 
considered to play decisive roles in the disease process, leading to the manifestation of clinical T1D6.

The worldwide incidence of T1D in the age group of 0–15 years varies considerably by region (from 0.5 to 
60 per 100,000 children), and the yearly increase ranges from 0.6% to 9.3%. In Europe, the percentage of cases 
in the age group of 0–15 years will rise by 70%7. In the Piedmont region, up to 2013, there were approximately 
8,000 cases in this age group with an incidence of 27 new diagnoses per 100,0008. Migrant populations tend to 
show an incidence of diabetes similar to that of most host populations; therefore, a higher T1D incidence in 
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migrant children was observed in Europe6,9,10. Such a pronounced increase in incidence cannot be attributable 
to genetic factors alone. Other major risk factors may include the environment, Western lifestyle and nutrition10. 
Other diseases with immune involvement, such as allergies, exhibit a similar trend, suggesting an inductor 
role for exogenous factors regarding the increased predisposition to autoimmunity11. Preventive measures to 
reduce the incidence of T1D have not been defined to date. Various factors seem to be involved in modulating 
the incidence of T1D, including birth delivery mode, feeding, birth weight, infections (especially viral), dietary 
behaviour, and pharmaceutical use (especially antibiotics). Such factors may contribute to T1D development 
during the early disease stage12; however, compared with genetic factors, environmental factors are less well 
characterized13. β- Cell vulnerability to stress factors has been discussed as the basis of the overload hypothesis14. 
Associations among the microbiome, metabolome, and T1D were shown, highlighting a host-microbiota role 
in the onset of the disease12,15. The origin of the disease process was suspected to be gut microbiota dysbiosis 
(imbalances in the composition and function of intestinal microbes) associated with altered gut permeability 
and a major vulnerability of the immune system6. Accordingly, evidence obtained from both animal models and 
human studies suggests that the gut microbiota and the immune system interact closely, emphasizing the role 
of the intestinal microbiota in the maturation and development of immune functions16. Recently, mycobiome-
bacteriome interactions, as well as intestinal virome and islet autoimmunity, were hypothesized to be drivers 
of dysbiosis17. Several studies have specifically investigated microbiota composition in children with T1D18–20, 
but the results have not been consistent. Interestingly, most studies are in agreement regarding the reduced 
microbial diversity observed in subjects with T1D compared with controls; moreover, the microbiota structure 
in T1D subjects was found to be different from that of control subjects21,22. To date, a typical T1D-associated 
microbiota has not been identified23–26. The research also determined that T1D clinical management could be 
improved by in-depth analysis of the partial remission phase27; however, preventive measures are limited and 
generally focus only on genetic susceptibility28 and general population screening for islet autoimmunity29. The 
development of an integrated prediction strategy could be useful for increasing early diagnosis while avoiding 
onset complications by identifying children at risk of T1D to place under observation and, in the future, to treat 
with preventive methods10.

The aim of this study is to identify environmental, behavioural, and microbial risk factors of T1D onset to 
develop an integrated T1D preventive management strategy that is suitable for paediatricians in the Piedmont 
region.

Results
Subject description and origin factor analysis.  To analyse the origin factor, the study population was 
subdivided by the children’s origins (Italian and migrant, 69 and 27 children, respectively). An analysis of the 
socio-demographic and behavioural factors examined in the study showed many differences between Italian and 
migrant children, while other variables appear to be quite homogeneous (Table 1). In the studied cohort, migrant 
status did not produce a significant increase in T1D onset.

Approximately 79% of the children in the cohort had siblings; approximately 40% of the included children 
lived with a pet in the house, and more than 65% of the children took antibiotics during the first two years of 
life. The residency zone was notably different between Italians and migrants: the percentage of migrant chil-
dren living in urban sites was higher but not significant following the adjusted model. Regular sports activities 
seem to be practised more by Italian children than by migrant children (73.5% vs 51.8%, p = 0.054). A total of 
77.9% of Italian children and 55.6% of migrant children were subjected to regular health check-ups (p = 0.017). 
A significant difference was confirmed for the ages of the migrant mother and father (Table 1), meanly 6 years 
and 4 years younger respectively at recruitment, respect the Italians (p = 0.017 and p = 0.0425). The analysis of 
eating habits and nutritional intake revealed that the majority of the children were breastfed. Moreover, the 
weaning age was 6 months, as recommended. Migrant children showed higher total carbohydrate intake (+ 12%, 
p = 0.044) and simple carbohydrate intake (+ 24%, p = 0.0045). Moreover, among migrants, the children tended 
to access food by themselves and to consume meals alone. The percentage of migrant children who ate meals 
while watching TV was higher but not significant. Finally, the one-course meal was more frequent in migrant 
families (ratio 1:3, p = 0.006).

The analysis of microbiota and bioindicator species displayed no significant differences between Italian and 
migrant children: the qRT-PCR measurements showed a trend of greater value for the total bacteria (both for 

Table 1.   Summary of the population anthropometric characteristics, comparing cases and controls: number of 
children involved, sex, age and anthropometrics as the mean and standard deviation.

Type 1 diabetes patients Healthy controls

Subjects (number) 40 56

Gender
Male (%) 28 (70.0%) 40 (71.4%)

Female (%) 12 (30.0%) 16 (28.6%)

Age (years) 8.23 ± 1.42 7.87 ± 1.72

Height (m) 1.33 ± .11 1.30 ± .12

Weight (kg) 29.73 ± 8.06 29.25 ± 9.83

BMI (kg/m2) 16.51 ± 2.77 17.01 ± 2.79
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the experimental design with and without probe), Bacteroides and M. smithii (both using 16S rDNA and nifH) in 
migrant children. The DGGE profile and dendrogram analysis did not show a different clustering pattern based 
on the origin, and the migrant group showed a trend towards greater α-diversity of the faecal microbiota profiles 
(Shannon index + 5%). Additionally, the α-diversity analyses in next generation sequencing (NGS) showed a dif-
ference in taxonomic units (OTUs), i.e., there were more OTUs in migrants than in Italians, but the difference 
was not significant, though it was close to the limit of significance (p = 0.057). Furthermore, the phylogenetic 
diversity index (Faith PD) suggested that the origin of the subjects could influence the structure of the microbial 
community. Although the overall number of OTUs did not change significantly, the phylogenetic distance of the 
individual OTUs was greater in the migrant group than in the Italian group, as the OTUs occupied a broader 
ecological niche in the migrant group.

T1D risk factors.  Previous results indicated that being a migrant child in the Piedmont region is not a sig-
nificant risk factor for T1D onset30. Table 2 shows single logistic regressions performed to estimate the impact of 
the different variables on the outcome. Notably, the analysis of socio-demographic, behavioural, and nutritional 
determinants revealed that having parents with at least a high school certificate seems to be a protective factor 
for T1D onset, even if not significant after adjusted comparisons.

High total caloric intake, as well as high protein intake and consumption of total carbohydrates, are associated 
with only a slightly increased risk of T1D onset.

The DGGE gel and the results of the cluster analysis are shown in Fig. 1. The Pearson similarity clustering 
showed macro beta-diversity differences between the T1D patients and healthy children, with the main division 
being in two different clusters.

Firmicutes and Bacteroidetes followed by Proteobacteria and Actinobacteria (Table 3) predominantly com-
posed the gut microbiota of all children. In the children with diabetes, an increase in the levels of three members 
of Bacteroidetes (Alistipes senegalensis, Bacteroides timonensis, and Barnesiella intestinihominis) and three mem-
bers of Firmicutes (Christensenella timonensis, Ruminococcus bromii, and Urmitella timonensis) was observed 
by sequencing.

Furthermore, other notable results were obtained by NGS analyses. The taxonomic analysis revealed that 
the gut microbiota of the study participants was composed of nine relevant phyla: Firmicutes, Bacteroidetes, 
Actinobacteria, Proteobacteria, Verrucomicrobia, Euryarchaeota, Tenericutes, Cyanobacteria, and an unclas-
sified phylum.

Moreover, beta-diversity analyses were carried out to highlight the differences among the samples based on 
the structures of their microbial communities. The weighted UniFrac metric showed that the samples were not 
subdivided into clusters. The intragroup and intergroup distances were comparable, and there was no separation 
between the clusters. These findings were confirmed by the Permanova test. Finally, analyses of the differential 
abundance were performed to compare the increase or decrease in the abundance of one or more bacteria in the 
case and control groups. DeSeq2 showed 48 significantly abundant OTUs (p < 0.001). The most abundant OTU 

Table 2.   Oligonucleotide primers, probes and genomic standards used in biomolecular analyses.

Microbial Target Sequences Standard Genomic DNA Ref

Total Bacteria
16 s rDNA

F
R

5′ACT​CCT​ACG​GGA​GGC​AGC​AG3’
5′ATT​ACC​GCG​GCT​GCTGG3’

Desulfovibrio vulgaris
ATCC 29579D-5

36

Total Bacteria
16 s rDNA

F
R
Probe

5′AGA​GTT​TGATCMTGG​CTC​AG3’
5′TTA​CCG​CGGCKGCT​GGC​AC3’
5′CCAKACT​CCT​ACG​GGA​GGC​AGC​AG3’

Desulfovibrio vulgaris
ATCC 29579D-5

36

Bacteroidetes
16 s rDNA

F
R

5′CAT​GTG​GTT​TAA​TTC​GAT​GAT3’
5′AGC​TGA​CGA​CAA​CCA​TGC​AG3’

Bacteroides fragilis
ATCC 25285D-5

19,38

Bacteroides
16 s rDNA

F
R

5′GAG​AGG​AAG​GTC​CCC​CAC​3’
5′CGC​TAC​TTG​GCT​GGT​TCA​G3’

Bacteroides fragilis
ATCC 25285D-5

19,38

Firmicutes
16 s rDNA

F
R

5′ATG​TGG​TTT​AAT​TCG​AAG​CA3’
5′AGC​TGA​CGA​CAA​CCA​TGC​AC3’

Clostridium acetobutylicum
ATCC 824D-5

40

Bifidobacteria
16 s rDNA

F
R

5′CTC​CTG​GAA​ACG​GGTGG3’
5′GGT​GTT​CTT​CCC​GAT​ATC​TACA3’

Bifidobacterium longum infantis
ATCC 15697D-5

39

Akkermansia muciniphila
16 s rDNA

F
R

5′CAG​CAC​GTG​AAG​GTG​GGG​AC3’
5′CCT​TGC​GGT​TGG​CTT​CAG​AT3’

Akkermansia municiphila
ATCC-BAA835D-5

37

M. smithii
16 s rDNA

Smit.16S-740 F
Smit.16S-862 R
Smit.16S FAM

5′CCG​GGT​ATC​TAA​TCC​GGT​TC-3’
5′CTC​CCA​GGG​TAG​AGG​TGA​AA3’
5′CCG​TCA​GAA​TCG​TTC​CAG​TCAG3’

M. smithii
DSM 861

36

M. smithii
nifH

Mnif 202 F
Mnif 353 R
Mnif Probe

5′GAA​AGC​GGA​GGT​CCT​GAA​3’
5′ACT​GAA​AAA​CCT​CCG​CAA​AC3’
5′CCG​GAC​GTG​GTG​TAA​CAG​TAG​CTA​3’

M. smithii
DSM 861

21

Bacterial
16 s rRNA

357 F-GC
518 R

5′GCclampCTC​CTA​CGG​GAG​GCA​GCA​G3’
5′GTA​TTA​CCG​CGG​CTG​CTG​G3’

34

16 s rDNA V3-V4 Pro 341 F
Pro 805 R

5′TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CCT​ACGGGNBGCASCAG3’
5′GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​CAG​GAC​TACNVGGG​TAT​CTA​ATC​
C3’

41
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was Rikenellaceae followed by Prevotellaceae (Prevotella copri), Barnesiellaceae, Lachnospiraceae, and Ruminococ-
caceae (Ruminococcus bromii), which were significantly more abundant in children with diabetes.

The difference in the results observed between methods is an interesting discussion point. The methods are 
characterized by different sensitivities; they represent different molecular perspectives regarding the faecal micro-
biota. When a method with a higher sensibility is used (NGS), a flattening effect is possible. On the other hand, 
the major abundance of such genera as Ruminococcus was confirmed by different microbiota study methods, 
which is in keeping with the qRT-PCR results. A group of 23 samples showed different clusterization compared 
to the others (Fig. 2, left). This small group was not different from the main group regarding any characteristics. 
The only significant difference was observed for the M. smithii presence and the A. muciniphila levels, both of 
which were higher in the separated group (Fig. 2, right). A. muciniphila was proposed as a probiotic31, while M. 
smithii has been characterized as the most abundant methanogen in the gut32.

The qRT-PCR gut microbiota analysis indicated significant differences among T1D patients and healthy 
children (Table 2). The logistic regression analysis showed that the increase in the Margalef index was associated 
with a decrease in the likelihood of disease onset (OR 0.20; 95% CI 0.09–0.46, p = 0.000). Increased Firmicutes 
levels and decreased Bacteroidetes levels were significant risk factors for T1D (OR 7.49; 95% CI 3.25–17.28, 
p = 0.0001; OR 0.28; 95% CI 0.15–0.51 p = 0.0001, respectively). Moreover, Bifidobacterium spp. was a protective 
factor for T1D onset (OR 0.20; 95% CI 0.10–0.38, p = 0.0001).

The multivariable analysis produced a R2 = 0.6259 (p < 0.001). After adjusting for confounding factors, the 
likelihood of having diabetes is significantly higher in those with higher amount of Firmicutes, lower amount of 
Bifidobacterium spp and a higher amount of total carbohydrate intake (Table 4).

Figure 1.   DGGE banding patterns and the results of the analysis in which the Pearson coefficient (numbers 
reported near the nodes) was used for measuring similarity in banding patterns. The cluster identifies T1D 
patients (red lines) and healthy children (green lines).
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Italians (n. 69) Migrants (n. 27) p-value
Adj 
p-value

Socio-demographic factors

Age at onset 7.85 (± 1.75) 8.46 (± 1.04) 0.093 0.1581

Gender Female 24 (34.8%) 4 (14.8%) 0.079 0.149

Male 45 (65.2%) 23 (85.2%)

Percentile BMI 51.38 (± 32.35) 66.46 (± 36.27) 0.053 0.121

BMI categories

Underweight 1 (1.5%) 2 (7.7%)

0.016 0.091
Normal weight 50 (73.5%) 11 (42.3%)

Overweight 11 (16.2%) 7 (26.9%)

Obese 6 (8.8%) 6 (23.1%)

Residency (urban) 43 (63.2%) 23 (85.2%) 0.048 0.121

Sport activity 50 (73.5%) 14 (51.8%) 0.054 0.121

The child has siblings 52 (76.5%) 22 (81.5%) 0.785 0.861

The child does regular health check-up 53 (77.9%) 15 (55.6%) 0.043 0.121

The child used antibiotics in the first two years of life 46 (67.6%) 17 (63.0%) 0.810 0.861

Breast feeding 57 (83.8%) 24 (88.9%) 0.750 0.861

Weaning age (months) 5.91 (± 2.47) 5.76 (± 1.62) 0.760 0.861

Presence of pets in the house

No pets 14 (24.6%) 7 (28.0%)

0.057 0.121Dogs or cats 24 (42.1%) 4 (16.0%)

Other pets 19 (33.3%) 14 (56.0%)

Mother age at recruitment 40.61 (± 4.77) 34.18 (± 5.41)  < 0.001 0.017

Mother education (at least high school) 50(73.5%) 15 (55.6%) 0.141 0.218

Father age at recruitment 44.19 (± 5.99) 40.29 (± 5.93) 0.005 0.0425

Father education (at least high school) 38 (55.9%) 17 (63.0%) 0.646 0.861

Important changes in the family contest in the last year 7 (10.3%) 3 (11.1%) 1.000 1.000

Nutritional anamnesis

Total caloric intake (Kcal/die) 1760.23 (± 349.43) 1891.48 (± 372.29) 0.108 0.262

Delta Kcal -116.15 (± 346.65) -11.11 (± 366.43) 0.192 0.408

Delta Kcal % -5.20 (± 17.54) -0.33 (± 19.06) 0.236 0.446

Total supply of proteins (g) 60.53 (± 13.61) 60.56 (± 13.91) 0.991 1.000

Total supply of lipids (g) 65.40 (± 12.92) 66.52 (± 16.08) 0.724 0.879

Total supply of carbohydrates (g) 232.51 (± 58.51) 259.70 (± 59.09) 0.044 0.1496

Total supply of CHO RA (g) 71.02 (± 26.39) 88.85 (± 28.45) 0.0045 0.0255

The child has access to food by himself when he/she is at home 39 (57.4%) 23 (85.2%) 0.016 0.0544

The child consumes meals alone

Always alone 3 (4.4%) 12 (44.4%)

 < 0.001 0.006Always with an adult 61 (89.7%) 16 (37.1%)

Both 4 (5.9%) 5 (18.5%)

Number of extra meals a day

0 1 (1.5%) 0 (0%)

0.330 0.4675

1 2 (2.9%) 0 (0%)

2 36 (52.9%) 10 (37.1%)

3 21 (30.9%) 10 (37.1%)

4 8 (11.8%) 7 (25.8%)

The child consumes meals while watching TV 43 (63.2%) 22 (81.5%) 0.094 0.262

The child consumes sweets more than three times a week 39 (57.3%) 16 (59.3%) 1.000 1.000

Child family consumes meals all together 62 (91.2%) 22 (81.5%) 0.284 0.4675

Family talks during the meal 61 (89.7%) 22 (81.5%) 0.312 0.4675

The child often asks for supplementary portions of food 35 (51.5%) 16 (59.2%) 0.649 0.849

The main meal of child

Lunch 14 (20.9%) 7 (25.9%)

0.892 1.000Dinner 51 (76.1%) 20 (74.1%)

Both 2 (2.99%) 0 (0%)

Meals

One course meals 11 (16.2%) 14 (51.9%)

0.001 0.006Not one course meals 54 (79.4%) 12 (44.4%)

Both 3(4.4%) 1 (3.7%)

Microbiota

Akkermansia muciniphila
(Log gene copies/g stool) 6.21 (± 1.29) 6.66 (± 1.44) 0.1475 0.228

Continued
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Discussion
T1D is an important disease that affects health with onset primarily occurring in childhood. At present, there 
is no cure for this disease, and only disease management is possible. The disease burden of T1D is immense, 
especially considering the number of years of life lost due to disability but also the years of life lost due to pre-
mature death. The life expectancy for T1D patients is approximately 16 years shorter than that of the comparable 
healthy population33. Even if relevant risk factors are known, to date, such scientific determinants do not include 
a screening programme for preventive purposes. Of course, preventive action must be considered as a systematic 
process that focuses on the main risk factors to identify children at higher risk of T1D and to suggest efficacious 
preventive treatments. In the study, the main T1D onset risk factors seem to be identifiable in the composition 
of the microbiota and, in particular, the microbiota α-diversity, Firmicutes and Bacteroidetes levels and their 
ratio, as well as the Bifidobacterium level. Similar evidence was obtained by other studies, which observed both 
higher Bacteroidetes in T1D patients34,35 and less abundant anti-inflammatory genera in children with multiple 
islet autoantibodies36. Reduced microbial diversity appears to become significant between seroconversion and 
overt T1D15. A significant difference in the Bifidobacterium level was observed in different studies, including 
both a small cohort of autoimmune children37,38 and a larger population associated with such protective factors 
as breastfeeding21. At the genus level, a significant difference in, for example, Blautia (increased in patients), was 
observed39; however, in other studies, different single species (Bacteroides ovatus) seem to be more abundant in 
patients than in the controls18. However, prior studies suggest the presence of duodenal mucosa abnormalities 
in the inflammatory profile for T1D patients22,40 and on the T1D-related changes in the gut microbiota, even if 
proving the causality of these factors has remained challenging21.

The characterization of the microbiota is rapidly evolving. Traditional methods that are not as sensitive 
as PCR-DGGE are still suitable, while NGS methods are expanding. Sophisticated whole-genome sequencing 

Table 3.   Main characteristics of type 1 diabetes patients and healthy children enrolled by subject origin. The 
continuous variables are expressed as means and standard deviations; the categorical variables are expressed as 
absolute numbers and percentages. Adj p-value: adjusted for multiple comparisons.

Italians (n. 69) Migrants (n. 27) p-value
Adj 
p-value

Bacteroides spp.
(Log gene copies/g stool) 8.56 (± 0.91) 9.08 (± 0.74) 0.0092 0.060

Bacteroidetes
(Log gene copies/g stool) 8.38 (± 1.31) 8.81 (± 0.83) 0.124 0.228

Total bacteria Probe
(Log gene copies/g stool) 9.48 (± 0.96) 9.96 (± 0.74) 0.019 0.062

Total bacteria SYBR
(Log gene copies/g stool) 9.95 (± 0.63) 10.27 (± 0.63) 0.025 0.065

Firmicutes
(Log gene copies/g stool) 10.38 (± 0.77) 10.59 (± 0.87) 0.259 0.306

Bifidobacterium spp.
(Log gene copies/g stool) 6.89 (± 1.16) 7.02 (± 0.97) 0.597 0.597

Methanobrevibacter smithii 16S
(Log gene copies/g stool) 5.24 (± 1.22) 6.15 (± 1.74) 0.004 0.052

Methanobrevibacter smithii Nihf
(Log gene copies/g stool) 5.16 (± 1.05) 5.83 (± 1.53) 0.0151 0.062

Simpson index 0.11 (± 0.04) 0.10 (± 0.05) 0.1580 0.228

Shannon index 2.45 (± 0.29) 2.58 (± 0.31) 0.0402 0.087

Firmicutes/Bacteroidetes ratio 1.29 (± 0.37) 1.22 (± 0.17) 0.3224 0.349

Margalef index 2.53 (± 0.68) 2.72 (± 0.65) 0.2145 0.279

Figure 2.   Left-Unweighted UniFrac graph of the NGS results. There are two identifiable groups: the blue circle 
(main group) and the red circle (separated group). No experimental hypothesis was confirmed for the cluster 
definition. On the Right: box plot of the qRT-PCR results for some microbiological targets (Akkermansia 
muciniphila and Methanobrevibacter smithii), the difference between the groups is significant (t-test p < 0.05).
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methods integrated with metabolomics and proteomics have been proposed. However, the large amount of data, 
being affected by multiple confounding factors, has not had a clear impact on T1D prevention strategies. The 

Table 4.   Logistic regressions: likelihood of having diabetes. The continuous variables are shown on a light grey 
background; the categorical variables are shown on a white background. Adj p-value: adjusted for multiple 
comparisons. Significant p-values are bolded.

Likelihood of having diabetes

OR 95% IC p-value Adj p-value

Socio-demographic factors

Age at recruitment 1.15 0.89—1.49 0.290 0.6195

Gender (female) 1.07 0.43—2.61 0.879 0.925

Percentile BMI 0.99 0.98—1.003 0.179 0.507

BMI categories

Underweight 0.39 0.034—4.61 0.461 0.7785

Overweight 0.25 0.02—3.34 0.295 0.6195

Obese 0.36 0.02—5.11 0.448 0.779

Residency (rural) 0.96 0.39—2.32 0.924 0.925

The child consumes meals at school 0.51 0.19—1.40 0.193 0.507

The child consumes meals at home more than two times a week 0.42 0.17—1.07 0.070 0.2555

Sport activity 1.23 0.51—2.95 0.641 0.785

Having siblings 0.75 0.28—1.99 0.563 0.785

Having done regular health check-up 0.37 0.15—0.93 0.036 0.252

Use of antibiotics in the first two years of life 0.74 0.31—1.75 0.503 0.7785

Breastfeeding 0.68 0.22—2.14 0.519 0.7785

Weaning age (months) 0.68 0.46—1.03 0.068 0.2555

Presence of dogs and/or cats in the house 0.95 0.37—2.44 0.925 0.925

Mother age at recruitment 0.98 0.91—1.06 0.673 0.785

Mother education (at least high school) 0.34 0.14—0.83 0.018 0.189

Father age at recruitment 1.01 0.95—1.08 0.671 0.785

Father education (at least high school) 0.33 0.14—0.77 0.011 0.189

Important changes in the family contest in the last year 3.68 0.88—15.22 0.073 0.2555

Nutritional anamnesis

Total caloric intake (Kcal/die) 1.0023 1.0009—1.0036 0.001 0.005

Total supply of proteins (g) 1.06 1.02—1.10 0.002 0.007

Total supply of lipids (g) 1.03 1.002—1.069 0.036 0.072

Total supply of carbohydrates (g) 1.01 1.005—1.022 0.001 0.005

Total supply of CHO RA (g) 1.03 1.007—1.045 0.006 0.015

The child consumes more than two extra meals 1.67 0.73—3.82 0.224 0.329

The child consumes meals while watching TV 0.58 0.24—1.40 0.230 0.329

The child consumes sweets more than three times a week 1.08 0.47—2.47 0.859 0.859

Child family consumes meals all together 0.54 0.15—1.91 0.339 0.4238

The child often asks for supplementary portions of food 1.44 0.62—3.28 0.389 0.432

Microbiota

Akkermansia muciniphila (Log gene copies/g stool) 0.84 0.62—1.14 0.260 0.423

Bacteroides spp. (Log gene copies/g stool) 0.79 0.50—1.25 0.317 0.443

Bacteroidetes (Log gene copies/g stool) 0.28 0.15—0.51 0.000 0.000

Total bacteria Probe (Log gene copies/g stool) 0.72 0.46—1.12 0.147 0.318

Total bacteria SYBR (Log gene copies/g stool) 0.69 0.37—1.31 0.259 0.423

Firmicutes (Log gene copies/g stool) 7.49 3.25—17.28 0.000 0.000

Bifidobacterium spp. (Log gene copies/g stool) 0.20 0.10—0.38 0.000 0.000

Methanobrevibacter smithii 16S (Log gene copies/g stool) 0.97 0.73—1.30 0.858 0.930

Methanobrevibacter smithii Nihf (Log gene copies/g stool) 1.04 0.75—1.44 0.824 0.930

Simpson index 1.14 0.00005—23,610.2 0.980 0.980

Shannon index 0.51 0.13—2.03 0.341 0.443

Firmicutes/Bacteroidetes ratio 34,288.2 637.20—1,845,077 0.000 0.000

Margalef index 0.20 0.09—0.46 0.000 0.000
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development of a simple method to describe microbiota modulation using validated biomarkers, which could 
serve as a rapid screening test, may be warranted.

Another risk factor is the occurrence of stress due to a traumatic or emotional experience. This stress seems 
to be able to affect the autoimmunity process. Therefore, particular attention could be paid to such risk factors 
for T1D risk in children.

A high education level of one or both parents could be also protective, suggesting that socioeconomic factors 
affect the T1D risk. Other factors, identified as significant risk modulators among behavioural and nutritional 
factors, had minor effects.

The study has some potential limitations, including susceptibility to bias in recollection about exposure and 
reverse causality. The exposure recollection could be biased, but this issue can be less influential at the onset, as 
in this study. Moreover, recruitment at the onset guarantees a temporal coherence of the exposure with respect 
to the disease onset.

T1D is one of the most frequently diagnosed diseases in children; however, it is not a high-incidence disease. 
The prospective inclusion of a large number of healthy children, which is needed for the observation of enough 
cases, requires a very long time of observation. Moreover, a restricted age range was necessary in children for 
the rapid changes in behaviour and microbiota. This requirement resulted in an additional included subject 
restriction. On the other hand, the study of multifactorial diseases with poorly understood pathogenic pathways 
is imperative, even if it is at risk for obtaining less conclusive evidence. Of course, such a study alone could not 
elucidate the causation process, but the evidence obtained could be important for the selection of higher-risk 
subpopulations, planning of future research, and improving prevention.

Identification of a higher-risk subpopulation is strictly relevant for the subsequent validation of an efficient 
preventive screening to be produced with a prospective method. Of course, the pathogenesis of type 1 diabetes 
has not been fully elucidated to date; however, in this study, various factors (associated with both the disease and 
the microbiota composition) were included, such as the origin of the children, the age of the mother, the age of 
breastfeeding and the age of weaning. Other possible confounding factors not included in our analysis are viral 
infections, particularly enteroviruses, and preterm birth; however, there was no clear consensus regarding these 
novel factors at the beginning of the study.

Concerning the microbiota, the knowledge is still incomplete, and various factors can interact to produce a 
T1D risk modulation that is not explainable at present. Moreover, the results obtained using different techniques 
were also dissimilar (for example, clusterization due to β-diversity analysis). This finding is likely due to the dif-
ferent sensitivities of the applied methods41. Furthermore, even if the time between the symptom comparison 
and the diagnosis is very short, there is a danger of biased estimates due to reverse causality.

In conclusion, this study confirmed that T1D onset risk is modulated by compositional changes in the gut 
microbiota and that such evidence must be employed to devise preventive measure. The results showed that the 
gut microbial indicators found in children with T1D differ from those found in healthy children. These findings 
also pave the way for new research attempting to develop strategies to control T1D development by modifying 
the gut microbiota. However, a better knowledge of gut microbial composition associated with the development 
of T1D must be obtained to choose the best treatment10,42–45.

In brief, direct or indirect manipulations of the intestinal microbiome may provide effective measures for 
preventing or delaying the disease process leading to the manifestation of clinical T1D. At present, a preventive 
strategy could be developed that includes the main genetic and microbiome risk factors. Then, this strategy could 
be applied to healthy children to reduce the burden of T1D.

Methods
Study design and participants.  The case–control study began in January 201646 and ended in September 
2018 (case–control phase of clinicaltrial.gov Protocol ID: G12114000080001). The work was conducted follow-
ing the STROBE Statement for a case–control study. The activity is bicentric and includes the two main paediatric 
hospitals in the Piedmont region (located in Torino and Novara), which cover the clinical management for cases 
of T1D in the region. The ethics committees of the two hospitals approved the research activities during 2015 
(“Comitato etico interaziendale A.O.U. Ordine Mauriziano di Torino ASLTO1” with record number 0117120 
and “Comitato etico Interaziendale A.O.U. “Maggiore della Carità” ASL BI, NO, VCO” record number 631/CE).

The recruitment included 40 paediatric patients with T1D (cases) and 56 healthy children (controls), who 
were comparable in terms of age, gender, and ethnicity to avoid bias. The included subjects represent the most 
convenient sample possible. The inclusion criteria were age (5–10 years), normal weight, and residence in Pied-
mont. Exclusion criteria were celiac disease, chronic disease diagnosis, eating disorders, active infections, use of 
antibiotics and/or probiotics and/or any other medical treatment that influences intestinal microbiota during the 
3 months before recruitment and children with parents of mixed origins (Italian and migrant) for the exclusion 
of important confounding factors due to genetic and cultural mixed backgrounds19.

The T1D children were integrated into the study at disease onset, with hyperglycaemia, with or without 
ketoacidosis, polyuria symptoms, a high value of glycated haemoglobin (HbA1c > 42 mmol/mol) and T1D-
specific autoantibody positivity. Healthy children were contacted by paediatricians in the territory of the acute 
care system. The guardians of the enlisting children read, understood, and then signed informed consent forms 
following the declaration of Helsinki. A module is prepared for parents, children, and mature children47. All the 
following methods were carried out following relevant guidelines and regulations when available. A questionnaire 
was given to the parents containing items and questions to retrieve data on the family contest with particular 
regards to emotive stressors, such as mourning or separation, anthropometrics, and socio-demographic, nutri-
tional, and behavioural information.
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Anthropometric and nutritional data included weight, height, body mass index (BMI), food frequency based 
on 24-h recall and a food frequency questionnaire (FFQ), neonatal feeding, and age of weaning. The anthropo-
metric parameters (weight and height) were measured according to standard recommendations. The BMI values 
were interpreted according to the WHO criterion. The 24-h recall technique reconstructed the meals and food 
intake on a recent "typical" day, estimating the bromatological inputs according to a food composition database 
for epidemiological studies in Italy (BDA). The FFQ, developed for the study, focused on the consumption of 
certain food categories (those containing sugars, fibre, omega-3, calcium, vitamin D, condiments, and cereals) 
and eating habits (e.g., alone or with adults, in front of the TV).

Twenty-eight percent of the involved population is migrants (both parents not Italian). Such data are consist-
ent with the percentage of newborns from non-Italian mothers, which is approximately 30% in northern Italy48. 
The migrant group included children coming mainly from northern Africa and Eastern Europe. The migration 
involved the parents and sometimes the children; on average, the included children as migrants were residents 
in Italy for less than 5 years. At the end of recruitment, no significant differences were observed between the 
case and control groups for age, sex composition, and origins (criteria for pairing) or for height, weight, and 
BMI (T-test, p > 0.05) (Table 5).

Sample collection and DNA extraction.  A kit for stool collection was delivered to each study partici-
pant following a validated procedure49,50 and using a Fecotainer device (Tag Hemi VOF, Netherlands). Faecal 
samples were homogenized within 24 h in the laboratory, and five 2 g aliquots were stored at − 80 °C until DNA 
isolation was performed. Total DNA extractions from the stool samples were performed using the QiaAmp 
PowerFecal DNA Kit (QIAGEN, Hilden, Germany). The nucleic acids were quantified using a NanoQuant Plate 
(TECAN Trading AG, Switzerland), which allows quantification using a spectrophotometer read at 260 nm. The 
spectrophotometer used was the TECAN Infinite 200 PRO, and the software was i-Control (version 1.11.10). 
The extracted DNA concentrations ranged from 1.1–155.5  ng/μl (mean 41.35 ± 38.70  ng/μL). Samples were 
stored at –20 °C until molecular analysis was performed.

Table 5.   Bacterial species identified by sequencing of the most representative DGGE bands amplified from 
fecal DNA of type 1 diabetes (cases) and healthy children (controls).

Closet Relative Identity Phylum Class Order Family Genus Cases Controls

Alistipes putredinis 100% Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 10% (4) 35.7% (20)

Alistipes senegalensis 96% Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 75% (30) 50% (28)

Bacteroides coprocola 98% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 5% (2) 0% (0)

Bacteroides dorei 100% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 67.5%(27) 80.3% (45)

Bacteroides faecis 99% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 15% (6) 16.1% (9)

Bacteroides finegoldii 94% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 17.5% (7) 46.4% (26)

Bacteroides intestinalis 97% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 90% (36) 92.8% (52)

Bacteroides timonensis 100% Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 20% (8) 10.7% (6)

Barnesiella intestinihominis 99% Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 72.5% (29) 66.1% (37)

Bifidobacterium faecale 100% Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 0% (0) 28.6% (16)

Christensenella timonensis 93% Firmicutes Clostridia Clostridiales Christensenellaceae Christensenella 40% (16) 16.1% (9)

Clostridium dakarense 97% Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 5% (2) 5.3% (3)

Colidextribacter massiliensis 93% Firmicutes Clostridia Clostridiales Colidextribacter 42.5% (17) 39.3% (22)

Coprobacter fastidiosus 82% Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Coprobacter 0% (0) 5.3% (3)

Dialister propionicifaciens 89% Firmicutes Negativicutes Veillonellales Veillonellaceae Dialister 10% (4) 25% (14)

Dialister succinatiphilus 100% Firmicutes Negativicutes Veillonellales Veillonellaceae Dialister 5% (2) 30.3% (17)

Escherichia coli 99% Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia 65% (26) 76.8% (43)

Eubacterium rectale 100% Firmicutes Clostridia Clostridiales Lachnospiraceae 3 5% (14) 33.9% (19)

Fusicatenibacter sacchari-
vorans 100% Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter 87.5% (35) 100% (56)

Megasphaera massiliensis 99% Firmicutes Negativicutes Veillonellales Veillonellaceae Megasphaera 37.5% (15) 41.1% (23)

Negativibacillus massiliensis 91% Firmicutes Clostridia Clostridiales Ruminococcaceae Negativibacillus 20% (8) 26.8% (15)

Parabacteroides johnsonii 95% Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 10% (4) 23.2% (13)

Prevotella copri 99% Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 57.5% (23) 76.8% (43)

Pseudoflavonifractor pho-
caeensis 94% Firmicutes Clostridia Clostridiales Pseudoflavonifractor 20% (8) 51.8% (29)

Romboutsia timonensis 100% Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 82.5% (33) 87.5% (49)

Roseburia faecis 99% Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 60% (24) 83.9% (47)

Ruminococcus bromii 93% Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 45% (18) 41.1% (23)

Subdoligranulum variabile 97% Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum 57.5% (23) 78.6% (44)

Urmitella timonensis 88% Firmicutes Tissierellia Tissierellales Tissierellaceae Urmitella 40% (16) 39.3% (22)
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PCR‑DGGE.  The PCR products for denaturing gradient gel electrophoresis (DGGE) were obtained by ampli-
fying the bacterial 16S rRNA genes following a marker gene analysis approach51. The primer pairs were 357F-GC 
and 518R (Table 6)52. All PCRs were performed with the T100 Bio-Rad Thermocycler in a 25-μl reaction volume 
containing 1X Master Mix (166–5009, Bio-Rad, Berkeley, CA, USA), 0.02 bovine serum albumin (BSA), 0.4 μM 
of each primer, and 2 μl of DNA diluted 1:10 in sterile DNase-treated water. DGGE was carried out using a 
DCode System (Bio-Rad) with a 30–50% denaturing gradient of formamide and urea53. Electrophoresis ran at 
200 V for 5 h at 60 °C in 1X TAE buffer. Gels were stained for 30 min with SYBR Green I nucleic acid gel stain 
(10.000X in DMSO, S9430, Sigma-Aldrich, USA) and were visualized using the D-Code XR apparatus from 
Bio-Rad. Then, DGGE bands were excised, incubated overnight at − 20  °C, washed, and crushed in 20 μl of 
molecular-grade water. The supernatant (2 μl) was used as a template and reamplified, as previously described, 
without BSA and using modified linker-PCR bacterial primers (357F-GC; 518R-AT-M13) (Table 6) 19,52,54–60. 
The obtained PCR products were sequenced with Sanger sequencing (Genechron-Ylichron S.r.l.). The sequence 
similarities were obtained by the National Centre for Biotechnology Information (NCBI) database using nucleo-
tide Basic Local Alignment Search Tool (BLASTn) analysis.

NGS.  High-throughput DNA sequencing and analysis were conducted by BMR Genomics s s.r.l. The V3-V4 
region of 16S rDNA was amplified using the MiSeq 300PEPro341F and Pro805R primer pair6. The sample reads 
were above 12*106. The reaction mixture (25 μl) contained 3–10 ng/μl genomic DNA, Taq Platinum HiFi (Invit-
rogen, Carlsbad, CA), and 10 μM of each primer. The PCR conditions for amplification of DNA were as follows: 
94 °C for 1 min (1X), 94 °C for 30 s, 55 °C for 30 s, 68 °C for 45 s (25X), and 68 °C for 7 min (1X). PCR products 
were purified through Agencourt XP 0.8X Magnetic Beads and amplified shortly with the Index Nextera XT. 
The amplicons were normalized with SequalPrep (Thermo Fisher) and multiplexed. The pool was purified with 
Agencourt XP 1X Magnetic Beads, loaded onto MiSeq, and sequenced with the V3 chemistry-300PE strategy.

qRT‑PCR.  Starting from the extracted DNA, the following microbial targets were quantified by qRT-PCR 
using a CFX Touch Real-Time PCR Detection System (Bio-Rad-Hercules, CA) and CFX Manager (3.1 Soft-
ware): total Bacteria, Bacteroidetes, Bacteroides spp., Firmicutes, Bifidobacterium spp., Akkermansia muciniph-
ila, and Methanobrevibacter smithii. Total bacteria and M. smithii were detected following two reaction designs. 
For M. smithii, the analysis was performed using as target both the 16S rDNA and then a specific functional gene 
(nifH). For total bacteria, quantification was carried out using a protocol with or without a probe. For the deter-
mination of total bacteria (method without probe), Bacteroidetes, Bacteroides spp., Firmicutes, Bifidobacterium 
spp. and Akkermansia muciniphila, 2 µl of 1:10 extracted DNA was added to a reaction mixture consisting of 
10 µl Sso Advance SYBR Green Supermix (172–5261, Bio-Rad), 0.5 µl each of the forward and reverse primers 
(10 µM final concentration) and 7 µl of ultrapure water in a 20 µl final reaction volume. The reaction conditions 
were set as follows: 95 °C for 3 min (1X), 95 °C for 10 s, and 59 °C for 15 s (57 °C for Bacteroidetes spp. and 60 °C 
for Firmicutes), 72 °C for 10 s (39X), 65 °C for 31 s, 65 °C for 5 s + 0.5 °C/cycle, ramp 0.5 °C/s (60X). Moreover, 
for the determinations of M. smithii and total bacteria (method with probe), the reaction was as follows. Two 
microlitres of 1:10 extracted DNA was added to a reaction mixture consisting of 10 µl IQ Multiplex PowerMix 
(Bio-Rad-Hercules, CA), 0.2 µl of the molecular probe (10 µM), 0.5 µl each of the forward and reverse primers 
(10 µM final concentration) and 6.8 µl of ultrapure water in a 20 µl final reaction volume. The reaction condi-
tions were 95 °C for 3 min (1X), 95 °C for 10 s, 59 °C for 15 s, 72 °C for 15 s (39X), and 72 °C for 5 min. Standard 
curves were produced with serial six-fold dilutions of genomic DNA from the microorganism target, provided 
by ATCC (Manassas, Virginia, USA) or DSMZ (Braunschweig, Germany). All PCR tests were carried out in trip-
licate. Table 6 provides detailed information regarding oligonucleotide sequences and genomic standards19,54–60. 
The PCR efficiencies were always between 90 and 110%. To confirm the amplification of each target, gel electro-
phoresis was performed on 2% agarose gels.

Data elaboration and statistical analyses.  The statistical analysis was performed using STATA version 
11.0. Moreover, the data on the included T1D patients and healthy controls were elaborated to highlight the 
likelihood of having diabetes. A descriptive analysis of the variables was conducted. The data were reported as 
absolute numbers and percentages for categorical variables and as means and standard deviations for continu-
ous variables. Moreover, the subjects were divided by individual origins into two groups: Italian and migrant, 
considering the origin of the children and their families, to show differences in the distribution of disease deter-
minants and to assess whether being a migrant could be associated with T1D onset. Differences between Italian 
and migrant children were assessed using the χ2 test with Fisher’s correction for categorical variables and Stu-
dent’s t-test for continuous variables. Univariable logistic regression was then performed to estimate the impact 
of sociodemographic, nutritional, and microbiota-related variables on the outcome. These associations were 

Table 6.   Multivariable logistic regression model assessing potential risk factors of T1D. *Odds Ratio, adjusted 
also for age and gender. **Confidence Interval.

OR* 95% CI**

Total charbohydrate intake (g) 1.03 1.01—1.05

Firmicutes (Log gene copies/g stool) 7.30 2.26—23.54

Bifidobacterium spp (Log gene copies/g stool) 0.13 0.05—0.34
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expressed as odds ratios (OR) at a 95% confidence interval (CI). Moreover, the adjusted p-value for multiple 
comparisons was calculated using the Benjamini and Hochberg false discovery rate method. We conducted 
multivariable analyses including various variables (age, gender, Firmicutes, Bifidobacterium spp., and total car-
bohydrate intake) and the risk of type 1 diabetes using logistic regression models. The Spearman rank-order 
correlation coefficient was also determined to assess the relationships between variables. A p-value p < 0.05 was 
considered significant for all analyses.

The DGGE gel analysis was performed with Bionumerics 7.2. The hierarchical classification was performed 
with a UPGMA system (1% tolerance and optimization level) and Pearson correlation. Simpson’s diversity index, 
Shannon’s index, and Margalef index were calculated for each DGGE profile to evaluate alpha diversity.

NGS bioinformatics analysis was performed with the software pipeline Qiime2. The reads were cleaned up 
by the primers using the software Cutadapt (version 2018.8.0) and processed with the software DADA2. The 
sequences were trimmed at the 3′ end (forward: 270 bp; reverse 260 bp), filtered by quality, and merged with 
default values. Subsequently, the sequences were elaborated to obtain unique sequences. In this phase, the chi-
maeras (denoised-paired) are also eliminated. The sequences were clustered against unique sequences at 99% 
similarity. The taxonomies of both GreenGenes (version 13–8) and Silva (version 132) were assigned to the OTU 
sequences. Alpha-diversity analyses were performed on all samples using the observed OTUs, Shannon, Pielou’s 
evenness, and Faith PD indices, and for each index, the Kruskal–Wallis test was used to verify the significance of 
the comparisons between samples. Beta-diversity analyses were performed on all samples using the Bray–Curtis, 
Jaccard, and UniFrac metrics (weighted and unweighted). Multivariable statistical analyses were performed using 
the PERMANOVA, Adonis, and ANOSIM tests; instead, the analysis of the differential abundance was based on 
the packages of R (MetagenomeSeq, DeSeq2, and ANCOM).

Data availability
The database includes human data that are available upon reasonable request.
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