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ABSTRACT
Innate and adaptive immune mechanisms have emerged as
critical regulators of CNS homeostasis and mental health. A
plethora of immunologic factors have been reported to interact
with emotion- and behavior-related neuronal circuits, modu-
lating susceptibility and resilience to mental disorders. How-
ever, it remains unclear whether immune dysregulation is
a cardinal causal factor or an outcome of the pathologies
associated with mental disorders. Emerging variations in
immune regulatory pathways based on sex differences provide
an additional framework for discussion in these psychiatric
disorders. In this review, we present the current literature
pertaining to the effects that disrupted immune pathways have
in mental disorder pathophysiology, including immune dysre-
gulation in CNS and periphery, microglial activation, and
disturbances of the blood-brain barrier. In addition, we present

the suggested origins of such immune dysregulation and
discuss the gender and sex influence of the neuroimmune
substrates that contribute to mental disorders. The findings
challenge the conventional view of these disorders and open
the window to a diverse spectrum of innovative therapeutic
targets that focus on the immune-specific pathophenotypes in
neuronal circuits and behavior.

SIGNIFICANCE STATEMENT
The involvement of gender-dependent inflammatory mecha-
nisms on the development of mental pathologies is gaining
momentum. This review addresses these novel factors and
presents the accumulating evidence introducing microglia and
proinflammatory elements as critical components and potential
targets for the treatment of mental disorders.

Introduction
Psychiatric or mental disorders include several syndromes

manifested through physiologic, behavioral, emotional, and
cognitive symptoms. Over a billion people worldwide suffer
from mental disorders, with anxiety-related disorders, major
depressive disorder (MDD), bipolar disorder (BD), post-
traumatic stress disorder (PTSD), and schizophrenia (SCZ)
accounting for more than 80% GBD 2017 Disease and Injury
Incidence and Prevalence Collaborators (2018). The World

Health Organization estimates that the global burden of
mental disorders translates to ∼32% of years lived with
disability (Vigo et al., 2016), as the current pharmacotherapies
prove ineffective for up to 50% of patients (Pfau et al., 2018).
Insufficient understanding of underlying disease mechanisms
aswell as gender influence in diseasemanifestation is thought

to cause the observed treatment resistance.
A growing body of evidence suggests that neuroimmunologic

processes affect both neuronal integrity and neuropathology,
revealing new targets for the development of effective thera-
peutics (Russo and Nestler, 2013; Miller et al., 2017; Pape
et al., 2019). Multiple clinical studies have reported through
genome-wide association studies (GWASs) (Howard et al.,
2019; Marques et al., 2019) and postmortem histopathological
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findings (Mechawar and Savitz, 2016) that many patients
with mental disorders exhibit chronic inflammation and
immune system dysregulation accompanied by increased
peripheral and central nervous system (CNS) inflammatory
markers (Sandiego et al., 2015; Goldsmith et al., 2016; Wohleb
et al., 2016).
Here, we provide an overview of the interplay between

neuroinflammation and CNS homeostasis during neuropsy-
chiatric dysfunctions. CNS neuroinflammation is predomi-
nantly initiated by the resident immune macrophage-like
cells, the microglia, along with brain macrophages and astro-
cytes (Prinz and Priller, 2014). We discuss upstream causes of
immune dysregulation in mental disorders, focusing on recent
insights suggesting that inflammatory mechanisms are impli-
cated in the mental disorder pathophysiology. We also summa-
rize the sex and gender effects uponmental disorder prevalence
and severity through the prism of neuroinflammatory mecha-
nisms and suggest the necessity to take them into account in
mental disorder therapeutics.

Neuroimmune Interactions in Brain Homeostasis
The CNS has been considered an “immune-privileged”

system guarded by the blood-brain barrier (BBB) (Forrester
et al., 2018). Despite its protection, the brain exhibits
significant immunologic properties and is in constant in-
teraction with the peripheral immune system (Pape et al.,
2019). The immune system along with neurons and glial cells
orchestrate the cognitive, emotional, and social properties in
the healthy brain (Blank and Prinz, 2013). Significantly,
although microglia account only for ∼10% of the cells in
CNS, they have emerged as crucial neuroinflammatory effec-
tors of these functions (Tay et al., 2018; Pape et al., 2019). They
continuously survey their microenvironment with their short,
fine, and highlymotile processes, regulating CNShomeostasis
(surveillance state) (Davalos et al., 2005; Nimmerjahn et al.,
2005) from development through adulthood (Blank and Prinz,
2013; Prinz and Priller, 2014; Forrester et al., 2018). In the
healthy adult brain, homeostatic microglia phagocytose cellu-
lar debris (Fourgeaud et al., 2016), modulate myelin levels
(Miron et al., 2013; Safaiyan et al., 2016; Hagemeyer et al.,
2017), monitor neurogenesis (Sierra et al., 2010; Gemma and
Bachstetter, 2013), release cell signaling factors (Parkhurst
et al., 2013), and act as vital components of synapse formation,
plasticity, and function (Hanisch and Kettenmann, 2007;
Wake et al., 2009; Tremblay et al., 2011; Bialas and Stevens,
2013). Acting as professional phagocytes of the CNS,microglia
engulf axon parts, terminals, and dendritic spines, thereby
contributing to synaptic activity modulation in CNS areas
implicated in behavioral experiences (such as learning/mem-
ory, fear-anxiety, anhedonia, and social tasks) via a trans-
forming growth factor-b–dependent complement cascade
(Paolicelli et al., 2011; Tremblay et al., 2011; Schafer et al.,
2012; Miyamoto et al., 2016; Torres et al., 2016; Tay et al.,
2018). Their process motility can dramatically change in
response to neuronal activity and neurotransmitter levels
(Li et al., 2012; Abiega et al., 2016). Interestingly, a recent
study demonstrated that microglia-mediated synaptic reorga-
nization is responsible for the dissociation of hippocampal
engrams during adulthood and affects previously encoded
memories (Wang et al., 2020).

Microglial activation drives the neuroinflammation evident
in neurologic (Ransohoff, 2016a) and neuropsychiatric dis-
eases (Mondelli et al., 2017; Li and Barres, 2018). Microglia
respond swiftly to a variety of environmental cues (e.g.,
immune challenges, injury, diseases) through various cell
surface receptors, including toll-like receptors (TLRs), com-
plement receptors (CR3, CR4), and scavenger receptors
(CD36, CD91). During this response, they significantly alter
their morphology and release cytokines, chemokines, reactive
oxygen species (ROS)/reactive nitrogen species, and trophic
factors. Previously, microglial activation was conceptually
categorized into a bimodal scheme based on the study of
peripheral macrophages, resulting in either “cytotoxic” effects
on neurons and oligodendrocytes (M1 type) or “protective”
effects through phagocytic capacity and support of neurite
outgrowth (M2 type) (Ransohoff, 2016b). More recently,
however, microglial activation is considered multidimen-
sional, with several activation stages and overlap in gene
expression (Ransohoff, 2016b; Salter and Stevens, 2017; Li
and Barres, 2018).
There are three other CNSmacrophage types: perivascular,

meningeal, and choroid plexus macrophages, located at the
interface between the circulation and the parenchyma (Prinz
et al., 2017). Furthermore, circulating myeloid cells, such as
monocytes, granulocytes, and dendritic cells, reside in the
CNS vasculature network (Li and Barres, 2018). In several
diseases or injuries, monocytes may promptly infiltrate the
brain parenchyma and differentiate into microglia-like cells to
alleviate or exacerbate disease progression (Ginhoux et al.,
2010; Prinz and Priller, 2014; Li and Barres, 2018).
Another piece of the neuroimmune cross talk is regulated by

astrocytes that express chemokine, cytokine, and complement
receptors, allowing them to interact with microglia and
macrophages and get activated to serve several functions,
including neurotrophic support, synaptic homeostasis, miti-
gating oxidative stress, neuron-glia signaling, and others
(Sofroniew and Vinters, 2010; Khakh and Sofroniew, 2015;
Liddelow and Barres, 2015). Acute astrocytic activation may
exert both reparative functions [e.g., through secretion of
neurotrophic factors (BDNF, neurotrophic growth factor) and
glutamate clearance] or neurotoxic functions, leading to
neuronal loss and behavioral alterations (Sanacora and
Banasr, 2013; Khakh and Sofroniew, 2015; Liddelow and
Barres, 2015; Haroon et al., 2017). Astrocytes can also act as
“gate keepers” through their BBB regulation, controlling
trafficking of peripheral immune cells to the CNS (Abbott
et al., 2006).

Involvement of Immune Dysregulation in Mental
Disorders: An Evolutionary Perspective

Recent converging human and animal data show that
stress-related neurocircuitry and immune system coevolved
to act synergistically and shield organisms from environmen-
tal threats. During a stressful experience, a “fight or flight”
reaction is usually observed, involving activation of inflam-
matory pathways [e.g., nuclear factor–kΒ (NF-kB)] and leading
to significant increases in circulating levels of proinflammatory
cytokines, such as interleukin-6 (IL-6) (Pace et al., 2006; Koo
et al., 2010; Sasayama et al., 2013; Wohleb et al., 2016; Felger
et al., 2020). These inflammatory responses do not target specific
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pathogens but rather environmental stressors, commonly ob-
served in acute inflammatory diseases and mental disorders
(such as MDD, SCZ, BD) (Pace and Miller, 2009; Derry et al.,
2013; Goldsmith et al., 2016).
From an evolutionary perspective, it is hypothesized that

modern humans have a hereditary genomic predisposition
toward inflammation as a defensive response to environmen-
tal dangers and threatening stimuli (psychosocial stressors).
The behavioral responses that are now adapted to mental
disorders may have been used to enhance survival and
reproduction inhighly pathogenic and threatening environments
many years ago (the pathogen-host hypothesis) (Miller and
Raison, 2016). Consequently, mammals had to conserve energy
for healing wounds and infections (social avoidance and anhedo-
nia support this metabolic shunt) while maintaining hypervigi-
lance against an attack from enemies (hyperalertness in stress
and manic disorders) (Raison and Miller, 2013; Slavich and
Irwin, 2014).
Equally important to the pathogen-host hypothesis of

mental disorders is our detachment from an array of microbes
that were previously ubiquitous in our microbiota (skin, gut,
oral, and nasal) (Rook et al., 2015). Studies suggest that these
microbes (commensals and symbiotes) have significantly
contributed to the suppression of inflammatory responses
through transforming growth factor-b signaling (Raison et al.,
2010b; Rook et al., 2015). In modern times, sanitized urban
environments resulted in decreased exposure to microbes and
their immunoregulatory input. In the absence of these in-
flammatory regulators, the increased current psychosocial
challenges and stressors have elicited increased immune
responses, accounting for the high comorbidity of mental and
inflammatory disorders (Prinz and Priller, 2014; Mechawar
and Savitz, 2016; Miller and Raison, 2016; Wohleb et al.,
2016).

Causal Factors of Immune Dysregulation in Mental
Disorders

Two broad etiologic factors have been recognized as causes
of mental disorder pathology: genetic susceptibility and envi-
ronmental factors (Smoller, 2016). The latter include chronic
stress, traumatic life events (physical, emotional, sexual abuse,
bullying), malnutrition, drug abuse, social isolation, and
prenatal environment (poor nutrition, exposure to drugs or
toxins, and maternal infections or stress) (Wong and Licinio,
2001). Genetic sensitivity to environmental risks (Jaffee and
Price, 2007; Belsky et al., 2009) can induce epigenetic changes
at different levels, (e.g., neuroinflammatory, neurotransmit-
ter, and brain connectivity), thus modifying the ability to
adapt to subsequent stressors (Arango et al., 2018). Below,
we discuss several causal factors of immune dysregulation
affecting mental disorders.
Stress. Stress is believed to trigger psychiatric symptoms

through immune system overactivation and escalation of the
risk of mental disorder occurrence (Bergink et al., 2014). The
immune system swiftly responds to stress through hormones
(cortisol, epinephrine, and norepinephrine) and sympathetic
nervous system (SNS). This can happen via the hypothalamic-
pituitary-adrenal (HPA) axis activation, which is the cardinal
stress-mediated neuroendocrine system, resulting from corti-
cotropin releasing hormone (CRH) and arginine vasopressin
secretion, which stimulate the secretion of adrenocorticotropic

hormone (ACTH) (Faravelli et al., 2012). ACTH can then
stimulate glucocorticoid release, specifically cortisol, from the
adrenal cortex, mobilizing immune cell trafficking in the body
(Dhabhar et al., 2012; Faravelli et al., 2012). This acute
reaction can potentially cause chronic low-grade inflamma-
tory responses characterized by intensified proinflammatory
responses of tumor necrosis factor-a (TNF-a), IL-6, and
interferon-g (IFN-g) (Glaser andKiecolt-Glaser, 2005) (Fig. 1).
Recurrent stress (chronic stress) affects the production,

reactivity, and circulation of immune cells, promoting detri-
mental inflammatory responses (Trottier et al., 2008). Several
animal studies have demonstrated that chronic stress can
induce immune dysregulation via glucocorticoid receptor (GR)
resistance and inhibition of the HPA axis feedback loop,
leading to proinflammatory cytokine production and a con-
comitant suppression of anti-inflammatory cytokines and
immunosuppressive pathways (Stark et al., 2001; Frank
et al., 2007; Engler et al., 2008; Heidt et al., 2014).
Early human studies in long-term social anxiety (bullying,

social status changes, or hierarchy) reported higher rates of
persistent anxiety, depression, low self-esteem, and incidence
of illness (Marmot and Feeney, 1997; Griffin et al., 2002;
Stansfeld et al., 2003). Correspondingly, clinical studies have
concluded that chronic or early-life stress can induce tran-
scriptional changes that promote susceptibility to hyperin-
flammatory responses, leading to a “biological imprinting”
(Pace et al., 2006; Miller et al., 2008; Danese et al., 2011). For
instance, teenagers with a history of childhood adversity have
high IL-6 levels, correlating with subsequent development of
depression (Miller and Cole, 2012). Peripheral C-reactive
protein (CRP) and proinflammatory cytokine levels were
shown to predict future PTSD development after traumatic
and acute stressful events (Pervanidou et al., 2007; Eraly
et al., 2014). Similarly, a meta-analysis of clinical studies
revealed an enhanced proinflammatory profile (CRP, IL-6,
and TNF-a) in adults with early-life childhood trauma and
maltreatment (Baumeister et al., 2016). Changes in inflam-
matory gene expression mediated by epigenetic mechanisms
[e.g., FK506 binding protein 5 (FKBP5), a factor associated
with glucocorticoid sensitivity and mental disorders] have
been linked with childhood traumatic experiences and ele-
vated inflammatory responses (Jones, 2013; Klengel et al.,
2013).
In the CNS, preclinical data have indicated that repeated

psychosocial stress and early-life traumatic events can
induce microglial activation (through stress hormones,
cytokines, pattern recognition receptor agonists, and neuro-
transmitters), raising the risk of mental disorders later in life
(Giovanoli et al., 2013; Howes and McCutcheon, 2017). In the
hippocampus (HPC) and prefrontal cortex (PFC), psychosocial
stress increases the levels of extracellular ATP, which induces
the NLRP3-dependent inflammasome, leading to microglial
interleukin IL-1b release (Pantazatos et al., 2017). Likewise,
toll-like receptors TLR-2 and TLR-4 can mediate repeated
stress-induced gene expression and TNF-a/IL-1a secretion
from the PFC microglia (Wohleb et al., 2012; Nie et al., 2018;
Furuyashiki and Kitaoka, 2019). Finally, restraint stress
induces alterations to neurotransmitters such as glutamate
and GABA, which influence microglial activation, prolifer-
ation, and motility (Nair and Bonneau, 2006; Fontainhas
et al., 2011). Together, these findings suggest causal relation-
ships betweenpsychosocial stressors andearly-life stress/trauma
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with immune dysregulation, inflammation, and development of
mental disorders.
Genetic Factors. Since genetics, along with stress, are

the most important psychopathological contributors, the
“diathesis-stress” (diathesis being the genetic component)
model constitutes the principal etiologic hypothesis for mental
disorders (Smoller, 2016). The diathesis-stressmodel suggests
that genetic vulnerability and environmental stressors can
escalate the predisposition to disorder, which in turn occurs

once the threshold of sufficient liability is crossed. Previous
studies using family members and twins revealed that mental
disorders had heritable components to varying degrees.
More recently, molecular studies have started identifying
specific genetic variations related with psychiatric disor-
der phenotypes.
Significantly, genome studies have associated MDD with

immune-related genes involved in the IL-6, IFN, and natural
killer cell signaling pathways. Specifically, genes upregulated

Fig. 1. Sex hormone influence and neuroimmune interplay inmental disorders. The HPA and hypothalamic-pituitary-gonadal (HPG) axes interact with
each other and shape the downstream inflammatory responses, neurotransmitters, synaptic plasticity, and behavioral deficits observed in mental
disorders. During psychosocial environmental stressors, microglia are stimulated through activation of immune receptors (TLRs, CRH receptors, and
cytokine and chemokine receptors). Subsequent cytokine and chemokine secretion attracts activated myeloid cells to the brain via the cellular route.
Once in the brain, infiltrating macrophages can drive central inflammatory responses. During psychosocial stress, catecholamines (e.g., noradrenaline
released by activated SNS fibers) stimulate increases in myeloid cells (e.g., monocytes) in the periphery. Through induction of inflammatory signaling
pathways (such as NF-kB and NLRP3 inflammasome), more proinflammatory cytokines and chemokines are produced that contribute to glucocorticoid
resistance through glucocorticoid receptor cleavage. Proinflammatory cytokines and chemokines can access CNS through humoral and neural routes.
Monocytes then infiltrate CNS through a compromised blood-brain barrier and differentiate to activated macrophages. Sex hormones affect risk for
mental disorders by modulating these pathways at several levels: they 1) influence the perception, processing, and regulation of threat and fear; 2)
modulate SNS/HPA reactivity to psychosocial stressors; and importantly 3) alter microglial and macrophage signal transduction through post-
translational modifications and epigenetic changes. FSH, follicle stimulating hormone; GnRH, gonadotropin releasing hormone; LH, luteinizing
hormone.
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in MDD include TNF-a receptor (TNFRSF10C), mitogen-
activated protein kinase (MAPK) 14, IL-6 receptor, STAT3
(Wong et al., 2017), and several IFN-related genes (e.g., MX1,
OAS1, IFIT3, PTPN6, and IRF7) (Mostafavi et al., 2014).
Natural killer–related genes are downregulated (GZMB,
KLRK1, PRF1, SH2D1B, KLRD1, and NFATC2) (Jansen
et al., 2016). The TRPM2 gene (which influences reactive
oxygen species production and exacerbates NLRP3 inflamma-
some) was also significantly associated with MDD (Wong
et al., 2017). Finally, a recent study points to a stress-related
neuroinflammatory association with MDD, potentially via
p75NTR/neurotrophic growth factor (nerve growth factor)
and innate immune TLR signaling (Chan et al., 2020). These
results support and link the neurotrophic (Duman and Li,
2012) and neuroimmune hypotheses of depression (Hodes
et al., 2015).
SCZ typically emerges in early adulthood and is character-

ized by episodic or continuous alterations of the perception of
reality, behavior, and cognition (Foley et al., 2017). GWASs
have identified promising target genes that are widely in-
volved in dopaminergic (DRD2) and glutamatergic neuro-
transmission (GRM3, GRIN2A, SRR, CLCN3, and GRIA1),
neuronal calcium signaling (e.g., CACNB2, CACNA1l, CAC-
NA1C, RIMS1), and synaptic function (PAK6, KCTD13,
CNTN4) (Foley et al., 2017). Significantly, the top genetic
correlations in schizophrenia come from the major histocom-
patibility complex (MHC) and B-cell activation loci (CD19,
CD20), rendering immune pathways at the center of schizo-
phrenia research (Network and Pathway Analysis Subgroup
of Psychiatric Genomics Consortium, 2015).
BD is a manic-depressive disorder that causes sudden

changes in mood, concentration, energy, and activity levels,
ranging from manic to depressive episodes. Several studies
have associated BD within single-nucleotide polymorphisms
(SNPs) in genes encoding cytokines or immune function (IFN-
g, IL-6, IL-1, TLR2, TLR4, PTGS2, CCL2, and CCL3) (Fries
et al., 2019). A transcriptome-wide analysis included 1600
patients with SCZ and BD and reported the upregulation of
members of IFN and NF-kB pathways (Guan et al., 2019).
Based on these studies, inflammatory, monoaminergic, and

glutamatergic elements constitute the genetic “diathesis” and
interact to coordinate the genetic predisposition of individuals
to mental disorders.
Pathogen-Related Inflammation and Autoimmunity.

Chronic disturbances in the innate and adaptive immunity
systems are likely to dysregulate CNS function and alter
cognitive performance. Frequently, pathogenic infection of the
CNS drives the adaptive systemic inflammation, called “sick-
ness behavior,” which is manifested as social withdrawal,
depressed mood, anhedonia, irritability, fatigue, impaired
concentration, muscle pain, and fever. The symptoms overlap
significantly with those observed in several mental disorders
and are considered the result of reallocating energy resources
to combat infection and enhance host survival. Evidence from
long-term studies has demonstrated that hospitalization due
to infection increases the risk for major depression by
62% (Benros et al., 2011). In rodents, perinatal infection and
systemic inflammatory responses induce cognitive deficits
comparable to the psychosis observed in young adults after
early infection (Khandaker et al., 2015). Similarly, Strepto-
coccus pyogenes infection is frequently correlated with sub-
sequent mental and autoimmune psychiatric disorders.

In a prospective study of severe infection [Helicobacter
pylori,Chlamydia pneumoniae, Cytomegalovirus (CMV), Her-
pes simplex virus (HSV-1, and HSV-2)], high viral burden was
associated with cognitive decline (Katan et al., 2013). In
addition, high CMV antibody titers have been identified in
MDD subjects relative to controls (Rector et al., 2014),
whereas infection with the protozoan Toxoplasma gondii has
been associated with increased risk for SCZ (Torrey et al.,
2007), MDD, and manic and suicidal behavior (Dickerson
et al., 2014; Sugden et al., 2016). Studies suggest thatT. gondii
encodes proteins homologous to neurotrophic factors and
dopamine metabolism, possibly modulating dopaminergic
neurotransmission (Carruthers and Suzuki, 2007), leading
to activation of kynurenine (KYN) pathway metabolites in the
brain (Notarangelo et al., 2014).
The mechanistic associations between inflammation and

mental disorders remain incomplete. Microglial inflamma-
some activation constitutes a potential response to proinflam-
matory mediators (Heneka et al., 2018; Zhang et al., 2018),
thereby increasing the risk for mental disorders (Misiak
et al., 2019). The systemic proinflammatory cytokine (such as
TNF-a, IL-1b, and IL-6) released in response to infection or
injury can also affect the CNS through activation of cerebral
endothelial cells and microglia (D’Mello and Swain, 2017).
Cytokines can exert neurotoxic effects through ROS pro-
duction and alterations of glutamatergic and monoamine
transmission.
The equilibrium between CNS and the immune system

resembles a double-edged sword: on one side are the positive
effects of the evolutionarily advantageous sickness behavior;
on the other side are the detrimental effects of chronic
inflammation, which lead to neurotoxicity, cognitive decline,
and mental dysfunction.
Such equilibrium imbalances are observed in autoimmune

inflammatory responses andmental disorders. In fact, there is
significantly higher comorbidity of autoimmune disorders
with patients with mental disorders than there is in the
general population (Vonk et al., 2007; Korczak et al., 2011;
Kosmidis et al., 2012). At the same time, autoimmune diseases
have a high risk factor for subsequent diagnosis of mental
disorder (45% increase) (Benros et al., 2013). A subset of
patients with mental disorders exhibit increased levels of
circulating autoantibodies: patients with MDD and BD may
present comorbidity with autoimmune thyroiditis, evident by
the presence of thyroperoxidase antibodies (Pop et al., 1998;
Kupka et al., 2002); patients with multiple sclerosis may
experience neuropsychological alterations and chronic anxi-
ety, as in MDD (Feinstein et al., 2014) or SCZ (Andreassen
et al., 2015).
Whether autoimmune antibodies are a causal factor or

outcome of the psychopathological process of mental disorders
is still unknown. Nevertheless, there are cases of psychosis
and depression that report the presence of autoantibodies
targeting neurotransmission in patients with limbic enceph-
alitis (Dalmau et al., 2011; Kayser et al., 2013). Therefore, it
becomes gradually recognized that a subset of patients with
mental disorders may in fact suffer from an autoimmune
disease. Lennox et al. (2012) and Dahm et al. (2014) wrote the
following in an editorial: “Antibody screening in young people
presenting with psychosis, seizures and cognitive disturbance
is now part of routine clinical practice in neurological and
intensive care settings.”
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Integrating Neuroimmune Systems in Mental
Disorder Pathogenesis

Neuroinflammatory Mechanisms in Anxiety and Depressive
Disorders

Anxiety and depressive disorders represent the leading class
of mental disorders, with MDD affecting yearly 300 million
people worldwide (Ferrari et al., 2013; GBD 2017 Disease
and Injury Incidence and Prevalence Collaborators, 2018).
They persist throughout life and have high comorbidity with
other disorders, including PTSD, BD, and SCZ (Conway
et al., 2006;Hettema et al., 2011). Family andGWASs implicate
genetic factors [∼30% contribution (Otte et al., 2016)] in the
etiology of the disorders (monoaminergic, glutamatergic,
neurotrophic, and stress hormone genes) (Smoller, 2016).
However, exposure to chronic stress, traumatic experien-
ces, and environmental factors are the most essential contrib-
utors for the onset of these disorders (Abelson et al., 2007;
Dieleman et al., 2015).
In anxiety and depressive disorders, the fear-emotion

processing network is stimulated in frontal [such as anterior
cingulate cortex (ACC)] and limbic areas [amygdala (AMY)]
(Gorman et al., 2000). Enhanced AMY-ACC connectivity has
been correlated with augmentation of threatening stimuli in
anxiety disorders, MDD, and PTSD (Killgore et al., 2014;
Fonzo et al., 2015) and is accompanied by increased IL-6
levels (Muscatell et al., 2015). These increases are linked to
social withdrawal, cognitive disturbances, depression (Har-
rison et al., 2009; Muscatell et al., 2015), and lower serotonin
status (Hornboll et al., 2018). Exposure to stressful and
traumatic events induces theHPA axis and cortisol release to
counteract the norepinephrine-induced immune system ac-
tivation and proinflammatory responses via NF-kB inhibi-
tion (Fig. 1). This balance is dysregulated during chronic
activation of the HPA axis, leading to negative feedback and
GR resistance.
In anxiety disorders, studies have demonstrated that patients

with generalized anxiety disorder, panic disorder, and phobias
have significantly increased cortisol levels (Mantella et al.,
2008; Staufenbiel et al., 2013) and subsequent upsurges of
sympathetic tone (Blechert et al., 2007; Alvares et al., 2013),
leading to immune activation and inflammation. Patients
with anxiety disorders (children and adults) exhibit elevated
proinflammatory (CRP, TNF-a, IL-1b, and IL-6) and reduced
anti-inflammatory (IL-2, IL-4) responses when compared with
healthy controls (Brambilla et al., 1999; Hoge et al., 2009;
Copeland et al., 2012; Vogelzangs et al., 2013; Wagner et al.,
2015), as well as increased and highly sensitized lymphocytic
T-cell populations (T helper 17) (Boscarino and Chang, 1999;
Vieira et al., 2010). However, some other reports have de-
scribed small or no changes in proinflammatory responses
(Brambilla et al., 1999; Vogelzangs et al., 2013;Wagner et al.,
2015). These discrepancies could be attributed to 1) the wide
phenotypic and etiologic spectrum of anxiety disorders, 2)
notions that only severe anxiety cases manifest increased
inflammatory responses, 3) gender, and 4) comorbid mental
or physical health problems.
In depressive disorders, early hypotheses had proposed that

pathology stems from monoaminergic (Heninger et al., 1996)
and glutamatergic alterations in the CNS (Kendell et al., 2005;
Northoff and Sibille, 2014). However, approximately 40%–

50% of patients withMDD are not responsive to antidepressants

(Krishnan andNestler, 2008), potentially reflecting that other
disease mechanisms may be at play. The initial association
between inflammation and depression was formed after the
development of depression symptoms after long-term IFN-a
treatment in patients with hepatitis C (Renault et al., 1987;
Conversano et al., 2015). In a subsequent study that in-
vestigated the association of peripheral immune system and
depression, Maes et al. (1992) identified elevated numbers of
Ly6Chi monocytes and neutrophils in the blood of patients
with MDD, proposing the inflammatory hypothesis of de-
pression (Smith, 1991; Maes, 1995).
Since then, a plethora of studies have reported high levels of

proinflammatory markers (CRP, TNF-a, IL-6, and IL-1b) in
patients with depression (Maes et al., 1997; Howren et al.,
2009;Miller et al., 2009; Dowlati et al., 2010; Khandaker et al.,
2014; Mostafavi et al., 2014; Strawbridge et al., 2015;
Goldsmith et al., 2016; Miller and Raison, 2016; Felger
et al., 2020). Epidemiologic studies (Whitehall II) on large
community samples (.3000 individuals) and a decade of
follow-up demonstrated that elevated blood levels of IL-6
and CRP could be used as prognostic markers of depressive
symptoms (Gimeno et al., 2009). In support of that, elevated
cortisol levels, GR insensitivity and dysregulation of the HPA
axis have been consistently correlated with the inflammatory
manifestations during MDD (Turecki and Meaney, 2016). In
a recent single-nucleus RNA sequencing study of PFC in
patients with MDD, co-chaperones of GRs (Heat shock protein
90 and FKBP5) were downregulated (Nagy et al., 2020),
whereas in a systematic meta-analysis, it was demonstrated
that increased inflammation (TNF-a, IL-6) is correlated with
glucocorticoid resistance and elevated levels of cortisol in
patients with MDD (Perrin et al., 2019).
Respective increases of innate immunemarkers (TNF-a, IL-

1b, IL-6, TLR3, and TLR4) (Miller et al., 2009; Miller and
Raison, 2016), along with microglial and astrocytic activation
in several brain areas (PFC,HPC, andACC), have been reported
in postmortem MDD brain samples (Steiner et al., 2008; Rao
et al., 2010; Torres-Platas et al., 2014; Nagy et al., 2015).
Microarray analyses of MDD individuals identified significant
upregulation of immune transcripts (cytokines, complement)
(Shelton et al., 2011; Kim et al., 2016). Neuroinflammation in
patientswithMDDhasalso beenvisualized bypositron emission
tomography (PET) using the translocator protein (TSPO; micro-
gliosis and astrogliosis marker) (Setiawan et al., 2015).
In animal studies, exposure to psychosocial/environmental

stressors (stress section) has similarly revealed high cortisol
and ACTH levels in plasma, elevated hypothalamic CRH
expression, and concomitant increases of proinflammatory
plasma cytokines (Engler et al., 2005; Ramirez et al., 2016).
Chronic stress can induce neuronal activation in the anxiety/
threat appraisal areas (PFC, AMY, and HPC) through gluta-
matergic and norepinephrine signaling (Perrotti et al., 2004;
Musazzi et al., 2015), leading to neuroendocrine stimulation
and glucocorticoid release (Ulrich-Lai and Herman, 2009). In
amouse depressionmodel [repeated social defeat stress (RSDS)],
innate immune GR resistance was correlated with high cortisol
levels (Avitsur et al., 2002) and increased IL-6 plasma levels
(Janssen et al., 2010), and these effects were dependent on Il-
1b or adrenergic signaling (Jankord et al., 2010). Accordingly,
chronic stress–induced activation of b3 adrenergic receptor
and downregulation of chemokine ligand-12 have been shown
to induce increases in hematopoietic stem cell activity and
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peripheral elevation of monocytes and neutrophils (Engler
et al., 2004; Wohleb et al., 2013; Heidt et al., 2014).

Microglial Interplay in Anxiety and Depressive Disorders

Microglia and macrophages are believed to have a pivotal
role in depressive-like behavior (Wohleb et al., 2014b, 2015;
Reader et al., 2015; Ramirez et al., 2016, 2017; Stein et al.,
2017; Bollinger and Wohleb, 2019). Early work has demon-
strated that in chronic stress models, b-adrenergic receptor
signaling can induce microglial hypertrophy, proinflamma-
tory cell activation (CD14, CD86, and TLR4), and cytokine
expression (IL-6, IL-1b, TNF-a, and IL-1b), leading to de-
pressive phenotype (Johnson et al., 2005; Blandino et al.,
2006; Wohleb et al., 2011). These microglial-mediated effects
are reduced by 1) GR antagonist RU486 (Wohleb et al., 2018;
Horchar and Wohleb, 2019), 2) propranolol administration
(b-adrenergic receptor antagonist), or 3) knocking out IL-1R in
mice (Wohleb et al., 2011). These results suggest that chronic
stress–induced inhibition of HPA axis may readily engage
microglia and propagate inflammatory responses, driving
associated behavioral consequences (Fig. 1).
Contributors to the chronic stress signal propagation are

the pattern recognition receptor family of TLRs, associated
with increased release of damage-associated molecular pat-
terns, which in turn promote NLRP3 inflammasome activa-
tion, TSPO increase (Wang et al., 2018), and IL-1b release
(Pan et al., 2014; Fleshner et al., 2017). Recently, a study byNie
et al. (2018) reported that RSDS can activatemicroglia through
TLR2 and TLR4 and increased IL-1a and TNF-a expression,
leading to atrophy of PFC neurons and social avoidance (Nie
et al., 2018). The use of a double-knockout mouse model (TLR
double knockout) or neutralizing antibodies for the cytokines
rescued those effects, highlighting the pivotal role of TLRs on
microglial activation during chronic stress.
Associated with microglial activation and concomitant in-

flammatory responses are activation markers (CD68), specific
morphologic features (e.g., branch length and number, soma
volume), phagocytic activity, and oxidative stress. Interest-
ingly, RSDS studies have demonstrated that microglial
activation (CD68), ROS production, and phagocytic activ-
ity (ex vivo) are upregulated in groups susceptible to stress,
suggesting microglia-mediated neuronal dysfunction (Lehmann
et al., 2016, 2018, 2019; Nie et al., 2018). Several studies
have also attempted to visualize stress-induced morpho-
logic changes in microglia, but the results are mixed (Wohleb
et al., 2011, 2012, 2013, 2014a; Hinwood et al., 2012; Walker
et al., 2013; Lehmann et al., 2016; McKim et al., 2016). Possible
reasons for these discrepancies in the literature might be the
differences in the stress paradigms [the nature and intensity of
stressor (acute or chronic)] as well as lack of sensitivity and
inconsistencies in the quantification of microglial morphology.
To examine the role of microglia in the onset of depression,

some studies used an a priori microglial ablation (∼95%) by
the colony stimulating factor-1 receptor antagonist PLX5622
(McKim et al., 2018; Lehmann et al., 2019; Weber et al., 2019).
Ablation before RSDS resulted in resilience to chronic stress,
reductions of ROS formation, monocyte recruitment, proin-
flammatory cytokines, and depression-related behavioral
tests (McKim et al., 2018; Weber et al., 2019; Lehmann et al.,
2019). Remarkably, repopulation of microglia after PLX5622
withdrawal [clonal expansion of microglia (Tay et al., 2017)]

was sufficient to reinitiate this cascade of events and recapit-
ulate the depression-like effects in mice. These results, how-
ever, unveil more questions regarding the role of microglia
during depression: 1) Could chronic stress potentially induce
microglial epigenetic changes at depression onset? 2) Is the
neuronal sensitization (adverse activated areas) also contrib-
uting to amicroglial “re-education” after repopulation? 3)What
are the significance and microglial phenotype of the relatively
uncharacterized resilient-to-stress animals? And 4) what is the
contribution of peripheral leukocytes in these processes?
Regarding the latter, bone marrow–derived leukocytes

can enter the brain through the BBB epithelial lining and
contribute to depression pathophysiology (Banks et al., 1994,
1995), a finding both in postmortem studies in patients with
MDD (Torres-Platas et al., 2014) and in RSDS animals (CNS
infiltration and differentiation of proinflammatory Ly6Chi

monocytes to macrophages) (Varvel et al., 2012; Wohleb
et al., 2013) (Fig. 1). A recent study exhibited that this
recruitment can be mediated by neurovascular adhesion of
IL-1b–producing monocytes (vascular cell adhesion molecule-
1 and ICAM-1) to the CNS parenchyma (McKim et al., 2018).
This finding is of particular interest, considering that chronic
stress may disrupt BBB integrity through alterations in the
tight junction protein claudin-5 (Reader et al., 2015; Menard
et al., 2017; Lehmann et al., 2018; Dudek et al., 2020).
Interestingly, microglial activation and extracellular matrix
degradation are believed to significantly contribute to BBB
leakiness (Lehmann et al., 2016, 2018).
However, immune activation is not consistently reported in

all depression cases (Lamers et al., 2013; Gold, 2015). For
instance, a recent study by de Punder et al. (2018) demon-
strated that only the patients with MDD with history of
childhood adversity exhibited heightened inflammation,
whereas microglial activation in postmortem studies is de-
tectable in patients withMDDwho committed suicide (Steiner
et al., 2008, 2011, (Schnieder et al., 2014)). These observations
suggest that immune activation may manifest only in moder-
ate to severe depressive cases, accounting also for the
treatment resistance reported in them (Fig. 2).

Neuroinflammatory Highlights in Traumatic, Bipolar, and
Schizophrenia Disorders

Post-Traumatic Stress Disorder. PTSD is a severe and
heterogeneous psychiatric condition that develops in individ-
uals who have experienced traumatic or dangerous events
(i.e., threat of death, injury, sexual violence) and is character-
ized by significant comorbidities withMDDand panic disorder
(Dedert et al., 2010; Norrholm et al., 2011). Innate immune
response genes and anxiety/stress vulnerability genes are
thought to contribute to PTSD heritability (Hauger et al.,
2012; Skelton et al., 2012; Smoller, 2016), whereas exposure to
trauma is a risk factor for dysregulated HPA axis function
(elevated CRH levels) (Carpenter et al., 2004; Lee et al., 2005;
Michopoulos et al., 2017) and inflammation (Michopoulos
et al., 2015a). In fact, individuals exposed to childhood abuse,
maltreatment, socioeconomic difficulties, or parental separa-
tion may exhibit increased proinflammatory activity during
adulthood (Taylor et al., 2006;Hartwell et al., 2013; Lacey et al.,
2013; McDade et al., 2013;Matthews et al., 2014; Tursich et al.,
2014; Baumeister et al., 2016; Lin et al., 2016; Michopoulos
et al., 2017). Studies have reported in patients with PTSD
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elevated circulating concentrations of TNF-a, INF-g, IL-1b,
IL-2, IL-6, and ICAM-1, which correlated positively with
PTSD symptoms (von Kanel et al., 2007; Hoge et al., 2009;
Oganesyan et al., 2009; Vidovic et al., 2011; Guo et al., 2012;
Plantinga et al., 2013; Newton et al., 2014; Bersani et al.,
2016). Respectively, cerebrospinal fluid (CSF) levels of CRP
and IL-6 have been found elevated in PTSD (Baker et al., 2001;
Heath et al., 2013; Plantinga et al., 2013; Lindqvist et al.,
2014; Bersani et al., 2016), constituting risk factors for
diagnosis (Michopoulos et al., 2015b). However, there are also
studies that have described no change or even decreased levels
of CRP, IL-6, and IL-2 in individuals with PTSD (Song et al.,
2007; McCanlies et al., 2011; Muhtz et al., 2011). Similar
discrepancies have been reported in studies examining anti-
inflammatory plasma cytokine levels in patients with PTSD
(IL-4, IL-8, and IL-10) (von Kanel et al., 2007; Hoge et al.,
2009; Smith et al., 2011; Guo et al., 2012; Lindqvist et al.,
2014; Jergovic et al., 2015; de Oliveira et al., 2018).
A meta-analysis of 20 PTSD independent studies sought to

address these inconsistencies, revealing that proinflamma-
torymarkers (IL-1b, IL-6, TNF-a, and IFN-g) are elevated and
positively correlated with the illness duration in patients with
PTSD (Passos et al., 2015). Another recent correlational study
in traumatized women reported significant associations be-
tween higher concentrations of CRP, disease severity, and
PTSD symptoms (Powers et al., 2019).
To summarize, these findings suggest that pharmaceutical

interventions targeting inflammatory responses could poten-
tially supplement the traditional psychotropic medications for
severe cases of PTSD.

Bipolar Disorder. BD is a mental disorder characterized
by frequent shifts in mood, activity levels, and concentration,
ranging from manic episodes to depressive states. Studies
have reported immune dysregulation during acute manic or
depressive episodes, which is characterized by increased
plasma levels of proinflammatory cytokines (TNF-a, IL-1b,
IL-2R, IL-6, and IL-10) (Hope et al., 2011; Soderlund et al.,
2011; Cetin et al., 2012; Munkholm et al., 2013; Stertz et al.,
2013; Muneer, 2016). Similarly, postmortem analyses in the
frontal cortices of patientswithBDhave demonstrated elevated
mRNA and protein levels of IL-1b, CD11b, and inducible nitric
oxide synthase (iNOS) (Rao et al., 2010).
Exacerbated inflammatory responses have been recorded by

PET imaging, showing a significant increase of TSPO binding
in the HPC of patients with BD (Haarman et al., 2014).
Interestingly, studies have found microglial and monocytic
activation with subsequent serum BDNF losses during manic
or depressive phases, suggesting synaptic alterations between
episodes (Drexhage et al., 2011; Parkhurst et al., 2013).
At present, research regarding the cross talk between

inflammatory responses and cognitive performance in BD is
extremely limited. The above studies, however, provide pre-
liminary evidence of proinflammatory contributions on BD
pathophysiology.
Schizophrenia. SCZ is a chronic, heterogeneous, and severe

mental disorder affecting 1%–3% of the general population
worldwide. It presents positive (hallucinations and move-
ment disorders), negative (anhedonia, fatigue, asocial or atonic
behavior), and cognitive symptoms (executive and memory
functions) (van Os andKapur, 2009). Epidemiologic studies have

Fig. 2. Gender influence and neuroimmune
interplay in mental disorders. This conceptual
model proposes that a wide range of psychosocial
and environmental factors (e.g., stress, trauma,
abuse, discrimination) induce CNS/peripheral
inflammatory responses and microglial activa-
tion in a subset of patients with mental disor-
ders. These patients exhibit moderate to severe
pathophenotype, worse disease outcome, and
resistance to conventional treatments. The gen-
der can influence the underlying disease and
treatment mechanisms on several levels, either
via gender-dependent environmental factors or
sex hormonal effects. Anti-inflammatory treat-
ments can be used to supplement the current
therapeutic regimens in this subset of patients.
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reported that prenatal maternal infection (influenza, T. gondii,
herpes simplex virus type 2, and cytomegalovirus) constitutes
a risk factor for the offspring to develop SCZ during adult-
hood (Brown and Derkits, 2010; Khandaker et al., 2013;
Canetta et al., 2014). This correlation between maternal
infection and SCZ is also supported by rodent models of
maternal immune activation with polyinosinic:polycytidylic
acid in midgestation (Hui et al., 2018), with the offspring
displaying SCZ behavioral phenotypes (Meyer et al., 2009;
Patterson, 2009; Giovanoli et al., 2013).
Equally important, SCZ pathophysiology has been asso-

ciated with the genetic loci of MHCII (Shi et al., 2009;
Stefansson et al., 2009), predominantly genes involving
complement C4, suggesting microglial involvement (Sekar
et al., 2016). High C4 expression has been detected in neuron
and astrocyte subsets from postmortem samples from patients
with SCZ (HPC and PFC), whereas C4 knockout mice display
impaired synaptic refinement (Sekar et al., 2016). Signifi-
cantly, PET studies reveal increased TSPO binding in the
HPC and frontal cortex of patients with SCZ (van Berckel
et al., 2008; Doorduin et al., 2009; Bloomfield et al., 2016;
Marques et al., 2019), whereas the density of MHCII-positive
amoeboid microglia is increased (Wierzba-Bobrowicz et al.,
2005; Busse et al., 2012; Fillman et al., 2013).
A meta-analysis of blood cytokine levels in patients with

SCZ revealed elevated expression of IFN-g, IL-6, IL-8, IL-1RA,
IL-1b, IL-10, andTNF-a during psychotic episodes (Goldsmith
et al., 2016), whereas a recent study of frontal cortex areas in
patients with SCZ demonstrated elevated macrophage num-
bers and vascular adhesion molecules expression (ICAM-1,
vascular cell adhesion molecule-1), further highlighting the
presence of inflammation in SCZ (Cai et al., 2020).

Inflammatory Effects on Neurotransmitter Metabolism

There are several proposed inflammatory mechanisms by
which monoamine (serotonin, dopamine) and glutamate neu-
rotransmission may be affected.
Monoamines. Compelling evidence supports the idea that

monoamine synaptic deficits result from excessive inflamma-
tory cytokine levels in mental disorders. Many studies have
focused on the impact of inflammatory cytokines on serotonin
reuptake transporter (SERT) function, a primary target for
anxiety- and depression-related disorders. In a lipopolysac-
charide-induced depressive-like model, interleukin-1b (IL-1b)
and TNF-a induction resulted in induction of SERT expres-
sion (through p38 MAPK) and diminished serotonin synaptic
levels (Zhu et al., 2010). This has been replicated in human
studies, correlating blood TNF-a concentrations with in-
creased SERT binding activity (Krishnadas et al., 2016),
supporting the hypothesis that inflammation promotes re-
sistance to selective serotonin reuptake inhibitors (SSRIs), as
observed in patients with mood and anxiety disorders (Straw-
bridge et al., 2015).
Cytokine-induced activation of the immunosuppressive

enzyme indoleamine 2,3 dioxygenase also significantly
alters serotonin production. Indoleamine 2,3 dioxygenase
activity can be induced by several inflammatory signaling
mechanisms, such as NF-kB, and can divert tryptophan
metabolism from serotonin into KYN (Muller and Schwarz,
2007), which is metabolized to neurotoxic quinolinic acid
by activated microglia and brain-infiltrating macrophages

(Raison et al., 2010a). Studies of patients with MDD demon-
strated direct correlation of plasma inflammatory markers
(e.g., TNF-a) with plasma KYN and CSF KYN/tryptophan
levels, exhibiting greater depression severity in those patients
(Haroon et al., 2020).
Dopamine is a monoamine neurotransmitter with essential

roles in the regulation of reward,motivation, and psychomotor
activity (Haber, 2014). Alterations in dopamine levels are
responsible for some of the most characteristic symptoms of
mental disorders: anhedonia, persistent fatigue, loss of in-
terest, and psychomotor deficits. Within weeks after admin-
istration of the cytokine IFN-a, patients experience symptoms
(Capuron et al., 2002; Capuron and Miller, 2004) due to
dopamine loss (Capuron et al., 2012). Similar results were
reported in animal studies (Felger et al., 2007, 2013) in which
lipopolysaccharide or cytokine administration (IL-1b or IL-6)
in mice resulted in loss of interest and reduction in reward
sensitivity (Yohn et al., 2016; Bartlett et al., 2018). Another
essential cofactor in monoamine synthesis, tetrahydrobiop-
terin, decreases in response to inflammation-induced oxida-
tive stress (ROS and reactive nitrogen species), inducing
anxiety and depressive symptoms (Neurauter et al., 2008;
Haroon et al., 2012; Felger et al., 2013).
Despite the rich literature reporting dopamine level alter-

ations in response to cytokine administration, little research
has been conducted to associate inflammation with analogous
dopamine responses in patients with mental disorders. For
instance, patients with MDD and chronic fatigue syndrome
with elevated inflammatory markers (such as CRP and cyto-
kines) demonstrated aberrant connectivity within reward-
related corticostriatal neurocircuitry (Miller et al., 2014; Felger
et al., 2016).
Altogether, these data suggest that the current first-line

treatment regimens, which activate monoamine receptors,
support dopamine synthesis, and block dopamine reuptake,
would ultimately have greater likelihood of success and longer
efficacy if they were to be combined with anti-inflammatory
medications. In agreement with that, patients withMDDwith
high inflammation exhibit greater responses to SSRIs used in
combination with the dopamine transporter blocker bupro-
pion than to SSRI monotherapy (Jha et al., 2017).
Glutamate. Glutamatergic neurotransmission is another

system through which cytokines influence reward-, motor-,
and threat-related circuitry (Tilleux and Hermans, 2007; Ida
et al., 2008; Miller et al., 2009; Vezzani and Viviani, 2015;
Birey et al., 2017; Murrough et al., 2017). Inflammatory
cytokines at physiologic levels can induce synaptogenesis by
1) inducing a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid activity postsynaptically, 2) promoting glutamate clear-
ance [through excitatory amino acid transporters (EAAT)],
and 3) maintaining and protecting synapses by NMDAR
stimulation through cytokine receptor activation (Santello
et al., 2011; Pribiag and Stellwagen, 2014; Haroon et al.,
2017).
During chronic inflammatory diseases, cytokine levels can

dramatically increase, resulting in persistent NF-kB activity
and neurotoxicity (Santello and Volterra, 2012): TNF-a and
IL-1b enhance risk for excitotoxicity by activating NMDAR
signaling, (Vezzani and Viviani, 2015) or inhibiting EAATs
(which clear glutamate) in HPC slices (Zou and Crews, 2005).
Interestingly, use of NMDAR antagonists blocks the cytokine-
potentiated glutamate neurotoxicity, signifying the role of
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N-methyl-D-aspartate signaling in inflammatory-mediated
neurotoxicity and mental disorders (Zou and Crews, 2005).
Inflammatory cytokines and related components have been

shown to induce glutamate neurotoxicity through microglia
and astrocytes (Tilleux and Hermans, 2007; Ida et al., 2008;
Haroon et al., 2017). Importantly, upon cytokine stimulation
and subsequent microglial activation, large quantities of
glutamate can be synthesized and released into synapses
(Takeuchi et al., 2006). In addition, glutamate can be directly
trafficked from microglia into astrocytes (through gap junc-
tions), leading to EAAT dysfunction (Takeuchi et al., 2008).
This glial glutamate release can stimulate extrasynaptic
neuronal NMDARs and lead to BDNF loss and excitotoxicity
(Hardingham et al., 2002; Hardingham and Bading, 2010).

Sex and Gender Differences in
Immunoneuropsychiatry

The definition and usage of the terms sex and gender in the
literature of mental disorders have sometimes been elusive
and difficult to define. The term “sex differences” describes the
biologic dissimilarities between male and female subjects,
whereas the term “gender differences” describes the differ-
ential effects that psychosocial, cultural, and environmental
factors have onmen andwomen (Muehlenhard and Peterson,
2011). As such, the term sex is used for the animal studies
assessing sex hormone influences (progesterone, estrogen,
estradiol) or genetics of mental disorders, and both the sex
(biologic) and gender (environment and experience) compo-
nents are used in human cases (Oertelt-Prigione, 2012;
Kuehner, 2017).

Justifying the Gender Gap in Mental Disorders

Differences in the epidemiology and symptomatology of
mental disorders in men and women are well established,
and with the exception of late-onset schizophrenia, women
have significantly higher chronic prevalence of anxiety, de-
pressive, and bipolar disorders (Boyd et al., 2015; Riecher-
Rössler, 2017a,b; GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018; Yu, 2018; Rehm and Shield,
2019). A compelling body of evidence suggests that women are
more vulnerable to psychosocial environmental stressors (due
to sex hormone influence and blunted HPA axis stress
responses), leading to higher prevalence of mental disorders.
Sex hormones can regulate various brain neurotransmitter

pathways (serotonergic, dopaminergic, and GABAergic), mod-
ulating the sensitivity toward psychosocial influences. For
instance, estradiol and progesterone fluctuations during men-
strual cycle augment vulnerability of women toward psychoso-
cial stressors but also significantly promote the overactivation,
consolidation, and nonextinction of stressful experiences (Li
and Graham, 2017). Stressful and emotion-negative stimuli
(Kemp et al., 2004) induce greater activation of locus coeruleus
(nucleus responding to stress and panic) in women compared
with men (Filkowski et al., 2017; Bangasser et al., 2018).
Animal studies suggest that this difference in coping with

anxiety and trauma stems from a sex-dependent HPA axis
hypoactivation (Kajantie and Phillips, 2006). Specifically, low
estradiol and progesterone levels (during menstruation, post-
partum, and postmenopausal periods) attenuate the SNS-
adrenal and HPA axis responsiveness, leading to repressed

stress-coping capability (Fig. 1) (Kajantie and Phillips, 2006;
Shansky et al., 2010). Studies demonstrate, however, that the
decrease in cortisol release after stress exposure leads to lack
of buffering mechanisms in emotional pathways (PFC-AMY)
(Het et al., 2012; Kuehner, 2017). The most compelling
evidence is the increased anxiety and depression prevalence
postpuberty/-menarche (Kessler, 2003; Angold and Costello,
2006; Bale and Epperson, 2015), attributing these effects on
ovarian hormonal level fluctuation (Costello et al., 2007).
Similarly, atypical depression (a characteristic example of
HPA hypoactivation predominantly observed in women) also
presents this pathophenotype (Albert, 2015; Kuehner, 2017).
Estradiol fluctuations can also exert pronounced effects on
fear/memory and emotional extinction in anxiety-related and
PTSD pathophysiology (Li and Graham, 2017).
Environmental and psychosocial influence is equally re-

sponsible for the gender differences observed in mental
disorders (Kuehner, 2017; Riecher-Rössler, 2017b). Notably,
reports demonstrate that domestic violence, sexual abuse
(Kuehner, 2017; Oram et al., 2017), discrimination, and other
risk factors can also contribute to the higher incidence of
mental disorder in women (Hankin et al., 2007; Zahn-Waxler
et al., 2008). As the prevalence of childhood sexual and
emotional abuse is significantly higher in women than men,
it constitutes an important contributor to gender differences
in mental disorders (Kuehner, 2017).

Sex Influence and Inflammation in Mental Disorders

Several physiologic systems (HPA axis, immune dysregula-
tion, neuroplasticity) have been implicated in the etiopatho-
genesis of mental disorders, and sex differences (hormone
regulation and genetics) significantly modulate these pro-
cesses (Rubinow and Schmidt, 2019) (Fig. 2). Importantly, sex
hormones are key regulators of both innate and adaptive
immune cell function (Rubinow and Schmidt, 2019; Slavich
and Sacher, 2019), affecting immune cell progeny, prolifera-
tion, and cytokine production (Oertelt-Prigione, 2012; Trigu-
naite et al., 2015).
Anxiety and Depressive Disorders. Epidemiologic

studies show robust gender-related differences in prevalence
(2- to 3-fold higher in women), severity, and comorbidity
reported in anxiety and traumatic and depressive disorders
(Li and Graham, 2017; Rehm and Shield, 2019). Sex hormonal
fluctuations are associated with heightened inflammatory
responses in women compared with men (Giletta et al.,
2018). In a meta-analysis of 26 studies, women were more
prone to developing MDD after IFN-a treatment (Udina et al.,
2012). Similar sensitivity to inflammatory components (endo-
toxin exposure) was observed in women withMDD, more than
men, despite the similar magnitude in cytokine responses (IL-
6, TNF-a) (Moieni et al., 2015). A recent longitudinal study
highlighted the association between systemic inflammation
and depression, demonstrating higher depression scores and
inflammatory levels (CRP, IL-6, and fibrinogen) in women
compared with men (Beydoun et al., 2020). Recently, a study
focusing on severe suicidal peripartum depression implicated
KYN pathway dysregulation followed by increased plasma
inflammatory responses (IL-6, IL-8, IL-2, and quinolinic acid)
and serotonergic system alterations (Achtyes et al., 2020).
Besides the demonstrated gender-based differences of inflam-

matory expression, a recent study reported gender-dependent
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molecular signatures in the transcriptome of patients withMDD
(Seney et al., 2018). Both genders revealed elevated expression
levels for MHC and antigen-processing genes in corticolimbic
areas (AMY, PFC, cingulate gyrus), but microglial-related gene
expression showed significant region-dependent decreases in
womenand respective increases inmen.Gender differenceswere
also reported in synaptic function and plasticity genes (higher in
women than men), suggesting increased microglial phagocytosis
of dendritic neuronal spines (Seney et al., 2018). However,
considering the grave effects that gonadal hormones exert in
mental disorders during adolescence, it is important to further
explore the gender differences emerging in early adulthood.
Microglia have been considered in the past as a homoge-

neous cell population (Ginhoux and Guilliams, 2016). How-
ever, single-cell RNA sequencing has revealed signatures
associated with distinct physiologic microglial functions and
subtypes (Li and Barres, 2018; Hammond et al., 2019).
Interestingly, Homeobox B8 (Hoxb8)-expressing microglia,
which account for one-third of all microglia in the adult mouse
brain, could be related to sex differences in mood disorder
pathophysiology (De et al., 2018): loss of function of microglial
Hoxb8 caused anxiety-related symptoms and obsessive com-
pulsion with higher severity in female mice, potentially
regulated by progesterone and b-estradiol (Tränkner et al.,
2019).
Animal work has provided additional insights on the sex

differences observed in microglia-mediated immune mecha-
nisms during mental disorders. Restraint stress can augment
microglial density and affect microglial fractalkine receptor
(CX3CR1) expression only in the PFC of female rats (Bollinger
et al., 2016). Microglia-related transcriptional alterations in
iNOS, Arginase1, and CD200 suggested that male and female
rat microglia respond differently (Bollinger et al., 2016). Sex
differences were also obvious in microglial morphologic fea-
tures in several brain regions (AMY, orbitofrontal cortex, and
HPC) (Bollinger et al., 2017), possibly affecting differentially
neuronal plasticity.
Traumatic and Schizophrenia Disorders. Females

have higher PTSD prevalence than males (Olff et al., 2007)
and higher heritability (Duncan et al., 2018). Sex hormones
influence the noradrenergic response to aversive stimuli
(Segal and Cahill, 2009; Lithari et al., 2010) and show greater
AMY sensitivity after threatening stimuli (Williams et al.,
2005), corroborating previous reports of inflammatory gender-
dependent differences in PTSD individuals (Neylan et al.,
2011). A recent PTSD transcriptome mega-analysis of seven
types of trauma (intrapersonal, assault, combat, childhood,
and others) demonstrated a shared molecular convergence in
inflammatory cytokine, innate immune, and IFN-signaling
cascades in both genders (Breen et al., 2018). However, the
study also revealed gender-dependent alterations in several
signaling modules (IL-12, MAPK, wound healing, and lipid
metabolism), which were associated with specific modes of
trauma (Breen et al., 2018). Correspondingly, in a recent
PTSD rodent model, researchers detected sex-specific tran-
scriptional responses to trauma involving NF-kB activation
(TNF-a upregulation) and dysregulated synaptic plasticity in
female HPC (Kim and Uddin, 2020).
In SCZ, higher disease severity and frequency is evident

in men (Abel et al., 2010), and the mean disease onset is
5 years earlier than women (Andersen, 2003). Interestingly,
there is an increase of SCZ psychotic episodes in women when

postpartum (when estrogen levels drop suddenly) (Riecher-
Rössler, 2017a), as well as around menopause (Castle and
Murray, 1993). These data support the “estrogen hypothesis,”
which postulates that estrogen can exert a protective effect in
SCZ (Grigoriadis and Seeman, 2002).
The SCZ etiopathogenesis, compared with other mental

disorders, involves predominantly neurodevelopmental ab-
normalities correlated with genetic factors and maternal
infections as pathogenic contributors. It is believed that
estrogen modulates microglial receptors and activity (Sierra
et al., 2008), reducing inflammation (Sarvari et al., 2011). This
sex-dependent hypothesis in SCZ human studies has focused
on MHCII-microglial activation, evident in postmortem stud-
ies of patients with SCZ (Sekar et al., 2016; Mondelli et al.,
2017). In a recent study, variations of complement component
C4 in blood, brain, and lymphoblastoid cells drove stronger
vulnerability and severity in men than in women (Kamitaki
et al., 2020). Both C4 and its effector, complement component
3, are found at higher levels in plasma andCSF frommen aged
between 20 and 50 years, whereas in women, this increase
occurs after menopause (40–50 years) (Ritchie et al., 2004;
Gaya da Costa et al., 2018). As C4 increase occurs during the
same time frame as disease vulnerability, it is suggested that
microglial complement receptors in SCZ disorder may be
affected differently by sex.
This hypothesis is also supported by several rodent mater-

nal immune activation studies, in which male offspring are
more vulnerable than female (Mattei et al., 2014; Deane et al.,
2017; Hui et al., 2018; Notter et al., 2018). Interestingly,
studies have revealed sex-based increases of inflammatory
responses and “dark”microglial density (the cells appear dark
in electron microscopy and interact with blood vessels and
synapses), as well as extensive synapse interaction and
oxidative stress in theHPC ofmales after exposure to prenatal
polyinosinic:polycytidylic acid. Therefore, prenatal infection
may differentially affect microglial responses in each gender
(Hui et al., 2018).
Overall, microglia emerge as key players in traumatic and

schizophrenia disorder onset, but it is still not clear whether
these inflammatory effects occur only in a subset of severe
disease cases or whether these mechanisms are exerted in
a sex-dependent manner (Fig. 2).

Conclusions
Increasing evidence supports inflammatory mechanisms

underlying the pathophysiology of mental disorders. Immune
mechanisms have pronounced regulatory effects on the psy-
chosocial stressor–genetic diathesis interaction (Fig. 1), dem-
onstrating heightened inflammatory load inmental disorders.
However, despite the evident induction of peripheral and CNS
immune components and mediators in patients with mental
disorders, these effects are not consistently reported. Could
this possibly mean that inflammatory responses and micro-
glial activation are evident only on a subset of patients with
distinct pathophenotype or disease severity (Fig. 2)?
Postmortem studies from severe cases of depression,

trauma, and psychoses have reported association with micro-
glial activation and increases of peripheral and central
proinflammatory responses (Haarman et al., 2014; Setiawan
et al., 2015; Cattaneo et al., 2016;Mondelli et al., 2017; Raison,
2017; Wittenberg et al., 2020). These observations suggest

Neuroimmune Mechanisms and Sex Effects in Mental Disorders 185



that inflammatory cytokines, along with microglial activity,
may serve as prognostic markers of disease development,
severity, and expected resistance to treatment. With this in
mind, anti-inflammatory regimens could be used to supple-
ment the current antidepressant treatments: nonsteroidal
anti-inflammatory drugs, minocycline, and other immunosup-
pressive drugs (Miller et al., 2017; Raison, 2017; Pfau et al.,
2018; Wittenberg et al., 2020), targeting moderate to severe
disease cases.
Sex hormones play an equally important role in mental

disease modulation (Fig. 2). Gender effects have come to
provide an additional layer of complexity to immunopsychia-
try, integrating psychosocial, genetic, and developmental
factors under the prism of sex hormonal influence. However,
this complexity, if used correctly, would introduce gender as
a valuable part of this equation and unveil novel pharmaco-
logical interventions for modern psychiatry.
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