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Sepsis remains a major global concern and is associated with high mortality and morbidity despite improvements in its
management. Markers currently in use have shortcomings such as a lack of specificity and failures in the early detection of
sepsis. In this study, we aimed to identify key genes involved in the molecular mechanisms of sepsis and search for potential
new biomarkers and treatment targets for sepsis using bioinformatics analyses. Three datasets (GSE95233, GSE57065, and
GSE28750) associated with sepsis were downloaded from the public functional genomics data repository Gene Expression
Omnibus. Differentially expressed genes (DEGs) were identified using R packages (Affy and limma). Functional enrichment of
the DEGs was analyzed with the DAVID database. Protein-protein interaction networks were derived using the STRING
database and visualized using Cytoscape software. Potential biomarker genes were analyzed using receiver operating
characteristic (ROC) curves in the R package (pROC). The three datasets included 156 whole blood RNA samples from 89
sepsis patients and 67 healthy controls. Between the two groups, 568 DEGs were identified, among which 315 were upregulated
and 253 were downregulated in the septic group. These genes were enriched for pathways mainly involved in the innate
immune response, T-cell biology, antigen presentation, and natural killer cell function. ROC analyses identified nine
genes—LRG1, ELANE, TP53, LCK, TBX21, ZAP70, CD247, ITK, and FYN—as potential new biomarkers for sepsis. Real-time
PCR confirmed that the expression of seven of these genes was in accordance with the microarray results. This study revealed
imbalanced immune responses at the transcriptomic level during early sepsis and identified nine genes as potential biomarkers
for sepsis.

1. Introduction

Sepsis is defined as a life-threatening organ dysfunction
caused by a dysregulated host response to infection. Despite
advances in critical care management over the past few years,
sepsis is still associated with high mortality and morbidity
worldwide [1]. It has been reported that sepsis causes 30 mil-
lion episodes and 6 million deaths per year globally. How-
ever, according to the WHO, the data have missed
incidences in the low- and middle-income countries, which
means that the true burden arising from sepsis is far more
serious. Therefore, the early diagnosis of sepsis is necessary
to provide timely treatment. Markers currently in use, for
example, CRP, PCT, and IL-6, have intrinsic shortcomings

such as a lack of specificity and failures in the early detection
of sepsis [2]. Many researchers are committed to exploring
new biomarkers for sepsis. For example, studies have found
that serum levels of presepsin, soluble urokinase plasmino-
gen activator receptor, and soluble triggering receptor
expressed on myeloid cell 1, as well as the expression of
CD64, are upregulated among sepsis patients. Newly identi-
fied classes of biomarkers such as microRNAs, long noncod-
ing RNAs, and the human microbiome are also arousing
general interest [3]. Despite the increase in different potential
biomarkers, such efforts have not yet yielded satisfactory
results, which warrants further validation.

It is not surprising that a large proportion of sepsis bio-
markers still focuses on the inflammatory part of this
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condition. Sepsis is characterized by disrupted inflammatory
responses. It has been proposed that following a major
inflammatory insult, there are simultaneous inflammatory
and immunosuppressive responses [4]. Pattern recognition
receptors such as TLR recognize and elicit inflammatory
responses against pathogenic factors, for example, by trigger-
ing leukocyte and complement activation [5]. Concurrent
immune cell function impairment (e.g., neutrophil defects)
and T-cell apoptosis also occur, leading to immune suppres-
sion in patients with sepsis [6]. This could trigger secondary
infections and undermine the immune system. However, the
complex inflammatory responses during sepsis have not been
fully elucidated.

Bioinformatics analysis offers an ideal way to screen large
gene expression datasets to comprehensively understand the
mechanisms underlying sepsis. In this study, we integrated
three datasets and used a bioinformatics analysis approach
to detect key genes and potential new biomarkers involved
in sepsis. Molecular mechanisms underlying the inflamma-
tory responses during sepsis were also explored to search
for possible new treatment targets for sepsis.

2. Materials and Methods

2.1. Data Sources. The three gene expression datasets ana-
lyzed in this study were downloaded from the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih
.gov/geo/) and used to identify DEGs. GSE95233 [7],
GSE57065 [8], and GSE28750 [9] were taken as representa-
tive datasets of patients with sepsis. For each dataset, data
from day 1 of sample collection were used to analyze the gene
expression based on the GPL570 platform (HG-U133_Plus_
2). All data were freely available online, and this study did not
involve any human or animal experiments.

2.2. Identification of DEGs. Background expression value cor-
rection and data normalization of the raw data were carried
out using the Affy package in R (Affy, version 1.64.0). Subse-
quently, the Linear Models for Microarray Analysis R pack-
age (limma; version 3.42.2) was applied for differential
expression analysis. Volcano plots were generated using Bio-
conductor (http://bioconductor.org/biocLite.R). DEGs were
identified as those with a t-test value of P < 0:05 and a ½
logFC� > 1:5.

2.3. Functional and Pathway Enrichment Analyses. Gene
Ontology (GO) analyses were used for the exploration of
functional roles of gene sets, while KEGG analyses were used
to classify the pathways in which such genes might function.
For comprehensive functional annotation, GO and KEGG
analyses of the identified DEGs were conducted using the
DAVID tool (https://david.ncifcrf.gov/). A false discovery
rate ðFDRÞ < 0:05 in both GO and KEGG analyses was set
as the threshold for significant enrichment.

2.4. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Analysis. DEGs were uploaded to Search Tool
for the Retrieval of Interacting Genes (STRING, https://
string-db.org/) to analyze interactions among the proteins
encoded by the identified DEGs. Results with a minimum

interaction score of 0.4 were visualized using Cytoscape.
The PPI network for hub genes was computed with the max-
imal clique centrality (MCC) method and CytoHubba. Based
on theMCODE plugin, the PPI network was divided into two
clusters (clusters A and B).

2.5. Receiver Operating Characteristic (ROC) Curve Analysis.
ROC curve analyses to determine the specificity, sensitivity,
likelihood ratios, positive predictive values, and negative pre-
dictive values for all possible thresholds of the ROC curve
were performed using the R package (pROC, version
1.16.2). The diagnostic values of the genes were predicted
based on the ROC curve analysis.

2.6. Patient Enrollment. Patients diagnosed with sepsis in the
emergency department of Shanghai Ruijin Hospital from
July 31, 2020, to August 21, 2020, were enrolled. This part
of the study was approved by the Ethics Committee of Ruijin
Hospital (No. 2017119). Enrollment criteria were as follows:
(1) age: 18–90 years old, (2) patients met sepsis 3.0 sepsis
diagnostic criteria, and (3) hospital stay > 24 h. Exclusion cri-
teria were as follows: (1) discharged or died within 24h after
admission, (2) participated in other clinical research, (3)
needed emergency surgery after admission, (4) had a malig-
nant tumor, (5) pregnant or lactating, and (6) lacked neces-
sary clinical data.

2.7. Quantitative Real-Time PCR. RNA was extracted from
whole blood using TRIzol reagent (12183-555, Invitrogen)
following the manufacturer’s instructions. cDNA was syn-
thesized with a SuperScript™ III First-Strand Synthesis
SuperMix for qRT-PCR (11752-050, Invitrogen). Power
SYBR® Green PCR Master Mix (4367659, Applied Biosys-
tems) was used for qRT-PCR to analyze mRNA expression.
GAPDH was used as an internal control, and the relative
mRNA expression levels were calculated using the 2–ΔΔCT

method. The primer pairs used in the experiments are listed
in data S1.

3. Results

3.1. Identification of DEGs. Datasets GSE57065, GSE95233,
and GSE28750 were downloaded from the GEO database
and analyzed using R packages (Affy, limma, and ggplot2).
Volcano plots were generated to visualize fold changes of
the DEGs. Of the 568 DEGs evaluated, 315 were upregulated
and 253 were downregulated in the sepsis group (Figure 1).

3.2. Functional Enrichment of DEGs. Enrichment analysis
techniques extract biological information from a set of genes
or proteins. To identify key genes related to sepsis, gene func-
tions were annotated using the DAVID online software data-
base. GO annotation analysis showed enrichment of DEGs
involved in inflammatory responses such as the innate
response, T-cell receptor pathway, and antigen processing
and presentation (Figure 2(a)). KEGG pathway analysis
showed that the genes involved in sepsis were associated with
different infections such as influenza, tuberculosis, and
HTLV-1, further linking inflammation with sepsis
(Figure 2(b)).
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3.3. PPI Network and Hub Genes. To explore the key genes
involved in sepsis, a PPI network with 443 nodes and 2470
edges was built for the 568 DEGs (Figure 3). Table 1(a) shows
the top 20 genes with the highest degree rank, whereas the
top 20 genes selected using the CytoHubba plugin according
to the MCC method are sequentially ordered in Table 1(b).
The PPI network was divided into two clusters (clusters A
and B) using the MCODE plugin (Figures 4(a) and 4(b)).
Interestingly, most of the top 40 genes identified using the
different calculation methods, previously mentioned herein,
were present in both clusters A and B, with the genes shown
in Table 1(a) being in cluster A and genes in Table 1(b) in
cluster B. These findings suggested that these genes play
important roles in sepsis. Tables 2(a) and 2(b) show the func-
tional annotation of the two clusters. Cluster A was enriched
in genes involved in T-cell biology, antigen presentation, and
natural killer (NK) cell function. Intriguingly, most genes in
cluster A were downregulated, suggesting a possible immu-
nosuppression process early in sepsis. In contrast, cluster B
mainly contained genes related to innate immune responses
such as neutrophil-mediated immunity and phagocytosis.
These genes are closely related and cooperate with each other
to respond to different types of insults. Overall, these 40
genes comprised the hub genes during sepsis. While some
of these genes are well-characterized key elements in sepsis,
others might represent new potential biomarkers for sepsis.
Nine genes (LRG1, ELANE, TP53, LCK, TBX21, ZAP70,
CD247, ITK, and FYN) were chosen for further investigation
of their roles in and potential use as biomarkers for sepsis.

3.4. ROC Curve. To identify new potential biomarkers for
sepsis, ROC curves of data derived from healthy controls
and patients with sepsis from datasets GSE57065,
GSE95233, and GSE28750 were analyzed using the R package
(Figure 5). ROC curves were generated, and the area under
the curves was used to compare the different genes. This
analysis demonstrated that the nine selected genes had a
diagnostic role in sepsis. Thus, we chose these genes as candi-
dates for further analysis and validation.

3.5. Validation of Selected Genes at the Transcriptional Level.
The expression of nine key genes was compared between
patients with sepsis (n = 5) and healthy controls (n = 5) using
quantitative real-time PCR. The results showed that the
expression of seven of these genes was consistent with the
trend observed in the microarray analysis, whereas two
genes, LRG1 and TP53, showed no significant difference in
expression (Figure 6).

4. Discussion

Amicroarray study is an ideal way to comprehensively inves-
tigate sepsis. In this study, three gene datasets were integrated
to search for potential biomarkers and explore molecular
mechanisms of sepsis. Although sepsis is an inflammatory
disease, it has recently been established that both proinflam-
matory and anti-inflammatory responses occur early during
sepsis [10]. In our study, genes associated with both innate
and adaptive immunity had altered expression patterns in
patients with sepsis since the beginning of diagnosis. KEGG
pathway enrichment analysis showed that different antigenic
constituents from bacteria, viruses, and other insults can
cause sepsis. Upon receptor contact with their cognate
ligands, proinflammatory intermediates are recruited and
intracellular signaling pathways such as NF-κB transduction
are activated. The activation of NF-κB induces the expression
of early activation genes such as IL1B, IFNG, and IL-6 to
combat the insult. However, excessive cytokine release leads
to an increase in the release of circulating immune cells [5].
We found that most genes in cluster B encoded proteins that
participate in innate immune responses. All of these genes
were upregulated, indicating their roles in innate immune
responses. One of these genes is associated with OLFM4+
neutrophils, a subset of human neutrophils. Elevated levels
of OLFM4+ neutrophils in patients with sepsis are associated
with worse outcomes [11]. CHI3L1 is produced by several
cells including macrophages and neutrophils. A recent study
pointed out that the downregulation of CHI3L1 alleviates
skeletal muscle stem cell injury, suggesting its therapeutic
potential for sepsis [12]. In our study, we found that the genes
in cluster B interact with one another to mediate inflamma-
tory responses. Targeting these genes and corresponding
pathways involved in innate immune responses might be
one strategy to reduce inflammation and associated pathol-
ogy during sepsis, although much work is still required, con-
sidering the previous unsatisfactory trials involving immune
activation genes.

Previously, it was thought that the host immune response
to sepsis is characterized by an initial hyperinflammatory
response, followed by an immunosuppressive phase as the
disease progresses. However, recent studies have shown that
both proinflammatory and anti-inflammatory responses
occur early and simultaneously in sepsis [13]. In our study,
genes in cluster A were found to be mainly involved in T-
cell biology, antigen processing and presentation, and NK
cell function. Interestingly, all genes in cluster A were down-
regulated, suggesting immunosuppression during sepsis. In
cluster A, genes encoding antigen presentation-related mole-
cules, including HLA-DRA, HLA-DRB1, HLA-DPA1, HLA-
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Figure 1: Identification of DEGs from three datasets using volcano
plot analysis. Statistically significant DEGs were identified as those
with a t-test P value < 0.05 and a ½logFC� > 1:5. The blue dots
represent downregulated DEGs, while the red dots represent
upregulated DEGs.

3Mediators of Inflammation



Adaptive immune response

Antibacterial humoral response

Antigen processing and presentation

Antigen processing and presentation of exogenous peptide antigen via MHC class II

Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II

Cell surface receptor signaling pathway

Cellular defense response

Defense response to bacterium

Defense response to fungus

Immune response

Inflammatory response

Innate immune response

Interferon−gamma−mediated signaling pathway

Leukocyte migration

Peptide antigen assembly with MHC class II protein complex

Positive regulation of T cell proliferation

Regulation of immune response

T cell activation

T cell costimulation

T cell receptor signaling pathway

2.5 5.0 7.5

Rich factor

Bi
ol

og
ic

al
 p

ro
ce

ss

Count
10
20
30

40
50

−log10(FDR)

5

10

Enrichment of DEGs

(a)

Figure 2: Continued.

4 Mediators of Inflammation



Allograft rejection

Antigen processing and presentation

Asthma

Autoimmune thyroid disease

Cell adhesion molecules (CAMs)

Epstein−Barr virus infection

Graft−versus−host disease

Hematopoietic cell lineage

HTLV−I infection

Inflammatory bowel disease (IBD)

Influenza A

Leishmaniasis

Rheumatoid arthritis

Staphylococcus aureus infection

Systemic lupus erythematosus

T cell receptor signaling pathway

Toxoplasmosis

Tuberculosis

Type I diabetes mellitus

Viral myocarditis

3.0 3.5 4.0

Rich factor

KE
G

G
 p

at
hw

ay

2.5

5.0

7.5

10.0

−log10(FDR)

Count
16
18
20

22
24
26

Enrichment of DEGs

(b)
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DPB1, and CCR7, exhibited decreased expression. Studies
have also shown that during sepsis, the number of dendritic
cells (DCs), the major group associated with antigen presen-
tation, is decreased in patients with sepsis. In addition, the
surviving DCs also exhibit lower expression of HLA-DR.
Moreover, endotoxin-tolerant macrophages express rela-
tively low levels of HLA-DR on their surface, resulting in a
lack of antigen presentation [14]. Similarly, NK cells are also
underrepresented in patients with sepsis, and the remaining
NK cells display defective cytotoxic functions [15, 16]. In
our study, we found that genes involved in NK cell-
mediated cytotoxicity (such as KLRB1, KLRD1, SH2D1A,
and PRF1) showed decreased expression. In cluster A, LCK,
ZAP70, CD2, CD247, CD27, CD28, CD3E, CD3G, CD4,
CD8A, CD8B, ITK, LCK, TRAT1, TBX21, FYN, and IL-7R,
which are related to T-cell biology, were represented, sug-
gesting an important role for T-cell immunity during sepsis.
Recently, the immunosuppressive phase has become a focus

during sepsis treatment. It is inspiring that IL-7, a growth fac-
tor that stimulates the proliferation and maturation of many
cell types, could continuously boost the absolute T lympho-
cyte counts of sepsis patients in a phase II clinical trial [17].
Our results also indicated that immunostimulatory therapy
targeting immunosuppression-related genes and pathways
could be a promising way to treat sepsis.

It should be noted that there were some DEGs that were
not shared among all sepsis networks but have been proven
to play indispensable roles in sepsis in recent years. For
example, RETN encodes resistin, which is strikingly elevated
in patients with sepsis and is associated with sepsis severity
and outcomes [18]. Silswal et al. showed that resistin acti-
vated monocytes and macrophages as well as induced the
release of proinflammatory cytokines [19]. Further, recent
experimental data have highlighted resistin as a potential
therapeutic target in sepsis [20]. These previous findings sug-
gest a paradoxical role for resistin in sepsis. TCN1 encodes a
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Figure 3: PPI network complex of DEGs. 568 DEGs with 443 nodes and 2470 edges were displayed by the PPI network, with upregulated
genes shown in light orange and downregulated genes shown in bluish violet.
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member of the vitamin B12-binding protein family, transcoba-
lamin I, which is elevated during infectious conditions. As a
member of the cobalamin transport protein, transcobalamin
elevation may contribute to the resolution of inflammation
[21]. FOLR3 and GGH are associated with the folate pathway.
These reports suggest that vitamin B12 and folate metabolism
may also constitute an important part of sepsis. Nutritional
therapy, including vitamin B12 and folate, may affect the path-
ogenesis of sepsis, which requires further research [22].

In this study, we also identified some genes for which the
functions in sepsis have not been completely characterized,
suggesting their potential as biomarkers for this disease. It
should be noted that the expression levels of most of these
genes demonstrated by real-time PCR corresponded to the
patterns observed by microarray analyses, while two genes
(LRG1, TP53) showed no significant difference. The incon-
sistency could be attributed to the different detection
methods, sample size, patient heterogeneity, and course of
the disease. Considering the small sample size of our study,
it is not powerful enough to change the conclusions about
the nine critical genes selected by bioinformatics analysis.

One of these genes, LRG1, encodes a highly conserved
member of the leucine-rich repeat family of proteins, which
has been reported to play a role in the inflammatory
response. LRG1 is expressed by neutrophils and macro-
phages [23, 24]. Some studies found that circulating LRG1
mRNA and plasma LRG1 protein levels might together be
helpful for diagnosing simple and complicated acute appen-
dicitis in patients with acute abdominal pain [25]. However,
the role of LRG1 in sepsis remains unclear to the best of
our knowledge. Our microarray analyses showed that LRG1
mRNA levels are higher in patients with sepsis. Further study
is needed to validate these results and investigate the roles of
this marker in sepsis.

Another gene, ELANE, encodes neutrophil elastase (NE),
a serine protease secreted by neutrophils into the extracellu-
lar milieu during the inflammatory response [26]. NE also
participates in the formation of neutrophil extracellular traps
[27]. A previous study found that NE is positively correlated
with the severity of sepsis and organ dysfunction, suggesting
its potential as a biomarker for sepsis [28]. This finding is
consistent with our results.

LCK and FYN belong to the Src family of protein tyrosine
kinases. LCK phosphorylates downstream signaling proteins,
resulting in changes in the expression of genes that are essen-
tial for T-cell maturation and activation. FYN is involved in
signal transduction pathways during the development and
activation of T lymphocytes and NK cells under physiological
conditions [29]. FYN and LCK are also essential for platelet
production and activation [30]. However, the roles of LCK
and FYN in sepsis have not been entirely elucidated. In our
study, the expression of LCK and FYN was decreased in
patients with sepsis, indicating possible suppression of T-
cells and NK cells, as well as a role for these proteins in plate-
let functions during sepsis, which warrants further explora-
tion. Our ROC curve analysis also showed that both genes
have diagnostic value for sepsis.

ZAP70, a member of the Syk protein kinase family, is
enriched in the TCR signaling pathway. This protein functions

Table 1

(a) The top 20 genes in the network ranked by degrees

Name Degree Change Cluster

TP53 76 Down

LCK 59 Down 1

MMP9 56 Up 2

CCL5 54 Down 1

CD28 53 Down 1

TBX21 50 Down 1

CD2 48 Down 1

ZAP70 48 Down 1

CD3E 46 Down 1

CCR7 46 Down 1

CD4 44 Down 1

MPO 43 Up

IL2RB 43 Down 1

CD247 42 Down 1

ELANE 42 Up 1; 2

ITK 42 Down 1

GATA3 41 Down 1

C3AR1 41 Up 1

PRF1 40 Down 1

FYN 40 Down 1

(b) The top 20 genes in the network ranked by maximal clique
centrality (MCC)

Name MCC Change Cluster

ELANE 9:22E + 13 Up 1; 2

SLPI 9:22E + 13 Up 2

HP 9:22E + 13 Up 2

PTX3 9:22E + 13 Up 2

DEFA4 9:22E + 13 Up 2

BPI 9:22E + 13 Up 2

CAMP 9:22E + 13 Up 2

ORM1 9:22E + 13 Up 2

LCN2 9:22E + 13 Up 2

MMP9 9:22E + 13 Up 2

PGLYRP1 9:22E + 13 Up 2

RAB27A 9:22E + 13 Up 2

MMP8 9:22E + 13 Up 2

LTF 9:22E + 13 Up 2

TCN1 9:22E + 13 Up 2

LRG1 9:22E + 13 Up 2

RETN 9:22E + 13 Up 2

ARG1 9:22E + 13 Up 2

OLFM4 9:22E + 13 Up 2

CHI3L1 9:22E + 13 Down 2
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Figure 4: Clusters A and B identified by network analysis. The PPI network is divided into 2 clusters by the MCODE plugin. Light orange and
bluish violet represent upregulated and downregulated genes separately.

8 Mediators of Inflammation



Table 2

(a) Functions enriched for the genes involved in cluster A

Term Description Count P value

GO:0050852 T-cell receptor signaling pathway 16 1:92E − 23
GO:0006955 Immune response 14 1:76E − 13
GO:0031295 T-cell costimulation 12 8:13E − 19
GO:0007166 Cell surface receptor signaling pathway 11 3:72E − 11
GO:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway 8 3:76E − 10
GO:0050776 Regulation of immune response 8 2:83E − 08
GO:0042110 T-cell activation 7 2:41E − 10
GO:0019882 Antigen processing and presentation 7 6:44E − 10
GO:0042102 Positive regulation of T-cell proliferation 7 1:11E − 09
GO:0002504 Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 6 9:31E − 11
GO:0060333 Interferon-gamma-mediated signaling pathway 6 1:83E − 07
GO:0019886 Antigen processing and presentation of exogenous peptide antigen via MHC class II 6 6:72E − 07
GO:0002250 Adaptive immune response 6 7:02E − 06
GO:0045087 Innate immune response 6 0.00105484

hsa04660 T-cell receptor signaling pathway 11 2:82E − 12
hsa04514 Cell adhesion molecules (CAMs) 11 9:77E − 11
hsa04612 Antigen processing and presentation 10 8:8E − 12
hsa05166 HTLV-1 infection 10 4:13E − 07
hsa05332 Graft-versus-host disease 9 3:27E − 13
hsa05330 Allograft rejection 9 8:99E − 13
hsa04940 Type I diabetes mellitus 9 2:71E − 12
hsa05320 Autoimmune thyroid disease 9 1:68E − 11
hsa04640 Hematopoietic cell lineage 9 1:19E − 09
hsa05416 Viral myocarditis 8 1:9E − 09
hsa05323 Rheumatoid arthritis 8 4:19E − 08
hsa05340 Primary immunodeficiency 7 3:19E − 09
hsa04672 Intestinal immune network for IgA production 7 2:46E − 08
hsa05321 Inflammatory bowel disease (IBD) 7 1:64E − 07
hsa04650 Natural killer cell-mediated cytotoxicity 7 0.00000753

hsa05322 Systemic lupus erythematosus 7 0.0000129

(b) Functions enriched for the genes involved in cluster B

Term Description Count P value

GO:0045087 Innate immune response 7 1:90E − 05
GO:0006508 Proteolysis 5 0.004385255

GO:0019731 Antibacterial humoral response 4 2:87E − 05
GO:0006955 Immune response 4 0.019097644

GO:0001878 Response to yeast 3 1:39E − 04
GO:0050829 Defense response to Gram-negative bacterium 3 0.002549924

GO:0071347 Cellular response to interleukin-1 3 0.004210679

GO:0022617 Extracellular matrix disassembly 3 0.004809135

GO:0050830 Defense response to Gram-positive bacterium 3 0.005979232

GO:0071356 Cellular response to tumor necrosis factor 3 0.009834724
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in the initial step of TCR-mediated signal transduction in com-
bination with the Src family kinases LCK and FYN. Functional
deletion of ZAP70 can lead to selective T-cell defects character-
ized by the selective absence of CD8-positive T-cells. Gomez-
Rodriguez et al. [31] found that the downregulation of ZAP70
accelerates neonatal sepsis disease progression. The role of
ZAP70 in adult sepsis warrants further investigation.

The gene product of CD247 (also known as CD3ζ) is T-
cell receptor zeta, which is part of the T-cell receptor-CD3
complex. CD247 plays essential roles in coupling antigen rec-
ognition to several intracellular signal transduction path-
ways. CD3ζ chain expression is consistently reduced in T-
cells from both the spleen and lymph nodes in sepsis [32].
Moreover, the downregulation of CD247 was reported to be
accompanied by decreased expression of other T-cell-
associated signal transduction molecules such as ZAP70, as
well as T-cell apoptosis, in line with our data.

TP53 is a well-characterized gene for which the gene
product induces cell cycle arrest, apoptosis, senescence,
DNA repair, and metabolic changes [32]. TP53 may contrib-
ute to apoptosis in a tissue-dependent manner. A recent
study revealed that p53 expression in T lymphocytes during
sepsis could be responsible for enhancing both apoptosis
and immune dysfunction in T-cells [33]. In our microarray
analyses, TP53 expression was found to be downregulated
in patients with sepsis, which is in accordance with the
expression of genes involved in the T-cell signaling pathway,
suggesting their possible interaction during sepsis.

TBX21, also known as T-bet, is the master regulator of
effector T-cell activation. Many studies have shown that
TBX21 controls the expression of IFNG, a hallmark Th1
cytokine, suggesting a role for this protein in initiating Th1
lineage development [34]. Recently, studies have also discov-
ered T-bet expression in B-cells, CD8+ T-cells, and T-reg

Table 2: Continued.

Term Description Count P value

GO:0071222 Cellular response to lipopolysaccharide 3 0.010355235

GO:0045766 Positive regulation of angiogenesis 3 0.010708943

GO:0042742 Defense response to bacterium 3 0.016637646

GO:0006032 Chitin catabolic process 2 0.009550291

GO:0009635 Response to herbicide 2 0.009550291

GO:0019732 Antifungal humoral response 2 0.01361651

GO:0044130 Negative regulation of growth of symbiont in host 2 0.021701096

GO:0070207 Protein homotrimerization 2 0.029722278

GO:0002227 Innate immune response in mucosa 2 0.033709241

GO:0035987 Endodermal cell differentiation 2 0.036358505

GO:0032715 Negative regulation of interleukin-6 production 2 0.03768053

GO:0050766 Positive regulation of phagocytosis 2 0.03900082

GO:0010043 Response to zinc ion 2 0.048194457
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Figure 5: ROC curve analyses of 9 selected DEGs.
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cells, suggesting variable functions under different circum-
stances [35–37]. The decrease in TBX21 expression might
influence the expression of related immune cells, a notion
that warrants further study.

Finally, ITK, which belongs to the Tec tyrosine kinase
family, is involved in multiple aspects of T-cell development
and functions such as T-cell activation and T-helper cell dif-
ferentiation [31]. ITK is also known to be involved in the
development of Th17 cells by regulating various transcrip-
tion factors. For example, in ALI mice, ITK regulates the bal-
ance between inflammatory Th17 cells and anti-
inflammatory T-reg cells [38]. However, the role of ITK in
T-cell functions in patients with sepsis has not been fully
evaluated. Our study showed that ITK was downregulated
in patients, although further research is needed to explore
the underlying mechanism.

5. Conclusions

Using a bioinformatics analysis of three gene datasets
(GSE95233, GSE57065, and GSE28750), we identified the
immune characteristics of sepsis. We found that DEGs in
patients were enriched for pathways mainly involved in the
innate immune response, T-cell biology, antigen presenta-
tion, and NK cell function. Focusing on the key genes and
corresponding pathways involved in sepsis could provide
new insights for sepsis treatment. Nine genes including
LRG1, ELANE, TP53, LCK, TBX21, ZAP70, CD247, ITK,
and FYN were also identified as potential new biomarkers
for sepsis. The expression levels of most of these genes dem-
onstrated by real-time PCR corresponded to the patterns
observed by microarray analyses. Further investigations are
needed to validate these preliminary findings.
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