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Abstract
The brain displays dynamical system behaviors at various levels that are functionally and cognitively relevant. Ample

researches have examined how the dynamical properties of brain activity reflect the neural cognitive working mechanisms.

A prevalent approach in this field is to extract the trial-averaged brain electrophysiological signals as a representation of the

dynamical response of the complex neural system to external stimuli. However, the responses are intrinsically variable in

latency from trial to trial. The variability compromises the accuracy of the detected dynamical response pattern based on

trial-averaged approach, which may mislead subsequent modelling works. More accurate characterization of the brain’s

dynamical response incorporating single trial variability information is of profound significance in deepening our

understanding of neural cognitive dynamics and brain’s working principles. Various methods have been attempted to

address the trial-to-trial asynchrony issue in order to achieve an improved representation of the dynamical response. We

review the latest development of methodology in this area and the contribution of latency variability-based decomposition

and reconstruction of dynamical response to neural cognitive researches.

Keywords Event-related potential � Dynamical brain response � Brain response variability � ERP latency jitter �
ERP decomposition

Characterization of the brain’s dynamical
response and its variability from instance
to instance

Characterization of dynamical brain response to stimuli in

cognitive tasks forms a cornerstone in neurocognitive

research. To examine how this complex dynamical system

behaves and how it is associated with function and cog-

nition, neuroscientists usually give the brain a ‘kick’ (e.g.,

sensory input) and observe its neural response, like

physicists examining the dynamics nature of a pendulum

(Fig. 1b). The response is not merely an increase or

decrease of activity strength in some kind, but displays a

rich structure of dynamical system response pattern at the

time scale of millisecond, which can be used to infer the

underlying architecture and configuration of dynamical

neural system at various levels (Deco et al. 2008; Graben

et al. 2008; Kiebel et al. 2006, 2008). Electroencephalog-

raphy (EEG) technology provides a non-invasive means to

measure such dynamical neural responses with sufficiently

high temporal resolution. Since EEG signal contains a large

amount of spontaneous background activity, the pattern of

the response activity to the ‘kick’, also known as event-

related potential (ERP), becomes visible only after aver-

aging multiple trials, which cancels out the strong spon-

taneous activity (Fig. 1c). ERP waveform (Fig. 1c),

typically showing a delicate response pattern of dynamic

oscillators, has engendered a large amount of research on

brain-behavior relationships (dating back to the 1930s

(Davis 1939)). At scalp level, the average ERP approach

has hitherto remained the main approach to obtaining the

dynamical response pattern with sufficient temporal
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resolution, and it has been demonstrated to be a powerful

tool for investigating the neural dynamics-cognition rela-

tionships. Manipulations of cognitive processes (e.g., to

perform fast or to perform accurate) or stimulus properties

(e.g., luminance) can specifically alter an ERP peak or

trough in a temporally fine-grained manner, showing a

fascinating psychophysical phenomenon (Tobimatsu and

Celesia 2006). Such a trial-averaged ERP approach has

given birth to fruitful research outcomes with respect to the

neural mechanisms of perception, emotion, memory, lan-

guage, and various other cognitive processes.

Trial-averaging appears to be a powerful approach to

characterizing the dynamical responses to external stimuli.

However, the averaged waveform is not an accurate rep-

resentation of the dynamical responses due to brain

response variability (Fig. 1c). Unlike a pendulum, the brain

is an active dynamical system that responds variably to the

same ‘kick’. This variability may stem from neural func-

tional mechanisms (e.g., adaptation and learning (Brooks

et al. 2015; Collins and Frank 2018; Dhawale et al. 2017),

from dynamical nature of multilevel neural working

(Mendonca et al. 2016), or simply from noise (Faisal et al.

2008). This renders the trial-averaged ERP inaccurate in

describing brain response due to the blurring effect, as

explained in Fig. 1c. In the worst case, the inaccuracy

could lead to misleading conclusion in neurocognitive

research (Ouyang et al. 2016; Stokes and Spaak 2016).

From the dynamical system point of view, the distorted

representation of system response will also render all the

inferences of system architecture and configurations ques-

tionable (Kashyap et al. 2019).

Fig. 1 EEG as a tool to characterize the brain’s dynamical response.

a A typical EEG experiment paradigm in which discrete events are

presented to the subject to elicit brain response while EEG signal is

being recorded continuously. b Eliciting brain response by stimulus

can be analogized to hitting a pendulum and observing its dynamic

response. c The average ERP method assumes that a specific response

activity is evoked by stimulus and is added to the spontaneous

activity. By averaging a number of trials aligned to stimulus onsets

the spontaneous activity will be cancelled out and the evoked

response will remain. However, due to the trial-to-trial variability of

brain response (represented by shifting blue peaks), the average ERP

may end up showing a blurred version of the response pattern

(bottom). d Real EEG data showing that there are different sub-

components in the single trial ERPs with differential latency

variabilities. The data are single trials ERP sorted by P3 latencies

from electrode CPz of a single subject from a face recognition task

(Rellecke et al. 2012) This figure is taken from Ouyang (2020).

Permission has been obtained
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Strictly speaking, the brain’s dynamical response pattern

only genuinely unfolds in a single trial. It is thus important

to characterize the response pattern at single trial level.

However, this endeavor is greatly hindered by a funda-

mental challenge—how can a genuine response activity be

differentiated from the overlapping, spontaneous, self-

sustaining activity in a single trial? In fact, the sponta-

neous activity—the activity that reflects the sustained

neural dynamics in functional operation—occupies the

major power in a single trial brain EEG (Cole and Voytek

2017), even after the artifactual signals are removed. This

overwhelmmingly dominant ongoing activity makes it

difficult to identify the exact pattern of an externally eli-

cited response. These inherent neural data features create a

‘‘single trial vs. average’’ dilemma in the characterization

of dynamical brain responses using EEG technology in

cognitive neuroscience research: In a single trial, the

dynamical response pattern is genuinely preserved but is

mixed with strong spontaneous activity; In the average

ERP, the spontaneous activity are effectively canceled out

but the dynamical response pattern are distorted by the

trial-to-trial variability. Advanced signal processing tech-

nology and a theoretical framework for addressing this

dilemma are therefore needed in view of the importance of

knowing what the dynamical response really looks like in a

single trial for a deeper understanding of various neural

cognitive mechanisms.

No two brain responses are the same. The brain’s fun-

damental ability of adapting to the environment and

thriving lies in its flexibility and malleability of its internal

system and behaviors. Therefore, being variable is one of

the defining features of the brain dynamical systems. It has

been proposed by many dynamical system researchers that

the brain system lies in a critical state that balances relia-

bility and variability in which various functions are best

achieved and maintained (Cocchi et al. 2017; Wang et al.

2016, 2019). As such, the variability information of brain

dynamical response provides another key channel to

investigating the core mechanisms, aside from the pattern

of the dynamical response per se. Various neurophysio-

logical factors can contribute to response variability. The

key question is, to what extent is cognitive behavior vari-

ability reflected in single trials ERP?

A clear answer to this question is the first step that

stimulates and illuminates further development of single

trial ERP-based characterization of brain dynamical

responses. Reliably obtaining the variability information of

the brain dynamical response remained a challenging topic

for a long time, again, due to the strong spontaneous EEG

activity that hampers its reliable estimation. Nevertheless,

statistically, the relationship between trial-to-trial vari-

ability of brain response (e.g., amplitude, latency, oscilla-

tory power) and various external covariates (e.g., response

speed, correctness, reward signal) has been extensively

confirmed (Bridwell et al. 2018). In fact, numerous recent

findings have revealed a strikingly close relationship

between single trial ERP variability and complex real time

cognitive processes ranging from memory/evidence-based

decision making (Loughnane et al. 2016; Ratcliff et al.

2016) to real time dynamics of expectation, feedback

processing, and cognitive control in the dynamic rein-

forcement learning process (Collins and Frank 2018; Frank

et al. 2015). These concrete findings have firmly pointed

out that the high temporal resolution, non-invasive tech-

nology of EEG is able to reveal rich information associated

with complex cognitive variability from trial to trial.

However, confirming the functional relevance of the trial-

to-trial variability is still substantially different from pre-

cisely characterizing the variability pattern. The latter is

more important for informing and validating dynamical

modelling studies. For example, knowing the significant

correlation between single trial neural response strength

and reaction times does not mean knowing the distribution

pattern of the neural response strength across trials (which

can be Gaussian, ex-Gaussian, or Poisson) because the

samples may be too few or amount of noise may be too

strong to reliably infer the distribution patterns. Such dis-

tribution patterns are crucially important as they reflect the

properties of the underlying model that generates the

responses.

Characterizing the trial-to-trial variability of brain

response as revealed by ERP has been an increasingly

trendy research in recent years. The two major aspects of

variability information are amplitude and latencies, which

have both been shown to be highly variable (Ouyang et al.

2015), also see Fig. 1d). The variability of the morphology

of the entire response pattern of spatiotemporal features

across trials has been less attended, which we also believe

to be an important aspect to look into. Regarding the more

detailed feature of the variability pattern, it has been shown

that the early ERP components, such as P1, N1, P2, that

reflect the early stages of low level perception, appear to be

less variable, whereas the late components, such as P3,

N400, P600, that reflect high-level cognitive processes,

appear to be highly variable (Ouyang et al. 2015; Wang

et al. 2015). The variability is ubiquitous in all task para-

digms (Ouyang et al. 2017). Ample evidence of cognitive

relevance of the variability in single-trial ERPs has been

reported in the ERP literature (Arazi et al. 2017; Lough-

nane et al. 2016; Pisauro et al. 2017; Stefanics et al. 2018).

This further suggests a need to shift from the conventional

trial-averaging approach to more advanced approaches of

characterizing dynamical responses after explicitly

addressing the latency asynchrony issue. The major reasons

for this shift are: (1) an average pattern mis-represents the

dynamical responses in single trials (Fig. 1). And such mis-
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representation of neural response patterns could mislead

researchers’ understanding of neural working mechanisms

(Stokes and Spaak 2016) and behavioral effects on neural

system (Ouyang et al. 2016), and many other aspects such

as precise timing, subtle effects, and intricate dynamics. (2)

Rich information about the dynamics of neurocognitive

and functional processes is only accessible in single trials.

Significance of addressing the issue of trial-
to-trial variability in brain response

According to the issues related to trial-to-trial brain

response variability that we elaborated above, we argue

that addressing them will have profound benefits in many

domains in neural cognitive research. (1) Obtaining a more

accurate pattern of dynamical response by compensating

the variability effect will provide important information for

inferring the dynamical and functional mechanisms of

neural systems. (2) Obtaining a more accurate response

pattern is beneficial to better characterization of trial-to-

trial variability, as the rectified pattern can serve as a better

template. The trial-to-trial variability is also an important

feature dimension of the dynamical system response. (3)

The improved dynamical response pattern and trial-to-trial

variability information provide new channels for studying

the brain-cognition relationships, cross-sectional differ-

ences, and individual differences from the dynamical sys-

tem’s perspective. Below we provide an overview of the

development of methods that are oriented to study more

precise representation of brain’s dynamical response pat-

tern and its variability measured by the tool of ERP.

Current state of methodology

The pursuing of a more accurate characterization of brain’s

dynamical response beyond simple averaging has a long

history and is still advancing. Since a time marker-locked

average ERP is a blurred version of the dynamical

response, de-blurring is a major approach to restore the

response pattern. The earliest relevant attempt in this line

dates back to half a century ago (Woody 1967). Woody

pioneered the method of identifying the single trial laten-

cies of ERP components and re-synchronizing single trials

according to the estimated latencies with the aim of

obtaining a ‘rectified’ ERP, thus better representing the

dynamical response pattern. Since then, various methods

and approaches have been attempted. In the following, we

summarized the developments in this area including the

latest ones.

Averaging after resynchronization

Resynchronization is the core procedure for dealing with

the asynchrony problem. A coarse approach is to identify

the single trial latencies of ERP and re-synchronize single

trials to the identified latencies instead of to stimulus onsets

and obtain a new ERP (Patterson et al. 2000; Pomalazaraez

and Mcgillem 1986; Woody 1967). This approach can

adjust large ERP components such as P3 (Kutas et al. 1977;

Patterson et al. 2000; Pomalazaraez and Mcgillem 1986;

Spencer et al. 2000). However, resynchronizing single tri-

als to the latencies of a late ERP component is as prob-

lematic as stimulus-locked averaging, because an ERP is

not simply a homogeneous ensemble temporally locked to

a single time event (Fig. 1c). For instance, a reaction time

(RT)-locked average ERP will simply blur stimulus-locked

portions (Berchicci et al. 2016). The multi-compositional

nature of ERP makes simple resynchronization of single

trials to one component’s latency an ineffective approach

to improving the detection of dynamical response pattern.

To address this issue, methods that decompose ERP into

multiple components with differential trial-to-trial vari-

ability had been developed.

Time marker-based ERP decomposition

Neural cognitive processes are functionally modular—they

can be divided into, for example, perception, central cog-

nition, and response/execution (Hurley 2001). Neural

activations associated with different sub-processes have

different degrees of trial-to-trial variability. They may be

locked to stimulus onset, response, or neither-nor ((Ribeiro

et al. 2016; Schiff et al. 2014; Verleger et al. 2014), or refer

to illustration in Fig. 2), meaning that resynchronization

could be and should be done separately on different sub-

components. One straightforward idea is to decompose

these several component clusters with different latency

variabilities and resynchronize them separately (Fig. 2).

The earliest attempt at such decomposition was simply to

separate an ERP into a stimulus-locked component cluster

and a response-locked component cluster based on markers

of stimulus onsets and reaction times, which can be done

with mathematical derivation (Bardy et al. 2014; Dandekar

et al. 2012; Hansen 1983; Smith and Kutas 2015a, b;

Takeda et al. 2008; Yin et al. 2009; J. Zhang 1998). In

essence, these time marker-based decomposition methods

all share the same mathematical core: a general linear

model (GLM) in which the time markers serve as the

regressors (independent variables), the raw EEG data serve

as the dependent variables, and the waveform associated

with each regressor is the coefficient vector to be solved in
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the GLM framework. The mathematical derivation for the

component decomposition can be summarized below.

Assuming two activation components co-existing in

every single trial, temporally locked to different events, the

EEG trace can be described as:

EEG tð Þ ¼
XT1

s¼1

C1ðsÞX1 t � sð Þ þ
XT2

s¼1

C2ðsÞX2 t � sð Þ þ e:

ð1Þ

where C is the component waveform function and X is

timing functions coding the time markers of the compo-

nents with value one (e.g., stimulus onsets or response

times) and others zero. T1 and T2 indicate the duration of

components and e is the noise term. In reality, more than

two components locked to different time events can be

modeled and (1) can be simply extended to such cases.

Equation (1) can be written in a matrix form:

EEG ¼ X � C + e: ð2Þ

With the information of the time markers X, the least

square error-based solution of the components can be

expressed as Eq. (3) below (Dandekar et al. 2012), which

serves as the solution for the decomposed components:

C ¼ ðXtXÞ�1 � Xt � EEG: ð3Þ

One obvious limitation of this approach is that it

requires RT to be included in the experiment, a require-

ment which many experiments with covert responses (e.g.,

internal counting) cannot fulfill. Even in the ERP data with

both stimulus onsets and RT markers (or other markers), an

issue may arise as to whether RT precisely represents the

latency of the late latency-variable ERP components. The

second limitation, which is much subtler and less widely

known, is a noise amplification issue (Ouyang et al. 2015).

Specifically, when two sets of markers (e.g., stimulus and

RT) have very small inter-marker jitter across trials, the

mathematical solution of the two marker-locked compo-

nents are two complementary waveforms (with large

amplitude) that are clearly not biologically plausible. This

is due to the close-to-singularity of the covariance matrix

of the two regressors (Ouyang et al. 2015). Similar issues

exist in dipole source localization when different dipole

sources have a high spatial correlation, in which case the

source temporal activity will have complementary patterns

resembling amplification of noise (Wolters et al. 1999). A

solution to this issue that is both practically and theoreti-

cally sound has yet to be found. From practical perspective,

a common solution is introducing regularization, the con-

figuration of which is however usually dependent on

specific circumstances.

ERP decomposition without time marker

Motivated by the potential issue that the external time

markers may not precisely represent an underlying com-

ponent’s latency, and are often not available, researchers

have proposed several methods to decompose ERP without

fully relying on time markers (Ouyang et al. 2015; Takeda

et al. 2010; Truccolo et al. 2003; Wu et al. 2014). The basic

approach is to estimate the latencies of the components

whose single trial latencies are not or inaccurately repre-

sented by external time markers, thus creating ‘time

markers’ that are to be fed into the time marker-based ERP

decomposition methods. For instance, recognition of a

word during sentence comprehension elicits functionally

Fig. 2 Illustration of ERP decomposition and reconstruction. It is

assumed that there are three component clusters in single trials ERPs:

stimulus-locked cluster (blue), central cluster (red), and response

time-locked cluster (green). To obtain a better representation of the

brain response pattern at a single trial, the three clusters need to be

decomposed (middle panel) and separately re-synchronized (right

panel). (Color figure online). Figure was adapted from Ouyang et al.

(2016). Permission has been obtained
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differentiable processes such as low-level visual, semantic

and syntactic processes, which are presumably variable in

latency that is difficult to measure externally. N400 and

P600 are two neural activations associated with subpro-

cesses of language processing. Wang et al. (2015)

attempted to estimate single trial latencies of these two

components and separate them (F. Wang et al. 2015) based

on the assumption that the two components have differ-

ential trial-to-trial latency variability. The decomposition

using the estimated latencies was similar to the marker-

based decomposition whereby each type of marker is

coupled with a specific component, but is based on a more

robust iterative scheme (Wang et al. 2015). The work thus

demonstrated that the precision of single trial latency

estimation sufficed for the decomposition. However, these

non-time marker-based methods still inherit the limitation

of marker-based methods as described above (e.g., noise

amplification), with an additional limitation resulting from

the inaccuracy in the single trial latency estimation.

General issues and challenges

Although the distortion issue in using trial-averaged ERP

to represent the dynamical response is widely known (Jung

et al. 2001; Kutas et al. 1977; Makeig and Onton 2011;

Ouyang 2020; Ouyang et al. 2017; Sassenhagen and

Bornkessel-Schlesewsky 2015; Saville et al. 2015; Wal-

hovd et al. 2008), there is still not a commonly accepted

solution that has come into play in the community.

Researchers are still mainly using trial-averaged ERP as a

representation of the brain dynamical response. A sound

framework for improving the representation of the

dynamical response is strongly needed. Nevertheless,

recent development has seen some promising methods

emerged. In the following, we continue to summarize some

recent methodological developments that have attempted to

address these issues.

Reconstruction of a more accurate
representation of the dynamical response

With the advancement of signal processing techniques and

theoretical modelling, a substitute for trial-averaged ERPs

should be sought to more accurately characterize the

dynamical neural response at the single trial level.

Obtaining this substitute certainly needs to (1) incorporate

trial-to-trial variability information and (2) differentially

treat the sub-components with different variability features.

A new framework was recently proposed by Ouyang et al.

(2016, 2020) that was designed to obtain such a substitute.

The procedure, called ERP reconstruction, comprises the

following steps: (1) decomposing an ERP into different

subcomponents with different variability; (2) obtaining the

latencies of each subcomponent at single trial level; (3)

separately re-synchronizing each subcomponent according

to their own single trial latencies (either estimated or pre-

scribed) in the temporal axis with respect to stimulus onset

(Fig. 2). The moving of each single trials is referred to the

median latency of all trials, i.e., trials with latencies smaller

than the median should move rightward, vice visa; and (4)

summing up the re-synchronized subcomponents and

obtaining an ERP that has been adjusted for the blurring

effect. The procedure is illustrated in Fig. 2. In principle,

the reconstructed ERP is a more precise reorientation of the

dynamical response pattern occurs at single trial level.

Comparatively, the stimulus-locked averaged version

misrepresents the pattern, as the blurred portion (Figs. 1

and 2) does not actually occur in a single trial. The

reconstruction effect in a real EEG dataset is shown in

Fig. 3.

Recovering the internal dynamics of neural
cognitive sub-processes

Although ERP reconstruction can, in principle, provide a

more accurate representation of the dynamical response, it

still possesses an inherent limitation that the reconstructed

ERP still represents a mixture of different neural cognitive

sub-processes, each one of which may have unique

dynamical features and functional signatures. An illustra-

tion of this issue has been shown in several previous

studies (Ouyang et al. 2013; Sturmer et al. 2013; Verleger

et al. 2014). The brain response to an external input is

functionally modular—it can be divided into different

stages such as sensation, central evaluation and response

action. Different stages possess a uniquely rich structure of

Fig. 3 Comparison of a standard averaged ERP (left) and a recon-

structed ERP (right) Figure was adapted from Ouyang et al. (2015).

Permission has been obtained
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dynamical activation pattern of their own (Ouyang et al.

2015). Moreover, different stages have different degree of

variability, which accumulatively contribute to behavioral

variability (Ouyang et al. 2015). Both standard ERP and

reconstructed ERP are a summed representation of differ-

ent subprocesses. Beside the fact that they cannot provide

detailed dynamics pattern of sub-processes, the summed

ERP may also provide ambiguous neural effects (Ouyang

et al. 2013). How these different sub-processes are mapped

to the ERP sub-components, how their dynamics and

variability are reflected and to what extent they can be

extracted from single trial data are important questions in

cognitive neurodynamics research. This query requires

further decomposition of ERP sub-components at a finer-

grained level of cognitive sub-processes that generate

neural activations overlapping with each other, which

further requires tackling of several theoretical and

methodological complexity in investigating separate com-

ponents, such as (1) What should be the number of sub-

components supported by a sound theoretical basis? (2)

How to validate the decomposition? (3) What could be the

additional complexity issue brought by the decomposition

methods?

Oriented to addressing these frontier issues, the recent

development of trial-to-trial variability-based ERP analysis

methodology has demonstrated that the brain dynamical

response pattern and its variability at the level of differ-

ential sub-processes can be reliably accessed with a

sophisticated signal processing method. Figure 4 presents

the results derived by a recent methodological framework

Residue Iteration Decomposition (RIDE, (Ouyang et al.

2015)). RIDE assumes ERPs to be composed of different

internal sub-components with differential latency vari-

ability. A unique aspect of this framework is that the

decomposition and extraction of the sub-components are

based on the information of single trial latency variability

(Ouyang et al. 2015). Figure 4 shows that the RIDE

framework decomposes the ERP into stimulus-locked

component cluster S, central component cluster C and RT-

locked component cluster R. The novel scenario provided

by this framework is that each component cluster displays a

distinct dynamical activation pattern and clearly differen-

tial single trial variability that are otherwise hidden and

mixed in the conventional average ERP and reconstructed

ERP. In order to deal with theoretical issues such as noise

amplification, the RIDE methodology incorporated

sophisticated signal processing procedures including L1-

norm minimization-based iteration and strict time-window

specifications, which bears a high degree of complexity in

this framework (Ouyang et al. 2015). Nevertheless, the

analysis scenario of dissociating overlapping ERP sub-

components points to an appealing direction of character-

izing brain dynamical responses at a finer-grained level of

cognitive sub-processes. Since this decomposition frame-

work is relatively new, much more systematic evaluation

and validations need to be conducted to further establish its

utility in neural cognitive research. One major aspect of

evaluation is its sensitivity to parameters in EEG pre-pro-

cessing and in the method itself. For example, choice of

referencing method (Dong et al. 2017; Yao 2001), filtering

method, and artifact rejection procedures can substantially

affect the obtained ERP, which will in turn affect the

decomposed or reconstructed ERP. Optimizing the

parameters for the new methodologies to best investigate

the internal dynamics and variability of neural sub-pro-

cesses would be an important direction to develop.

Contribution of latency variability-based
ERP decomposition and reconstruction
to neural cognitive research

Studying the ERP sub-components provides access to the

structures of neural cognitive dynamics associated with

different sensory and cognitive stages that are otherwise

inter-mixed, distorted, or hidden in the average waveform.

Therefore, tackling the sub-components in the average ERP

waveform is crucial for the future development in neural

cognitive researches, especially regarding the neural

dynamical system. Recent applications of ERP decompo-

sition and reconstruction methods have demonstrated the

benefits in this regard. A brief summary is provided below.

The benefits of applying the above-mentioned methods

for improving the brain dynamical response pattern and for

extracting the internal dynamics and trial-to-trial variabil-

ities of sub-processes can be categorized into the following

three areas: (1) Restoring the true neural effects associated

with external factors that are otherwise attenuated and

covered in the standard ERP due to the latency variability-

induced distortion; (2) Pin-pointing the neural effects in a

specific sub-process from the entire cognitive process of

perceiving, evaluating, and responding to a stimulus; (3)

examining the functional signature of trial-to-trial vari-

ability of neural cognitive sub-processes.

A detailed demonstration of the application in the first

area has been provided in Ouyang et al. 2016. Applications

in this area, specifically, restoring true neural effects

blurred by latency jitter, have covered many different

cognitive constructs and topics including episodic memory

effect (Murray et al. 2019), novelty processing effect

(Warren et al. 2020), cognitive flexibility (Kopp et al.

2020), language processing (Fjaellingsdal et al. 2020), and

reliability of ERP components (Martin-Loeches et al.

2017). These applications indirectly reflect the ubiquity of

the latency variability across a broad range of cognitive

paradigms. For the second application area, ample
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applications of RIDE decomposition algorithms in recent

years have shown that the decomposition of ERP into

different sub-components revealed richer internal

structures and mechanisms regarding the modular cogni-

tive stages. Selected examples include differentiating

neural activities associated with early, direct perceptual

Fig. 4 Dynamical pattern and trial-to-trial variability of overlapping

ERP sub-components. The RIDE method decomposes ERP data into

different temporally overlapping sub-component clusters with differ-

ent features of single trial variability. The framework reveals that

some sub-components are stimulus-locked, some are RT-locked and

some are in-between, and they can be separated. The separation

reveals richer neural dynamical activity pattern that are otherwise

mixed and hidden in the stimulus-locked average ERP. The consis-

tency of the separation scenario has been demonstrated elsewhere

(Ouyang et al. 2015). Data are from a single subject performing a face

recognition task. The time zero indicates the presentation time of the

facial stimulus. Vertical black line: stimulus onset. Black curve: RT.

The single trials data were normalized in amplitude and filtered under

40 Hz
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response and with late, indirect, top-down controlled

response in executive function tasks (Sturmer et al. 2013),

investigating the cognitive transitioning and binding pro-

cesses (Opitz et al. 2020; Takacs et al. 2020), pinpointing

the specific neural cognitive processes that are affected by

external manipulations (Peng et al. 2020; Steinemann et al.

2018), or by various brain disorders, aging, or different

drugs (Bluschke et al. 2020; Giller and Beste 2019; Klei-

maker et al. 2020; Muckschel et al. 2020; Wolff et al.

2019), differentiating neural activates of different cognitive

stages in various other tasks (Valt et al. 2020). In addition

to the research area, the benefits of improved brain

response characterization by overcoming the latency vari-

ability issue are, in principle, applicable in clinical area,

which has been explored as well (De Venuto et al. 2018).

As for the third application area, the functional signature of

trial-to-trial variability, one study has shown that the cross-

trial variability of brain response in individuals estimated

by RIDE was modulated by COMT genotype (Rostami

et al. 2017). Furthermore, individual difference regarding

the correlation between neural variables of and cognitive

abilities has also been shown to be better revealed in

specific sub-components of brain response extracted by

RIDE (Meyer et al. 2019), which showed that the extracted

neural characteristics are further associated with inter-

subject variability. While a considerable number of appli-

cations in recent years have demonstrated the contribution

of the new methodologies in neural cognitive research,

many questions still remain open. In Fig. 5 we summarized

the contributions as elaborated above and some outstanding

remaining questions in this field.

Concluding remarks

In this review article, we have provided an overview of the

long-standing latency asynchrony issue in brain research

that has been based on trial-averaged ERPs as a tool for

depicting the brain’s dynamical responses, and the latest

developments in methodology in addressing the limitations

of trial-averaging approach. It is worth to note that the

latency asynchrony issue is by no means a negligible

technical limitation compromising data fidelity. Instead, it

distorts neural representations in terms of (but not confined

to) timing (Miller et al. 2009), behavioral effect (Zhang

et al. 2015), functional role (Bodmer et al. 2018), and

anatomical feature (Yang et al. 2017). With the advance-

ment in signal processing techniques and theoretical

modelling, the limitations that latency asynchrony imposes

on brain response characterization are being progressively

Standard ERP

Decomposed ERP

Reconstructed ERP 
with latency 

variability corrected

Restoring the true 
neural effects

Pin-poin�ng the neural 
effects in a specific 

sub-process

Examining the 
func�onal signature of 
trial-to-trial variability

Dynamical 
waveforms

Trial-to-trial 
variability

Remaining questions:

What criteria can be established for validating the results generated by newly 

developed methods?
What are their major limitations?

How to more reliably differentiate the physiological variability from noise?

What is the complexity and robustness of newly developed methods when 

applied in larger scale datasets?
What are the major guidelines and requirements for the applications of new 

methods?

Fig. 5 Contribution of latency

variability-based ERP

decomposition and

reconstruction to neural

cognitive research and

remaining questions to be

addressed
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addressed. A more detailed characterization of dynamical

response concerning single trial variability and the

dynamics of sub-components that are mixed in the com-

pound of average ERPs has started to show advantages in

neural cognitive research. We have presented the latest

methodological development that can be used for either

remedying the standard ERP with comparable simplicity or

accessing the richer structure of ERP sub-components and

single trial variabilities. These latest developments point to

a future trend of exploring the rich patterns of complex

neural dynamics associated with cognition.
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