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Abstract
In this paper, we present a novel method, called four-dimensional convolutional recurrent neural network, which inte-

grating frequency, spatial and temporal information of multichannel EEG signals explicitly to improve EEG-based emotion

recognition accuracy. First, to maintain these three kinds of information of EEG, we transform the differential entropy

features from different channels into 4D structures to train the deep model. Then, we introduce CRNN model, which is

combined by convolutional neural network (CNN) and recurrent neural network with long short term memory (LSTM)

cell. CNN is used to learn frequency and spatial information from each temporal slice of 4D inputs, and LSTM is used to

extract temporal dependence from CNN outputs. The output of the last node of LSTM performs classification. Our model

achieves state-of-the-art performance both on SEED and DEAP datasets under intra-subject splitting. The experimental

results demonstrate the effectiveness of integrating frequency, spatial and temporal information of EEG for emotion

recognition.
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Introduction

Emotion recognition has received increasing attention in

the field of affective computing in recent years, due to its

potential applications in human–machine interaction

(HMI) (Fiorini et al. 2020; Cowie et al. 2001), diseases

evaluation (Figueiredo et al. 2019; Bamdad et al. 2015;

Vansteensel and Jarosiewicz 2020) and driving fatigue

detection (Kong et al. 2017; Zeng et al. 2018, 2019b), and

mental workload estimation (Blankertz et al. 2016; Aricò

et al. 2019; Cartocci et al. 2015). Emotion recognition

methods could be categorized into two major classes, one

is based on non-physiological signals [e.g., facial expres-

sion and speech (Yan et al. 2016; Zhang et al. 2019)] and

another is based on physiological signals [e.g., electroen-

cephalography (EEG) and electrocardiography (ECG)

(Chen et al. 2015; Zheng et al. 2017; Hsu et al. 2017)].

EEG is characterized by noninvasive, portability, reliabil-

ity, and small cost. It has been widely used in the field of

brain–computer interfaces (BCIs) (Pfurtscheller et al.

2010; Aricò et al. 2018, 2020), which establishing a direct

communication channel between human beings and com-

puters. Recently, enhancing BCI by taking advantage of the

information of the user’s emotional states from EEG has

gained more and more attention, which termed as affective

brain–computer interface (aBCI) (Mühl et al. 2014; Gar-

cia-Molina et al. 2013; Goshvarpour and Goshvarpour

2019). The goal of aBCI is to make machines have the

ability to perceive, understand, and regulate emotions, and

the key problem of it is to recognize emotion from EEG.

From traditional hand-crafted features based methods to

deep learning methods, considerable progress has been

made in the community of EEG-based emotion recognition

(Alarcão and Fonseca 2017; Garcia-Molina et al. 2013;

Mühl et al. 2014; Zeng et al. 2019a). Before the surge of

deep learning, there are three kinds of features dominant in

EEG emotion recognition, including time domain features

(Frantzidis et al. 2010; Ansari-Asl et al. 2007; Kroupi

et al. 2011), frequency domain features (Li and Lu 2009;
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Rozgić et al. 2013; Reuderink et al. 2013) and time–fre-

quency domain features (Akin 2002; Murugappan et al.

2010). However, these features are usually low-level and

designed by specific purposes, thus they may not be dis-

criminative enough to detect emotions. Hence, deep

learning algorithms are developed, which can learn high-

level features automatically from data (He et al. 2016;

Krizhevsky et al. 2012). Zheng and Lu (2015) introduced

deep belief networks (DBNs) to investigate the critical

frequency bands and channels of EEG for emotion recog-

nition. Song et al. (2018) proposed dynamical graph con-

volutional neural networks (DGCNN) to perform EEG

emotion classification. Ma et al. (2019) designed a multi-

modal residual LSTM (MMResLSTM) network for emo-

tion recognition. All of those deep models achieve better

performance than shallow models.

However, for the EEG representation building based on

deep learning, there are still some challenges to be solved

and one of them is how to fuse more useful information of

EEG signals to perform emotion recognition better. First,

in the past decade, many researchers investigated the

relationship between frequency bands of EEG and emotion

types. They not only found that there were four frequency

bands strongly associated with emotion, including Theta

(h: 4–7 Hz), Alpha (a: 8–13 Hz), Beta (b: 14–30 Hz), and

Gamma (c: 31?Hz), but also suggested that combining all

these four bands was better than any individual band when

classifying emotions (Zheng and Lu 2015; Yang et al.

2018a). Second, some researchers extracted spatial features

of EEG, which inspired by EEG devices that have multiple

electrodes place different positions of the cerebral cortex to

collect electric potentials. They explored intrinsic infor-

mation contained in the positional relationship among

electrodes to improve the performance of emotion recog-

nition. For example, Zhang et al. (2018) proposed a quad-

directional recurrent neural network (RNN) based method

to capture long-distance spatial dependencies among

electrodes at a single moment. However, they only used

four scanning orders of electrodes which may be unable to

cover the complex relationship between different elec-

trodes. Li et al. (2018) constructed data from 62 electrodes

as two-dimensional (2D) spare maps to train the deep

learning model. Third, some researchers found that not

only the spatial information of multiple electrodes at a

temporal slice is critical for emotion recognition, but also

the contextual dependencies among temporal slices. For

instance, Wang et al. (2018) devised EmotioNet con-

structed by three-dimensional (3D) CNN to simultaneously

extract features in spatial and temporal domains. Hochre-

iter and Schmidhuber (1997) designed a parallel convolu-

tional recurrent neural network (PCRNN) which extracts

spatial and temporal features from EEG by CNN and RNN

with Long Short-Term Memory (LSTM) cells respectively,

and then concatenates the outputs of CNN and LSTM

directly to make classification (Yang et al. 2018b). From

the above, it can be observed that frequency, spatial and

temporal features of EEG signals are all important for

emotion recognition. However, these methods only con-

sider one or two of these three kinds of features. To the best

of our knowledge, there is little literature available that

integrating frequency, spatial and temporal information

simultaneously in EEG-based emotion recognition.

To address this issue, a new segment-level EEG-based

emotion recognition method is proposed in this paper,

called four-dimensional convolutional recurrent neural

network (4D-CRNN), as illustrated in Fig. 1. Our method

aims to effectively and efficiently integrate frequency,

spatial and temporal information of EEG signals to

recognition emotions. At first, a 4D feature structure is

built, which explicitly organizing these three kinds of

information of EEG. Then CRNN model is introduced,

which is combined by CNN and LSTM. Different from

PCRNN, we conduct a deeper fusion of CNN and LSTM

modules. Specifically, CNN is used to learn frequency and

spatial representation for each temporal slice in 4D struc-

tures. RNN with LSTM cells takes the outputs of CNN as

input and extracts the temporal dependency between slices.

In summary, our contributions include: (a) We propose a

4D feature structure, which contains frequency, spatial and

temporal information of EEG explicitly. We also design a

deep model to simultaneously learn these three kinds of

information from the 4D structure for EEG-based emotion

recognition. The method is dubbed 4D-CRNN; (b) The

experimental results of 4D-CRNN demonstrate that inte-

grating different frequency bands, effective electrodes

relationship and appropriate length of segments signifi-

cantly improves classification performance; (c) 4D-CRNN

achieves the state-of-the-art performance both on SEED

(Zheng and Lu 2015) and DEAP (Koelstra et al. 2012)

datasets.

In the remainder of this paper, we describe our proposed

method in ‘‘Method’’ section. In ‘‘Experiment’’ section, the

datasets, experiment setting, results and discussion are

presented. Conclusions are given in ‘‘Conclusion’’ section.

Method

Figure 1 shows the framework of 4D-CRNN for EEG-

based emotion recognition. It includes three parts: 4D

feature organization, CRNN modeling and classifier. The

details of each part will be introduced in sequence.
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4D feature organization

To integrate the frequency, spatial and temporal features of

EEG signals simultaneously, we build a 4D feature struc-

ture including these three kinds of information as depicted

in Fig. 2. Firstly, as previous works did (Yang et al.

2018a, b), to increase the amount of training data, we

divide original EEG trials into Ts long segments without

overlapping and assign every segment with the label of the

original trial. Then, for each segment, we decompose it

with a Butterworth filter into four frequency bands

including h, a, b and c. Secondly, we extract differential

entropy (DE) features from each frequency band with 0.5 s

window, which has been proved to be the most stable fea-

ture for emotion recognition (Zheng et al. 2017; Duan

et al. 2013). Thirdly, we organize the DE feature of each

frequency band as a 2D map and stack them. Thus, every

segment can be represented as a 4D structure

Xn 2 Rh�w�d�2T , n ¼ 1; 2; . . .;N, where N is the number of

total samples, h and w are the height and width of 2D map

respectively, d represents the number of frequency bands

and 2T denotes twice of the segment length. More details

are described as follows.

DE feature is used to measure the complexity of EEG

signals, which is defined as

Fig. 1 An overview of the

proposed EEG-based emotion

recognition framework using

4D-CRNN
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hðZÞ ¼
Z
Z

f ðZÞ logðf ðzÞÞdz ð1Þ

where Z is a random variable, f(z) is the probability density

function of Z. Following previous studies (Zheng et al.

2017), the DE feature for Gaussian distribution is calcu-

lated as below

Fig. 2 The generation of 4D

inputs
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where Z follows the Gaussian distribution Nðl; d2Þ, e and d
are the Euler’s constant and the standard deviation of a

time series, respectively.

Suppose an original EEG segment is represented as

Sn 2 Rm�rT , where m and r denotes the number of elec-

trodes and the sample rate of raw EEG signals, respec-

tively. For each EEG segment, we calculate DE features for

every frequency band with 0.5 s window and normalize

each DE vector with Z-score normalization. Thus, the

original EEG segment is transformed into the DE segment

Pn 2 Rm�d�2T , where d denotes the number of frequency

bands and we set it as 4 in this paper.

To keep the spatial structure information of the elec-

trode location, we further transform the m-dimension DE

vector into a compact 2D map according to the location of

electrodes. For example, the 2D map of 62 channels is

shown in Fig. 3, where zero denotes that the signals of the

channels are unused. Then, we stack the 2D map of dif-

ferent bands into a 3D array, which is expected to combine

complementary information of them. Therefore, the DE

segment Pn is converted into final segment representation

Xn 2 Rh�w�d�2T , where h and w are the height and width of

the compact 2D map, respectively. In this paper, we set

h ¼ 8 and w ¼ 9.

CRNN modeling

Frequency and spatial feature learning

For a sample Xn (a 4D structure), we extract frequency and

spatial information through CNN from each temporal slice

of it. Different from traditional CNNs whose convolutional

layer is usually followed by a pooling layer, we only add a

pooling layer after the last convolutional layer. The pooling

operation is used to reduce the parameter amount at the

expense of information loss. However, the 2D map size of

sample Xn is really small that it had better preserve all

information rather than merge information to reduce the

number of parameters. Therefore, we only use one pooling

layer after the last convolutional layer.

Our CNN module is similar to CNN structure in Yang

et al. (2018a), while the difference is that we add a max-

pooling layer after the last convolutional layer, and the

reason is described above. As depicted in Fig. 4, it contains

four convolutional layers, one max-pooling layer and one

fully-connected layer. Specifically, the first convolutional

layer (Conv1) has 64 feature maps with filter size of 5� 5.

The next two convolutional layers (Conv2, Conv3)

respectively have 128 and 256 feature maps with filter size

of 4� 4. The fourth convolutional layer (Conv4) includes

64 feature maps with filter size of 1� 1, which is used to

fuse feature maps of the previous convolutional layer. For

all convolutional layers, zero-padding and rectified linear

units (ReLU) activation function are applied. After con-

volutional operations, a max-pooling layer (Pool) with size

of 2� 2 and a stride of 2 is applied to ease overfitting and

enhance the robustness of the network. Finally, outputs of

the Pool layer are flattened and fed to a fully-connected

layer (FC) with 512 units. The final output Qn 2 R512�2T is

Fig. 3 The compact 2D map of 62 channels
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the frequency and spatial representation of original EEG

segments.

Temporal feature learning

Since EEG signals contain dynamic content, the variations

between temporal slices in the 4D structure may hid

additional information which could be useful for making

more accurate emotion classification. Thus, we utilize a

RNN with LSTM cells to extract temporal information

from CNN outputs.

Given a CNN output sequence Qn ¼ ðq1; q2; . . .; q2TÞ,
where qt 2 R512 and t ¼ 1; 2; . . .; 2T . We use a LSTM

layers with 128 memory cells to excavate temporal

dependency of inner segment, as shown in Fig. 5. The

output of the LSTM layer can be calculated as follows

it ¼ rðWqiqt þWhiht�1 þWciCt�1 þ biÞ ð3Þ

ft ¼ rðWqf qt þWhf ht�1 þWcfCt�1 þ bf Þ ð4Þ

ct ¼ ftCt�1 þ it tanhðWqcqt þWhcht�1 þ bcÞ ð5Þ

ot ¼ rðWqoqt þWhoht�1 þWcoCt þ boÞ ð6Þ

ht ¼ ot tanhðctÞ ð7Þ

yt ¼ Whoht þ bo ð8Þ

where r is the logistic sigmoid function, and i, f, o and c are

the input gate, forget gate, output gate and cell activation

vectors. The W terms are weight matrices (e.g. Whi is the

hidden-input weight matrix), the b terms are bias vectors

(e.g. bi is the input bias vector) respectively.

The final high-level representation of the EEG segment

is the output of the last LSTM node, yn 2 R128. It integrates

the frequency, spatial and temporal cues of a Ts EEG

segment.

Classifier

Based on the final feature representation yn, we predict the

label of the original EEG segment Xn by linear transform

approach, which can be computed as

OUT ¼ Ayn þ b ¼ ½out1; out2; . . .; outC� ð9Þ

where A is the transform matrix, b is the bias and C is the

number of emotion category. Then, the output is fed into a

softmax classifier for emotion recognition, which can be

formulated as

PðcjXnÞ ¼ max
expðoutjÞPC
i¼1 expðoutiÞ

jj ¼ 1; . . .;C

( )
ð10Þ

where PðcjXnÞ represents the probability of the EEG seg-

ment Xn belong to the class c.

Experiment

In this section, two public evaluation datasets are intro-

duced. Then, the experiment setting of our method are

described. Finally, the results on these datasets are reported

and discussed.

Fig. 4 The structure of CNN module for frequency and spatial feature learning
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Datasets

SEED dataset

The SEED dataset (Zheng and Lu 2015) carefully selects

the emotional clips and healthy subjects, making sure that

clips could elicit subjects’ corresponding emotion. There

are 15 emotional clips selected from films. Each clip is

about 4 min long and only contains one kind of emotion.

These emotional clips can be divided into 3 categories of

emotions (positive, neutral, and negative), and every 5 clips

corresponds to one kind of emotion. 15 healthy subjects

take part in the EEG signals collection experiment. Before

each clip, subjects were provided a 15 s hint about the

emotion category of the clip. After each clip, they were

asked to record their self-assessment about the clip

immediately. While they were watching the clips, EEG

signals of them were recorded by 62-channels’ ESI Neu-

roScan system, whose electrodes are located according to

the 10–20 system. After the experiments, according to the

response of the subjects, only the trials when the target

emotions were elicited were chosen for further analysis.

Every subject conducts the above experiment three times,

which means there are 3 sessions for each subject. We

mixed all 3 sessions of each subject. If EEG signals were

split into 2 s (T ¼ 2) without overlapping, we would obtain

5076 samples per subject. The EEG signals seriously

contaminated by electromyography (EMG) and Elec-

trooculography (EOG) had been already removed manually

before the publication of the dataset. The data was down-

sampled to 200 Hz. A bandpass filter between 4 and 50 Hz

was applied to EEG signals to filter the noise.

DEAP dataset

The DEAP dataset (Koelstra et al. 2012) uses music video

clips as the visual stimuli to elicit different emotions. It

contains 40 video clips, which chosen by using a web-

based subjective emotion assessment interface. For each

clip, it was segmented into 1 min which contained maxi-

mum emotional content. Thus, the final stimuli are 40

1-min video clips. The emotion category of each clip is

labeled by the rated levels (1–9) of arousal and valence.

We choose 5 as the threshold to divide the labels into two

binary classification problems, which is the same as pre-

vious works did (Yang et al. 2018a, b). There are 32 sub-

jects invited to watch these clips. Their EEG signals were

collected by 32-channels’ Biosemi ActiveTwo device

according to the international 10–20 system. During the

experiments, subjects performed a self-assessment of their

levels of arousal, valence at the end of each trial, which

used to judge whether the corresponding emotion was

elicited correctly. EMG and EOG signals had been

removed before the publication of the dataset. EEG signals

were downsampled to 128 Hz. They were passed to a

bandpass filter between 4 and 45 Hz to filter the noise.

For each trial (a trial means a subject watches one video

clip), it contains 63 s EEG signals. The first 3 s of signals

are pre-trial baseline signals in a relaxed state. The rest

60 s of EEG recordings are emotional signals. Since Yang

et al. (2018a) and Yang et al. (2018b) have demonstrated

that the baseline signals are useful for emotion recognition,

we process the signals as they did. We first divide the

baseline signals into 6 segments with 0.5 s and extract DE

features from four frequency bands (h, a, b, c) of each

segment. Then, the baseline DE features are calculated by

averaging DE features of these 6 segments for each fre-

quency band. Finally, the difference between baseline DE

features and emotional DE features is used by our method.

Therefore, for each subject, it has 40 60 s EEG signals. If

we take one sample per 2 s (T ¼ 2) without overlapping,

1200 samples will be gained for each subject.

Experimental setup

4D-CRNN is trained with a batch size of 128 and Adam

with a learning rate of 0.001. The maximum number of

epochs is set as 100. Note that all these training hyper-

parameters were optimized on the test set. The model is

implemented by Keras,1 which is extended from Google

Tensorflow,2 and trained on a NVIDIA GTX TITAN X

GPU. Codes are available at https://github.com/aug08/4D-

CRNN.

We evaluate performances of all methods for EEG

emotion recognition with a similar protocol used in Li

et al. (2018) and Yang et al. (2018a). Specifically, we

applied fivefold cross-validation on each subject, the

average classification accuracy (ACC) and standard

Fig. 5 The structure of LSTM module for temporal feature learning

1 https://keras.io/.
2 https://www.tensorflow.org/.
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deviation (STD) of them represent the individual perfor-

mance for the subject. The average ACC and STD of all

subjects denote the final performance of the method.

Results

The proposed 4D-CRNN network takes 4D segments with

size Xn 2 Rh�w�d�2T as inputs. In this paper, we set d ¼ 4

because results of previous studies have shown that the

combination of all bands can complement each other and

contribute to better results than individual bands (Zheng

and Lu 2015; Yang et al. 2018a). Parameters h, w and

T affect the amount of spatial and temporal cues of EEG

signals that our model could perceive. Therefore, we

investigate the effect of EEG segment length (T) and the

effect of 2D map (h and w) on the recognition accuracy.

Then, we evaluate the overall performance of our model.

Finally, we make a comparison with other traditional

structures.

The effect of EEG segment length

Since the length of EEG segment determines the emotion

information it contains, we investigate the segment length

T ranges in [1, 1.5, 2, 2.5, 3, 3.5, 4]. Besides, we set h,

w and d as 8, 9 and 4, respectively. Table 1 shows the

performances (average ACC and STD of all subjects) of

different T using 4D-CRNN on SEED and DEAP datasets.

From the results, we can draw two conclusions. First,

setting T ¼ 2 seems the optimal segment length for EEG-

based emotion recognition, since it achieves the best per-

formance both on SEED and DEAP. On SEED, when

setting T ¼ 2, the corresponding average ACC and STD

for discrete emotion classification are 94.74 ± 2.32%. On

DEAP, the corresponding average ACCs and STDs are

94.22 ± 2.16% and 94.58 ± 3.69% for valence and arou-

sal classification tasks, respectively. Second, the difference

between the accuracies of different segment length is fairly

small. On SEED, the biggest gap is 1.35% when comparing

T ¼ 2 and T ¼ 3:5. On DEAP, the largest gaps are 0.7%

and 0.8% for valence and arousal classification, respec-

tively. This indicates that our method can extract inherent

temporal information from EEG and not is affected by the

length of the segment. In the remaining paper, T ¼ 2 is

chosen as the segment length.

The effect of 2D map

In general, there are two kinds of 2D maps that electrodes

can be transformed, one is a compact map as we did,

another is a sparse map used in Li et al. (2018). For

instance, 62 channels can be transformed into a sparse 2D

map as displayed in Fig. 6. In this part, we examine the

effects of them with 4D-CRNN. Our compact map is

shaped as 8� 9, while the sparse map is 19� 19. We

calculate the average ACC, STD and time cost of all

subjects to indicate the performance of each map.

Results on the SEED dataset are presented in Table 2,

which can be found that the accuracy of our compact map

is closed to the sparse map. The accuracy of the compact

map is 94.74%, which is only 0.29% less than the sparse

map. While for the time cost of them, the compact map

only spends 811 s for every subject in fivefold cross-vali-

dation, which is almost one-third of the time cost of the

sparse map. On the DEAP dataset, as shown in Table 3, the

performance of our compact map is better than the sparse

map both from accuracy and training time cost aspects. For

the valence classification, the average accuracy of the

compact map is 94.22%, which exceeds the accuracy of the

sparse map by 1.06%. Besides, the average time cost of the

compact map is 59 s, while the time spending by the sparse

map is 137 s, which is more than twice of compact map.

For arousal classification, we can obtain similar conclu-

sions. The reason for obtaining similar results maybe

because that the sparse map adding zeros between adjacent

electrodes does not increase any useful information. The

less time cost of compact map is likely due to the smaller

size of it, which involves less convolutional filters to be

calculated.

Results on both datasets have persuaded us that com-

paring with the sparse map, the compact map is the better

choice to categorize emotions. Therefore, we chose the

compact map, where h ¼ 8 and w ¼ 9, in the remaining

paper.

Overall performance

In this part, we display the overall performances of 4D-

CRNN on SEED and DEAP datasets with the optimal

parameters according to the above analysis, where h ¼ 8,

Table 1 Performances (average ACC ± STD %) of segment length

T using 4D-CRNN on SEED and DEAP

T (s) SEED DEAP-valence DEAP-arousal

1.0 93.99 ± 2.57 93.52 ± 3.26 93.78 ± 4.19

1.5 94.59 ± 2.37 93.84 ± 3.36 94.19 ± 4.02

2.0 94.74 ± 2.32 94.22 ± 2.61 94.58 ± 3.69

2.5 94.38 ± 2.51 93.97 ± 3.06 94.36 ± 3.76

3.0 94.02 ± 2.45 94.20 ± 2.78 94.46 ± 3.81

3.5 93.24 ± 3.57 93.95 ± 2.91 94.42 ± 4.00

4.0 93.84 ± 2.67 94.11 ± 2.77 94.42 ± 3.72

822 Cognitive Neurodynamics (2020) 14:815–828

123



w ¼ 9 and T ¼ 2. From Fig. 7, we can find that 4D-CRNN

is stably effective on the SEED dataset. Accuracies of all

subjects are surpassed 90% and the average accuracy of

them achieves 94.74% with STD 2.32%. Among 15

subjects, there are 9 of them (#2, #4, #5, #6, #8, #9, #10,

#13 and #14) outperform than the average accuracy.

Results of 4D-CRNN model on DEAP are shown in Fig. 8.

For valence classification, the mean accuracy and STD of

all 32 subjects are 94.22% and 2.61% respectively, and

there are 30 subjects (except #5 and #22) higher than 90%.

For arousal classification, the mean accuracy is 94.58% and

the STD is 3.69%. There are only 2 subjects (#2 and #22)

lower than 90% in terms of accuracy. It is worth noting that

the valence and arousal accuracies of subject #22 are

86.67% and 78.16%, respectively, which is lower than

others. This might because the subject lacked concentration

during the experiments or did not well report the degree of

subjective feeling after experiments.

Method comparison

To show effective performances of our proposed method,

we conduct a comparison with several commonly used

methods, which are listed below:

Fig. 6 The sparse 2D map of 62 channels

Table 2 The comparison

between two kinds of 2D maps

on SEED

2D map Map shape ACC ± STD (%) Time cost (s)

Compact map (ours) 8 9 9 94.74 ± 2.32 811

Sparse map (Li et al. 2018) 19 9 19 95.03 ± 2.23 2274

Table 3 The comparison between two kinds of 2D maps on DEAP

2D map Map shape Valence Arousal

ACC ± STD (%) Time cost (s) ACC ± STD (%) Time cost (s)

Compact map (ours) 8 9 9 94.22 ± 2.61 295 94.58 ± 3.69 300

Sparse map (Li et al. 2018) 19 9 19 93.16 ± 3.14 685 93.20 ± 4.18 675

Fig. 7 Overall performance of the 4D-CRNN model on SEED

Cognitive Neurodynamics (2020) 14:815–828 823
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1. HCNN (Li et al. 2018) It used the hierarchical CNN

architecture to classify emotions. The first convolu-

tional layer had 6 feature maps with filter size of 5� 5,

followed by a max-pooling layer with size of 2� 2.

The second convolutional layer had 16 feature maps

with filter size of 3� 3, followed by a max-pooling

layer with size of 2� 2. After them, there was a fully-

connected layer with 144 nodes. It took 2D DE maps

(Xn 2 Rh�w) as inputs, and the DE features only

extracted from c frequency band. It only considered

the spatial information of EEG signals.

2. CCNN (Yang et al. 2018a) It built a continuous CNN

model which constructed by four convolutional layers

and one fully-connected layer. The size of feature maps

and filters of the four convolutional layers were {64,

128, 256, 64} and {4� 4, 4� 4, 4� 4, 1� 1},

respectively. The fully-connected layer had 1024

nodes. It took 3D DE structures (Xn 2 Rh�w�d) as

inputs, where DE features extracted from four fre-

quency bands (h, a, b, c). It excavated frequency and

spatial cues from EEG signals.

3. EmotionNet (Wang et al. 2018) It utilized 3D convo-

lution kernels to extract spatial and temporal features

simultaneously from raw EEG signals. In the first two

layers, the size of 3D kernels was set as 2� 2� 10 to

extract spatio-temporal information. In the third layer,

the 3D kernel size was set as 4� 3� 1 to fuse spatial

information only. In the fourth and fifth layers, the

kernel was 1� 10 to extract temporal features only. It

took 3D structure (Xn 2 Rh�w�2r) of raw EEG signals

as input, where r denoted the sample rate of EEG

signals. This model contained spatio-temporal infor-

mation of EEG signals.

4. PCRNN (Yang et al. 2018b) It utilized CNN to extract

spatial features from each 2D map, and used LSTM to

extract temporal features from the EEG vector

sequence. After that, the spatial features and temporal

features were concatenated to make emotion classifi-

cation. It took 3D structure (Xn 2 Rh�w�2r) of raw EEG

signals as input. This method parallelly integrated

spatial and temporal information from raw EEG signals

to classify emotions.

5. CNN (Ours) It was the CNN module of our method

which contained four convolutional layers, a max-

pooling layer and a fully-connected layer. The struc-

ture details of it is shown in Fig. 4. It took 2D map

(Xn 2 Rh�w) or 3D structure (Xn 2 Rh�w�d) of DE

features as input. It extracted frequency and spatial

information from EEG signals.

6. CRNN (Ours) It was the CRNN module of our method,

which combined by CNN module shown in Fig. 4 and

a LSTM layer shown in Fig. 5. It used 3D structure

(Xn 2 Rh�w�2r) as input. It extracted spatial and

temporal information from raw EEG signals.

For the first four methods, we reproduce these methods

according to the structure parameters presented in the

original papers. We apply these methods on SEED and

DEAP datasets with fivefold cross-validation. The length

of each sample is set as 2 s, then we get 5070 samples for

each subject in the SEED dataset, 1200 samples for each

subject in the DEAP dataset. The 2D map is compact.

Table 4 shows the average ACC and STD of each method.

On the SEED dataset, the accuracy of 4D-CRNN is

94.74%, which exceeds the accuracy of HCNN by 6.14%.

On the DEAP dataset, the valence classification accuracy

Fig. 8 Overall performance of the 4D-CRNN model on DEAP
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of 4D-CRNN is 94.22%, which beats EmotionNet, CCNN

and PCRNN by a margin of 20.82%, 4.42% and 3.96%,

respectively. Arousal classification accuracy of 4D-CRNN

is 94.58%, which outperforms the other three methods by

20.32%, 4.08 and 3.60% respectively.

To illustrate the statistical significance between our

proposed 4D-CRNN method and the other methods

(HCNN, CCNN, EmotionNet and PCRNN), we perform

the paired t-test on their classification results. The

hypothesis is that ‘‘the classification performance of 4D-

CRNN is greater than that of the other methods’’. Each test

is run on the two sequences of the classification results

obtained by 4D-CRNN and the given method. The statis-

tical test results are represented by the symbol ‘‘**’’, which

means that the hypothesis is correct with probability 0.99.

For example, on the DEAP dataset, the average valence

classification accuracy of 4D-CRNN over fivefold is

94.22 ± 2.61% and that of PCRNN is 90.26 ± 2.88%. The

appended ‘‘**’’ means the hypothesis of 4D-CRNN is

superior to PCRNN is true based on the statistical test. In

summary, from Table 4, we conclude that 4D-CRNN

achieves better performance than the other compared

methods on both datasets.

To verify the effectiveness of our CNN module on fre-

quency and spatial feature extracting, we compare it with

HCNN and CCNN. As shown experiments #1 and #5 in

Table 4, we feed the same inputs (Xn 2 Rh�w, which is a

2D map of DE features extracted from c frequency band)

into HCNN and CNN (Ours), respectively. It can be found

that our CNN module yields an increase of 2.28%. When

compared CCNN with CNN (Ours), we feed the same

inputs (Xn 2 Rh�w, which is a 3D structure of DE features

extracted from h, a, b and c frequency band) into them. The

classification results can be found in Table 4 experiments

#2 and #6. It can be observed that our CNN provides an

improvement in accuracy with 1.23% and 1.66% for

valence and arousal classification, respectively. Thus, we

can conclude that our CNN module outperforms HCNN

and CCNN in frequency and spatial feature learning.

Reasons will be discussed in ‘‘Discussion’’ section.

To investigate the effectiveness of our CRNN module

on spatial and temporal information learning, we compare

it with EmotionNet and PCRNN models. We feed the same

inputs (Xn 2 Rh � 2r, which is a 3D structure of raw EEG

signals) into these three models, respectively. The results

are shown in Table 4 experiments #3, #4 and #7. The

EmotionNet gets the worst performance, which lower than

CRNN (Ours) on valence and arousal classification by

18.58% and 18.2%, respectively. When compared with

PCRNN, CRNN (Ours) displays better performance, which

exceeds PCRNN by 1.72% and 1.48% for valence and

arousal classification, respectively. Therefore, we conclude

that our CRNN can extract spatial and temporal informa-

tion from EEG effectively. Reasons that CRNN outper-

forms EmotionNet and PCRNN will be displayed latter.

As shown in Table 4 experiments #6, #7 and #8. CNN

only can extract frequency and spatial information from

EEG signals. CRNN not only can extract spatial and

temporal such as experiment #7, but also can learn fre-

quency, spatial and temporal information at the same time,

such as experiment #8. It mainly depends on the input it is

fed. To verify the importance of simultaneously consider-

ing frequency, spatial and temporal information of EEG

signals for emotion recognition, we compare 4D-CRNN

(Ours) with CNN (Ours) and CRNN (Ours). From the

results, 4D-CRNN gets the best results both on SEED and

DEAP datasets. 4D-CRNN outperforms CNN by 2.58% on

SEED, 3.19% and 2.42% on valence and arousal classifi-

cation on DEAP, respectively. 4D-CRNN exceeds CRNN

by 1.86% on SEED, 2.33% and 2.12% on valence and

Table 4 The performances (average ACC ± STD (%)) of the compared methods.

Nos. Method Input shape Information SEED DEAP-valence DEAP-arousal

1 HCNN (Li et al. 2018) h� w Frequency ? spatial 88.60 ± 2.60** – –

2 CCNN (Yang et al. 2018a) h� w� d Frequency ? spatial – 89.80 ± 2.76** 90.50 ± 2.98**

3 EmotionNet (Wang et al.

2018)

h� w� 2r Spatial ? temporal – 73.40 ± 3.13** 74.26 ± 3.08**

4 PCRNN (Yang et al. 2018b) h� w� 2r Spatial ? temporal – 90.26 ± 2.88** 90.98 ± 3.09**

5 CNN (ours) h� w Frequency ? spatial 90.88 ± 2.43 88.76 ± 2.32 88.92 ± 2.15

6 CNN (ours) h� w� d Frequency ? spatial 92.16 ± 3.52 91.03 ± 2.49 92.16 ± 2.78

7 CRNN (ours) h� w� 2r Spatial ? temporal 92.88 ± 3.12 91.98 ± 3.60 92.46 ± 3.35

8 4D-CRNN (ours) h� w� d � 2T Frequency ? spatial ?

temporal

94.74 ± 2.32 94.22 ± 2.61 94.58 ± 3.69

The symbol ‘‘**’’ indicates statistic significance (paired t test, p\0:01) of performance improvement of the proposed method (4D-CRNN) in

comparison with other methods
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arousal tasks, respectively. We can conclude that simulta-

neously taking frequency, spatial and temporal information

into account is benefit for emotion recognition. The supe-

riority of the proposed 4D feature structure will be dis-

cussed latter.

Discussion

The above-mentioned comparison analysis shows that our

4D-CRNN architecture performs best than other methods.

Several noteworthy points will be discussed in this section.

First, slightly deeper convolutional layers and max-

pooling are benefit for CNN to extract and preserve more

information. From Table 4 experiments #1, #2 and #5, we

can find that the results of CNN (Ours) are better than

HCNN and CCNN. Compared CNN (Ours) with HCNN, it

yields a large increase of 2.28%. This may be because our

CNN is deeper, which containing 4 convolutional layers

and each convolutional layer has {64, 128, 256, 64} feature

maps, respectively. However, HCNN only contains 2

convolutional layers and they respectively contain {6, 16}

feature maps. Thus, our CNN can extract more emotion

related cues than HCNN. As for CCNN, our CNN provides

an improvement in accuracy with 1.23% and 1.66% for

valence and arousal classification, respectively. This may

be due to that the max-pooling contributes to preserving

useful information.

Second, the deeper fusion of CNN and LSTM is better

for extracting spatial and temporal information than par-

allel concatenating of CNN and LSTM. From Table 4,

CRNN (Ours) displays better performance than PCRNN

for EEG based emotion recognition. Although they both

contain CNN and LSTM modules, the combination ways

are different. CRNN firstly extracts spatial features by

CNN from each 2D map of 3D EEG structure. Then uti-

lizes LSTM to extract temporal information from CNN

outputs which contain high-level spatial features. Finally,

the outputs of the LSTM module are used to make the

classification. However, PCRNN extracts spatial features

by CNN from 2D EEG maps, while extracting temporal

features by LSTM from EEG vectors, then concatenate the

outputs of CNN and LSTM to make the classification. The

results of CRNN exceed that of PCRNN maybe because it

takes the spatial topology of electrodes into consideration

when extracting temporal information of EEG signals,

which makes these two kinds of information complement

each other better. EmotionNet gets the worst performance

among them, which maybe because LSTM layers are more

suitable for extracting temporal information from EEG

signals than 3D kernels.

Third, the 4D feature structure integrating frequency,

spatial and temporal information of EEG performs better

than 2D and 3D structures which without containing these

three kinds of information simultaneously. The accuracy of

4D-CRNN is better than other compared methods dis-

played in Table 4, which might be partly attributed to the

organization of the input feature. 4D-CRNN uses 4D

structures as inputs, while CNN and CRNN take 2D or 3D

structures as inputs. Firstly, the 4D feature structure con-

tains frequency information extracted from four frequency

bands (h, a, b and c), which already have been proved to be

associated with emotion (Zheng and Lu 2015; Yang et al.

2018a). Besides, it maintains the spatial topology of elec-

trodes by the 2D map, which preserving spatial information

of multichannel. What is more, it comprises temporal

information since it contains contiguous DE features with

several seconds, which can capture the dynamic content of

emotion without varying with time. However, 2D and 3D

feature structures only involve two of these three kinds of

information. Therefore, 4D feature structure contains more

cues of emotion than other structures and performs better

than them.

Conclusion

We presented a segment-level EEG-based emotion classi-

fication method capable of aggregating frequency, spatial

and temporal information of EEG signals into account. The

proposed method achieves state-of-the-art performance

both on SEED and DEAP datasets. The vital procedures lie

in two parts: first, we build the EEG signals into 4D feature

structures, which explicitly organize frequency, spatial and

temporal cues of EEG. Second, we introduce the CRNN

model which is deeply fused by CNN and LSTM. CNN

deals with the frequency and spatial information and

LSTM extracts temporal dependencies from CNN outputs.

We investigate the importance of simultaneously extracting

frequency, spatial and temporal information from EEG by

comparing it with four competitive studies. The perfor-

mance is greatly improved due to the involvement of these

three kinds of cues in EEG-based emotion classification.
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