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Human bone marrowmesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied
as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to
improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the
surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent
ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by
echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of
biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than
those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and
BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were
upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong
relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune
regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely
linked to a more pronounced cell adhesion expression program.

1. Introduction

Stem cell therapies have emerged as a promising treatment
for different pathologies, including cardiovascular diseases,
and may pave the way for effective approaches to regener-
ate the heart and restore cardiac function after injury [1].
In this line, cardiac progenitor/stem cells (CPCs) have
been proposed and tested for their participation in cardiac
homeostasis and repair [2–6]. Initial clinical trials of autol-

ogous cell-based therapy demonstrated the feasibility of
CPCs to promote cardiac repair after myocardial infarc-
tion (MI) [7, 8], and later studies tested their efficacy in
the allogeneic setting [9, 10].

Bone marrow mesenchymal stem cells (BM-MSCs) have
also been demonstrated to promote cardiac repair after acute
MI (AMI), by attenuating left ventricular remodeling and
promoting neoangiogenesis [11, 12]. These effects are pri-
marily ascribed to the ability of BM-MSCs to migrate to
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damaged or malfunctioning tissues [13, 14] and secrete tro-
phic factors or extracellular vesicles [15] and their potential
to suppress immune reactions [16]. Nevertheless, despite
the successful results in animal models, the results in human
trials have been for the most part disappointing [17–20],
which has motivated a reappraisal of their clinical signifi-
cance. While the mode of action of CPCs and BM-MSCs in
cardiac repair is still somewhat unclear, there is a consensus
that both types of administered cells release growth factors
and molecules that promote angiogenesis and immune regu-
lation, limiting the postinfarct scar, preventing myocardial
apoptosis, and stimulating resident CPCs to repair the dam-
age, the so-called paracrine effect [21–23]. It is widely
accepted that the immune response triggered after MI plays
an important role in the extension of the damage after the
ischemic injury and also on disease progression [24, 25]. In
that sense, it was suggested that the interaction of the admin-
istered cells with cell populations present in the heart after
AMI mediates a beneficial effect on inflammation and tissue
regeneration [5]. This is supported by the findings that while
CPCs likely do not achieve long-term engraftment [2], the
time that they remain at the injury site is sufficient to trigger
tissue repair [26, 27].

Using a combination of RNA sequencing and quantita-
tive mass spectrometry-based proteomics, we recently com-
prehensively characterized and compared the proteomes of
CPCs and BM-MSCs, finding a clear overrepresentation of
angiogenic-related cell surface proteins in CPCs [28]. In the
present study, we further analyzed the protein composition
of the plasmatic membrane fraction in CPCs and BM-
MSCs in terms of interactions with other proteins or sets of
molecules, in an attempt to understand the mechanisms that
promote cell retention and engraftment in the heart. Plas-
matic proteins identified by proteomic analysis of biotinyl-
ated fractions grouped into biological processes related to
adhesion processes both in CPCs and BM-MSCs. Identified
KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways were commonly expressed in both cell types. However,
only CPCs showed the involvement of the Rap1 signaling
pathway, a key mediator of integrin-mediated cell adhesion
processes. Moreover, interactome analysis of the receptome
in CPCs versus BM-MSCs showed an enrichment of cell
adhesion mechanisms in CPCs whereas BM-MSCs showed
a robust immunoregulatory phenotype. These data improve
our understanding of the mechanisms of action of CPCs
and BM-MSCs in relation to cardiac repair.

2. Materials and Methods

2.1. Cells, Culture Conditions, and Lentiviral Transduction
of CPCs. CPCs were obtained from Coretherapix SLU
(Tigenix Group, Madrid, Spain) and were isolated as
described [5]. After thawing, cells were cultured in a combina-
tion of Dulbecco’s Modified Eagle’s Medium/Nutrient mix-
ture F12 (DMEM/F12) and Neurobasal medium (1 : 1),
supplementedwith 10%FBSESCq (fetal bovine serumembry-
onic stem cell qualified), L-glutamine (2mM), penicillin/-
streptomycin (P/S, 100U/mL and 100μg/mL, respectively),
B27 (0.5×), N2 supplement (0.5×), insulin-transferrin-

selenium (0.5×) (all from Thermo Fisher Scientific), β-mer-
captoethanol (50μM, Sigma-Aldrich), bFGF (10ng/mL),
IGF-II (30 ng/mL), and EGF (20ng/mL) (all fromPeprotech).
Cells were grown at 37°C in humidified chamber at 3% O2
atmosphere.

Human BM-MSCs were purchased from Inbiomed
(Inbiobank, San Sebastián, Guipuzcoa, Spain) and were
expanded following the manufacturer’s instructions. Briefly,
cells were cultured in DMEM low-glucose (Sigma-Aldrich)
supplemented with 10% FBS (Corning) and 1% P/S. Cells
were grown in a humidified atmosphere of 95% air and 5%
CO2 at 37

°C.
CPCs and BM-MSCs were infected with the pSIN-

EF1α-GFP-IRES-Puro lentiviral plasmid to label cells prior
intramyocardial transplantation. Briefly, 1:7 × 106 cells
were seeded and incubated with 4.25mL of virus superna-
tant with 8μg/mL polybrene for 2 days. Cells were then
centrifuged at 1,000×g for 1 h at 37°C, culture medium
was replenished, and cells were incubated for 2 further
days for green fluorescent protein (GFP) analysis. Trans-
duction efficiency was measured using flow cytometry to
quantify the percentage of GFP-positive cells (CPC-GFP)
in transduced cells compared with the nontransduced neg-
ative control cells. GFP expression was quantified by MFI
(mean fluorescence intensity) in GFP-positive cells by flow
cytometry: expressed values are normalized MFI correspond-
ing to an increasing factor of fluorescence intensity in GFP-
positive transduced cells compared with GFP-negative control
cells (=MFI(GFP+)/MFI(GFP−)). Expression levels acceptable
for in vivo GFP-positive cell detection were also visually eval-
uated by fluorescence microscopy.

2.2. Animals.A total of 30 male nude rats weighing 200–250 g
(HIH-Foxn1 rnu, Charles River Laboratories, Inc.) were
used in the present study. Animals were randomly divided
into three experimental groups (CTRL as the control, BM-
MSCs, and CPCs). All procedures were approved by
national and local ethical committees (reference number
2016/VSC/PEA/00006) and complied fully with the Direc-
tive 2010/63/EU of the European Parliament on the
protection of animals used for scientific purposes.

2.3. Myocardial Infarction and Cell Transplantation. Perma-
nent ligation of the left coronary artery was performed as
described [29]. Briefly, rats were intubated and anesthetized
with a mixture of O2/sevoflurane, and a rate of 100 cycles/-
min and a tidal volume of 2.5mL (Harvard Apparatus Small
Animal ventilator Model 683) and, after thoracotomy, AMI
was induced by permanent ligation of the left descending
coronary artery (LAD) with 6-0 prolene (Braun). The
infarcted area was visualized immediately after ligation by
development of a pale color in the distal myocardium. Imme-
diately after LAD ligation, rats received an intramyocardial
injection of phosphate-buffered saline (PBS) as CTRL, or a
final dose of 2:5 × 105 cells (BM-MSCs or CPCs) through 2
injections of 10μL at 2 points of the infarct border zone using
a Hamilton syringe. Cells were administered with fluores-
cence microspheres at a ratio of 1 : 40 to check that the injec-
tions were performed correctly. The incision was closed with
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a 3-0 silk suture, and metamizole (0.4 g/mL) was given intra-
peritoneal (0.5mL/kg) as pain relief. At 4-week postimplan-
tation, rats were euthanized with an overdose of ketamine
(125mg/kg), valium (10mg/kg), and atropine (50mg/kg);
the hearts were removed, washed with PBS, and fixed in 2%
paraformaldehyde (PFA). The hearts were then embedded
in paraffin and cut into 6μm slices.

2.4. Echocardiography. Cardiac functional assessment was
determined by echocardiography as described [29], at base-
line and after AMI at 4 weeks after the cell transplantation.
Briefly, rats were anesthetized as before, and echocardiogra-
phy was performed using an echocardiographic system
(Vivid 7; GE Healthcare) with a 10MHz linear-array trans-
ducer. Measurements were performed in M-Mode and two-
dimensional (2D) images at the level of the papillary muscles.
The following parameters were measured: left ventricular
(LV) dimensions at end diastole (LVd) and end systole
(LVs), anterior and posterior wall (AW and PW, respec-
tively) dimensions in diastole and systole, end-diastolic area
(EDA), and end-systolic area (ESA). Percentage changes in
AW thickness (AWT) were calculated as %AWT = ðAWs/
AWd − 1Þ × 100. Fractional shortening (FS) was calculated
as ½ðLVDd − LVDsÞ/LVDd� × 100, and fractional area change
(FAC) was calculated as%FAC = ½ðEDA – ESAÞ/EDA� × 100.

2.5. Morphometry and Immunohistochemistry Analysis.
Hearts were fixed with 2% PFA, and LV infarct size was mea-
sured in 10–12 transverse sections of 6μm (1 slice every
200μm of tissue from apex to base) stained with Masson’s
trichrome. Images were captured under a light Leica DMD
108 microscope. The fibrotic zone was identified by the light
blue color, and scar area was determined by computer plani-
metry of the fibrotic regions using ImageJ software (National
Institutes of Health). Infarct size was expressed as percentage
of total left ventricular area and as a mean of all slices from
each heart. Left ventricular wall thickness (LVW) was
measured and expressed in millimeters.

2.6. Biodistribution Experiments. CPC-GFP cells were intra-
myocardically transplanted into infarcted hearts, and rats
were euthanized 2, 10, and 21 days after cell transplantation.
The following organs were extracted: the blood, bone mar-
row, spleen, heart, kidney, liver, brain, lung, and testes. Upon
extraction, the tissue was placed in criovials, which were then
immersed in liquid N2 and stored at -80°C until their pro-
cessing. Genomic DNA was isolated using the Qiagen
DNAeasy Tissue kit (Qiagen).

The amount of human-specific DNA in each rat organ
was traced using quantitative and highly-sensitive human
Alu sequence-specific real-time polymerase chain reaction
(qPCR) analysis. The amount of human-specific DNA in
each rat tissue was determined by comparing the fluores-
cence signal of the tested DNA with that from the positive
control DNA standard using TaqMan™ Technology. Data
are represented as the percentage of animals in where
human-specific DNA was detected.

The organs of two animals per day of sacrifice were fixed
in 2% PFA, embedded in paraffin, and processed as for mor-

phometry and immunohistochemistry analysis for the detec-
tion of the injected GFP-labeled cells in histological sections.

2.7. Biotin Labeling of Surface Proteins. CPCs and BM-MSCs
were surface biotinylated and processed as described [30].
Briefly, cells were incubated with 0.5mg/mL of sulfo-NHS-
SS-biotin (Thermo Fisher Scientific) for 30min at 4°C. Then,
cells were washed and lysed in 50mM HEPES pH7.4,
140mM NaCl, 10% glycerol, 1% Triton X-100, 1mM EDTA,
2mM EGTA, and 0.5% deoxycholate. Biotin-conjugated cell
surface proteins were purified with 30μL of streptavidin-
agarose resin (Sigma-Aldrich). Resin was washed twice and
subsequently denatured with Laemmli sample buffer for
proteomic analysis.

2.8. Proteomic Analysis. Proteomic analyses were performed
as described [31]. Briefly, 30μg of protein samples were
used in 12.5% acrylamide SDS-PAGE electrophoresis and
protein content was digested with trypsin. Digestion was
stopped with 1% trifluoroacetic acid, and 5μL of each
sample was loaded for liquid chromatography and tandem
mass spectrometry (LC-MS/MS). Data were analyzed using
the ProteinPilot default parameters (ProteinPilot v4.5.
search engine, AB Sciex). The unused protein score, mea-
sured as the protein confidence calculated from the pep-
tide confidence for peptides from spectra, was used to
rank the proteins. Only proteins showing an unused
score > 1:3 and identified with confidence ≥ 95% were
included in the analysis.

Bioinformatics analyses were performed to identify func-
tional enrichment based on overrepresentation methods
implemented in the Bioconductor clusterProfiler [32] pack-
age from R (R Development Core Team 2008), using func-
tional information from the Gene Ontology (GO) [33] and
KEGG pathway databases [34].

Finally, the results were summarized and represented
graphically using dotplots [32] and treemaps from the
REVIGO web application [35]. Venn diagrams were created
using the open source online tool Venny 2.1.0 (Oliveros,
JC, CNB-CSIC. http://bioinfogp.cnb.csic.es/tools/venny/).

2.9. Interactome Analysis. The protein interactome was
screened by matching significant proteins against the Bio-
GRID database [36]. Gene Set Enrichment Analysis (GSEA)
[37] was performed with the complete interactome, to detect
significant GO biological processes, molecular functions, and
cellular components.

2.10. Statistical Analyses. Data are represented as mean ±
standard error (SE). Statistical analyses were carried out
using GraphPad Prism 6 software (GraphPad Software Inc.,
La Jolla, CA). Statistical significance was determined using
one-way ANOVA and appropriate post hoc analysis. Differ-
ences were considered statistically significant at p < 0:05 with
a 95% confidence interval.

3. Results

3.1. CPC Are More Effective Than BM-MSC in Improving
Cardiac Function and Reducing Infarct Size. To evaluate the
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effect of CPC and BM-MSC transplantation in infarcted rats,
we performed echocardiographic studies at baseline and just
prior to sacrifice (4 weeks) in all the experimental groups.
Due to the regenerative properties attributed to BM-MSCs
[11, 38], they were transplanted at the same dose of CPCs
and were used as a positive control. The echocardiographic
parameters analyzed in untreated animals (CTRLs) revealed
a stronger deterioration of cardiac systolic function in
comparison with animals treated with CPCs (Table 1). Rats
subjected to cell transplantation showed a significant
improvement in all echocardiography parameters measured
at 4-week posttransplantation when compared with control
animals: %FAC was 41:59 ± 1:92 in the CPC group, 34:76
± 1:12 in the BM-MSC group, and 32:72 ± 1:92 in the CTRL
group (p < 0:01) and %FS was 29:27 ± 1:08 in the CPC group,
24:51 ± 1:33 in the BM-MSC group, and 23:52 ± 1:24 in the
CTRL group (p < 0:05). Significant differences were also
observed in terms of the %AWT, with 28:60 ± 1:58 in the
CPC groups, 23:22 ± 1:13 in the BM-MSC group, and 22:93
± 0:91 in CTRL group (p < 0:05) (Figure 1(a)).

To examine the effect of cell transplantation on infarct
size, cross-sections from the hearts of animals transplanted
with CPCs, BM-MSCs, and control animals were stained
with Masson’s trichrome following sacrifice (Figure 1(b)).
The fibrous scar tissue area was smaller in both the BM-
MSC- and CPC-transplanted animals than in control animals
(Figure 1(c)), although significant differences were found only
between the control and CPC groups (19:15 ± 1:58 vs. 11:42
± 1:10, respectively, p < 0:01). Significant differences were
also found between the treatments in terms of LVW: 0:79 ±
0:07 in the control, 0:96 ± 0:10 in the BM-MSC group, and
1:51 ± 0:12 in the CPC group (Figure 1(d)); the control vs.
CPCs (p < 0:001) and BM-MSCs vs. CPCs (p < 0:05).

3.2. Human CPCs Show Cardiac Engraftment in Rat Hearts.
One of the major hurdles to the development of cell therapies
is the low rate of cell survival and engraftment in the recipient
heart. MSCs are used in cell therapy because of their potent
immunomodulatory properties rather than their ability to dif-
ferentiate and engraft the injured tissues [39]. Indeed, our previ-
ous study showed little or no retention of BM-MSCs in the heart
and poorer improvement of cardiac function when suboptimal
doses of cells were used (less than 106 cells/animal) [38].

From the initial intramyocardial transplantation of
2:5 × 105 human CPCs at the infarction border site in
infarcted nude rats, we quantified the presence of human
cells in different organs and in blood samples though the
detection of human-specific Alu sequences by qPCR
(Figure 1(e)). Human CPCs were detected in the hearts
of 75%, 33%, and 21% of the treated nude rats at 2, 10,
and 21 days after cell administration, respectively. Human
cells were also observed in the blood, lungs, brain, kidney,
gonads, bone marrow, liver, and spleen 2 days after cell
administration. The detection of cells in these organs dem-
onstrated that most of the infused CPCs reached the coronary
circulation and were successfully distributed systemically even
after intramyocardial administration. However, the number of
CPCs in these organs decreased to undetectable levels at 10
days and cells were only observed in hearts in 33% of the
treated rats at this time. As the CPCs were cleared in most of
organs at 10 days posttransplantation, we checked for the
presence of CPCs in hearts of rats sacrificed at 21 days, finding
that these cells were present in the hearts of 21% of the treated
rats. Moreover, an analysis of the spatial biodistribution of
CPC-GFP cells by immunofluorescence in the tissue sections
confirmed that the cells were found in the myocardium

Table 1: Echocardiographic values of the control, BM-MSC, and CPC groups at baseline and 4 weeks after myocardial infarction.

CTRL BM-MSC CPC p values∗

(n = 10) (n = 10) (n = 10) ANOVA
Control vs.
BM-MSC

Control
vs. CPC

BM-MSC
vs. CPC

Baseline Final∗ Baseline Final∗ Baseline Final∗

AWd 1:61 ± 0:03 1:06 ± 0:03 1:29 ± 0:02 0:97 ± 0:03 1:46 ± 0:01 1:03 ± 0:04 0.0031

LVd 5:86 ± 0:07 7:43 ± 0:17 4:87 ± 0:21 6:47 ± 0:18 5:92 ± 0:08 7:14 ± 0:16 0.0154 0.0031 0.0381

PWd 1:49 ± 0:07 1:53 ± 0:08 1:38 ± 0:06 1:46 ± 0:14 1:41 ± 0:04 1:33 ± 0:04 0.0495

AWs 2:45 ± 0:05 1:37 ± 0:04 2:10 ± 0:08 1:29 ± 0:05 2:30 ± 0:03 1:43 ± 0:06

LVs 3:39 ± 0:05 5:68 ± 0:17 2:91 ± 0:12 5:00 ± 0:23 3:50 ± 0:04 5:10 ± 0:14 0.0407 0.0251

PWs 2:10 ± 0:08 2:04 ± 0:12 1:86 ± 0:10 2:07 ± 0:13 2:12 ± 0:07 1:87 ± 0:06

EDA 31:48 ± 0:62 43:90 ± 1:59 26:86 ± 1:70 37:86 ± 2:11 31:15 ± 0:55 43:35 ± 1:75

ESA 8:82 ± 0:39 29:36 ± 1:42 7:46 ± 0:55 24:05 ± 1:36 8:27 ± 0:21 25:49 ± 1:44 0.0196

FS 71:99 ± 1:08 33:28 ± 1:42 71:04 ± 1:09 36:85 ± 2:06 73:42 ± 0:54 41:37 ± 1:85 0.0065 0.0024

FAC 42:11 ± 0:46 23:67 ± 0:88 40:75 ± 0:88 26:49 ± 1:80 40:90 ± 0:50 28:60 ± 0:93 0.0072 0.0008

AWT 33:96 ± 0:90 22:57 ± 0:75 37:96 ± 1:21 23:81 ± 1:03 36:55 ± 0:74 27:65 ± 1:00 0.0081 0.0020

Abbreviations: AWd: anterior wall diastole thickness; AWs: anterior wall systole thickness; AWT: anterior wall thickening; EDA: end-diastolic area; ESA: end-
systolic area; FAC: fractional area change; FS: fractional shortening; LVd: left ventricular diastole internal dimension; LVs: left ventricular systole internal
dimension; BM-MSC: bone marrow mesenchymal stem cells; PWd: posterior wall diastole thickness; PWs: posterior wall systole thickness; w: weeks. All
values are mean ± SEM. AWd, LVd, PWd, AWs, LVs, and PWs are expressed in mm whereas EDA and ESA are expressed in mm2. FS, FAC, and AWT are
expressed as percentage.
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Figure 1: Improvement of left ventricular function in CPC-treated animals 4 weeks after transplantation. (a) Quantified values of fractional
area change (FAC, %), fractional shortening (FS, %), and anterior wall thickening (AWT, %) from the control, BM-MSC, and CPC animal
groups measured in 2D and M-Mode imaging 4 weeks after myocardial infarction (n = 10 in each group). (b) Representative images of
heart sections from infarcted rats stained with Masson’s trichrome. Fibrotic area in the left ventricle is stained in blue. (c) Quantification
of the fibrotic area represented as the percentage scar tissue. (d) Quantification of the left ventricular wall (LVW) thickness in millimeters.
Data are represented as mean ± SEM. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. (e) Detection of transplanted CPCs after transplantation in
infarcted rats at different time points. Percentage of rats in which human Alu-DNA was detected in the indicated organs on days: 2 (red),
10 (green), and 21 (black) after myocardial infarction. Scale bar = 1mm.
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around the infarcted area at day 2 after cell injection and
remained in the heart at least 21 days, although the number
of cells decreased considerably along this time. The analysis
of hearts injected with BM-MSC and sacrificed 21 days post-
transplantation showed absence of GFP signal (Supplemental
Figure 1).

3.3. CPCs and BM-MSCs Have Different Plasmatic
Membrane Protein Profiles. Surface proteins are implicated
in numerous cellular processes including cellular adhesion,
signaling, and extracellular matrix organization. We per-
formed comparative cell surface biotinylation to identify
the most common proteins expressed on the plasmatic mem-
brane of CPCs and BM-MSCs. Although the same amount of
total protein sample was analyzed from the two groups of
cells, we found significant differences in identified proteins
between CPCs and BM-MSCs. Proteomic analysis of bio-
tinylated membrane fractions showed that 59 (30%) proteins
were commonly expressed between CPCs and BM-MSCs
(Figure 2(a)), with many of these proteins belonging to the
integrin and collagen families. Furthermore, 81 proteins
(40.6%) were specifically detected in CPCs and 58 (29.4%)
in BM-MSCs (Figure 2(a)). Of note, proteins implicated in
cell adhesion were the most widely expressed in both cells
types: 15 proteins (26.3%) related to adhesion were expressed
in both cell types, 20 (35.1%) specifically in CPCs, and 22
(38.6%) in BM-MSCs. Nevertheless, the unused protein
score, a measure of the protein confidence for a detected pro-
tein used to rank the proteins, showed highest values in CPCs
for almost all the proteins identified. Total proteomic analy-
sis of CPCs and BM-MSCs can be found in Supplementary
Table S1 and S2, respectively.

3.4. CPC Plasmatic Membrane Is Significantly Enriched in
Proteins Involved in Adhesion Processes. We created a tree-
map of significantly enriched biological processes identified
in CPCs and BM-MSCs using REVIGO (Figures 2(b) and
2(d)). In this representation, each rectangle signifies a single
cluster, and the clusters are joined into ‘superclusters’ of
loosely related terms, visualized with different colors and
with the size of the rectangles reflecting the p value. Bio-
tinylated proteins in the CPC group mainly were grouped
into integrin-mediated signaling pathway, cell adhesion
mediated by integrin, formation of primary germ layer,
and cell junction assembly superclusters; the most signifi-
cant processes clustered around integrin-mediated signal-
ing pathway, cell adhesion, and cell junction assembly
(Figure 2(b)). In the case of BM-MSC biotinylated pro-
teins, GO biological processes were mostly grouped into
collagen metabolism, cell junction assembly, integrin-
mediated signaling pathway, and cell-matrix adhesion
superclusters (Figure 2(d)). As a complementary represen-
tation, significant biological processes were depicted as
dotplots, with the significance of each biological process
described by its p value and its GeneRatio (Figures 2(c)
and 2(e)), which represents the percentage of the total
quantified proteins to which the function is associated.
Integrin-mediated signaling pathway and cell junction
assembly superclusters were also overrepresented, and

most of the biological processes identified in CPCs were
also represented in BM-MSCs as reflected in the dotplot
graphics (Figures 2(c) and 2(e)). Total GO biological pro-
cesses significantly overrepresented in CPCs and BM-
MSCs are listed in Supplementary Tables S3 and S4,
respectively. Similar results were obtained after KEGG
pathway analysis to examine the molecular networks
significantly enriched in both cell types. The most
significant overrepresented KEGG pathways identified in
CPCs and BM-MSCs are listed in Table 2. Of particular
note was the Rap1 signaling pathway, which was exclusively
overrepresented in CPCs. Rap1 signaling is involved in
angiogenesis, cell adhesion, proliferation, and migration
processes and could confer an additional mechanism upon
CPCs to promote cell adhesion and migration.

3.5. Target Genes of Identified Proteins of CPC Plasmatic
Membranes Are Involved in Adhesion Processes. We next
conducted an interactome analysis in CPCs and BM-MSCs
to study the target genes of proteins expressed in the plas-
matic membrane and how they interact with each other. To
do this, GO biological processes were identified using GSEA
and visualized with Cytoscape software v3.7.2 (Figures 3(a)
and 3(b)). In agreement with the aforementioned results, bio-
logical processes related to adhesion mechanisms were
enriched in the plasmatic membrane of CPCs, whereas the
protein repertoire overexpressed in the plasmatic membrane
of BM-MSCs was more related to immunological processes
(Supplemental Tables 5 and 6).

4. Discussion

According to the World Health Organization, 32.4 million
cases of myocardial infarction or stroke occur worldwide
every year. Because current therapies diminish disease pro-
gression without contributing significantly to repair, cardiac
regeneration is a major therapeutic objective in cardiology.
Both CPCs and MSCs have demonstrated their potential to
regenerate infarcted hearts after AMI in different animal
models [5, 26, 29, 38, 40], and their beneficial effect on left
ventricular function has been widely demonstrated in spite
of their low engraftment and retention after infusion [4, 41].

Here, we show the superior capacity of CPCs over BM-
MSCs in improving cardiac functional parameters and reduc-
ing infarct size in a rat model of induced MI. BM-MSCs have
been extensively used in preclinical studies of cardiac regener-
ation; however, in accord with previous studies [27], CPCs
seem to be significantly more effective at improving functional
cardiac parameters at lower doses than those used with BM-
MSC. At the doses assessed in this study, improvement of car-
diac function was evident when CPC transplantation was
compared with controls measured in changes of FAC, FS,
and AWT.We observed similar results in terms of viable myo-
cardium, with only CPCs producing significant improvements
in the reduction of scar tissue and increase of LVW thickness.
BM-MSCs did show a positive trend in some of these param-
eters, but they were not statistically significant, likely due to
the low cell dose used. These results suggest that although both
cell types are able to promote functional improvements in all
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Figure 2: Graphical representation of upregulated GO biological processes identified by proteomic analysis in CPCs and BM-MSCs. (a) Venn
diagram of data from proteomic analysis of membrane fractions, 140 proteins were expressed in CPCs, 117 were expressed in BM-MSCs, and
59 proteins were commonly expressed in both cell types. (b) Treemap diagram of biological processes overrepresented in cardiac-derived
stromal cells using REVIGO webtool after proteomic analysis. (c) Dotplot representing GO biological processes overrepresented in CPCs.
(d) Treemap diagram of biological processes significantly overrepresented in bone marrow mesenchymal stem cells using REVIGO
webtool after proteomic analysis. (e) Dotplot representing GO biological processes significantly overrepresented in BM-MSCs.
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Table 2: KEGG pathways associated with biotinylated proteins overexpressed in cardiac progenitor/stem and bone marrow mesenchymal
stem cells.

(a) Cardiac progenitor/stem cells

KEEG_id Term p value

hsa04512 ECM-receptor interaction 2:22E − 17

hsa04510 Focal adhesion 4:06E − 14

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 1:74E − 12

hsa05165 Human papillomavirus infection 1:74E − 10

hsa05410 Hypertrophic cardiomyopathy (HCM) 4:29E − 10

hsa05414 Dilated cardiomyopathy (DCM) 6:81E − 10

hsa05205 Proteoglycans in cancer 2:25E − 08

hsa04640 Hematopoietic cell lineage 9:61E − 08

hsa04810 Regulation of actin cytoskeleton 5:04E − 07

hsa04145 Phagosome 1:68E − 06

hsa04514 Cell adhesion molecules (CAMs) 2:09E − 05

hsa04670 Leukocyte transendothelial migration 3:92E − 05

hsa05131 Shigellosis 1:16E − 04

hsa05100 Bacterial invasion of epithelial cells 1:62E − 04

hsa04974 Protein digestion and absorption 1:94E − 04

hsa05222 Small cell lung cancer 3:05E − 04

hsa05418 Fluid shear stress and atherosclerosis 1:35E − 03

hsa04520 Adherens junction 2:68E − 03

hsa04015 Rap1 signaling pathway 5:30E − 03

hsa04611 Platelet activation 8:31E − 03

hsa04919 Thyroid hormone signaling pathway 8:31E − 03

hsa05144 Malaria 1:28E − 02

hsa05130 Pathogenic Escherichia coli infection 1:70E − 02

hsa05206 MicroRNAs in cancer 1:78E − 02

(b) Bone marrow mesenchymal stem cells

KEEG_id Term p value

hsa04512 ECM-receptor interaction 2:42E − 19

hsa04510 Focal adhesion 4:06E − 14

hsa05165 Human papillomavirus infection 7:93E − 12

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 9:52E − 11

hsa05410 Hypertrophic cardiomyopathy (HCM) 1:60E − 08

hsa05205 Proteoglycans in cancer 2:25E − 08

hsa05414 Dilated cardiomyopathy (DCM) 2:38E − 08

hsa04810 Regulation of actin cytoskeleton 5:04E − 07

hsa04514 Cell adhesion molecules (CAMs) 1:34E − 06

hsa04670 Leukocyte transendothelial migration 2:03E − 06

hsa05100 Bacterial invasion of epithelial cells 7:42E − 06

hsa05131 Shigellosis 1:16E − 04

hsa05146 Amoebiasis 3:30E − 04

hsa04933 AGE-RAGE signaling pathway in diabetic complications 5:61E − 04
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measured parameters the effects on cardiac repair are more
pronounced using CPCs.

Given the relevant role of plasmatic membrane receptors
in extravasation and infiltration, we sought to better character-
ize the protein expression profiles in the plasmatic membrane
of CPCs and BM-MSCs, to inform on the mechanisms that
might favour cardiac regeneration. It has been described previ-
ously that CPC highly engraft in infarcted hearts [2, 4].
Accordingly, the proteins putatively implicated in the superior
engraftment and retention in the heart of CPCs relative to
BM-MSCs were studied by proteomic analysis of the biotinyl-
ated surface proteins.

Comparative proteomic analysis of CPC versus BM-
MSC membrane proteins revealed a larger number of pro-
teins corresponding to the collagen and integrin families
commonly expressed in CPCs. Integrins are a family of
cell adhesion receptors widely described to bind a broad
variety of ligands and cell surface adhesion proteins [42].
Interestingly, most of the integrin heterodimers described
to be collagen-, fibronectin-, and laminin-binding recep-
tors [43] were identified in CPCs, which might explain
the stronger capacity of CPCs to remain and be engrafted.
We identified the integrin subunits α2, α3, α5, β1, β3, and
β5, which form part of the collagen, vitronectin, and fibro-
nectin receptors. In addition, collagen subunits α1, α2, and
α3, and also different proteins implicated in cell adhesion
such as fibulin-1, catenin β1, nectin-2, and cadherin-13
were also overexpressed in CPCs versus BM-MSCs, in
accordance with previous results [23, 28]. Some proteins
identified in the plasmatic membrane of BM-MSCs includ-
ing integrin αV, β1, α11, and α5 act as adhesion molecules
[44]. Thus, our data indicate that, as expected, CPCs and
BM-MSCs express plasma proteins involved in the regula-
tion of cell adhesion, but the richer profile in CPCs sug-
gests a more integrated regulatory network involved in
cell adhesion, which rationalizes their stronger retention
potential. As a matter of fact, no heart-specific adhesion
molecule did significantly show up in our analysis indicat-
ing that CPC’s adhesion capacity is not tissue specific but
wide ranging. These features might be behind the fact that
we have been able to detect only CPC in different tissues

and not BM-MSCs. It has been previously described that
BM-MSCs are retained and detected in different tissues
including the heart [45] but the cell dose used in those
studies is higher than the one used in this study which
might explain the discrepancy.

Identification of regulated pathways by KEGG pathway
enrichment analysis revealed extracellular matrix-receptor
interaction, focal adhesion, and cell adhesion molecules
among the most significantly overrepresented processes in
both CPCs and BM-MSCs. Of note is the selective expression
in CPCs of the Rap1 signaling pathway, a key mediator of
integrin-mediated cell adhesion processes. Rap1, a member
of the Ras superfamily of small GTP-binding proteins, is a
conserved regulator of cardiovascular signaling. Several
essential functions are directly regulated by Rap1 signaling,
including cellular adhesion, cell proliferation, and forma-
tion of cell junctions mediated by connexion-43 [46, 47].
In addition, Rap1 regulates processes at the plasmatic
membrane and integrin-mediated cell adhesion [48]. These
results suggest that Rap1 could be involved in the mecha-
nisms that promote the cellular adhesion/engraftment of
CPCs to the heart. According to our analysis and taking
into account the literature, we consider that our work
reinforces the idea that CPCs, enhanced engraftment is
responsible of the healing benefits and that Rap1 signaling
pathway is an important regulator of the engraftment.
Further studies will be performed to better understand
the exact role of the Rap1 on the observed phenotype.

While most of the proteins were commonly expressed
in both cell types, the interactome analysis showed that
GO biological processes upregulated in CPCs were mostly
related with adhesion, whereas the upregulated functions
in BM-MSCs were mainly related to immune regulation
processes. With regard to BM-MSCs, our findings are in
general agreement with current knowledge on the biologi-
cal processes that occur immediately after AMI, including
the mobilization of innate and adaptive immune cells
including monocytes, neutrophils, mast cells, and macro-
phages [25, 49] and the well-known ability of BM-MSCs
to modulate the immune response [50, 51] and to target
immune cells [21].

Table 2: Continued.

KEEG_id Term p value

hsa04640 Hematopoietic cell lineage 6:40E − 04

hsa05206 MicroRNAs in cancer 2:16E − 03

hsa04520 Adherens junction 2:68E − 03

hsa04145 Phagosome 3:04E − 03

hsa05222 Small cell lung cancer 4:28E − 03

hsa04611 Platelet activation 8:31E − 03

hsa04919 Thyroid hormone signaling pathway 8:31E − 03

hsa05135 Yersinia infection 8:82E − 03

hsa05418 Fluid shear stress and atherosclerosis 1:27E − 02

hsa05144 Malaria 1:28E − 02

hsa05130 Pathogenic Escherichia coli infection 1:70E − 02
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In summary, our study demonstrates that the plasmatic
membrane of CPC cells contains proteins actively implicated
in biological processes related to cellular adhesion mecha-
nisms. CPCs strongly engraft to the heart after intramyocardial
injection and significantly improve cardiac function. Thus,
these findings support the further evaluation and development
of CPCs as strong candidates for cell therapy in cardiac repair.

5. Conclusions

Taking all together, our results indicate that CPC cells are
able to improve cardiac function and promote tissue repair

after myocardial infarction due to a stronger capacity to
engraft in the infarcted area. Our data deepens in the
mechanistic differences between CPCs and BM-MSCs and
suggests that both cell types might be complementary as a
therapeutic strategy.

Data Availability

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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Figure 3: Graphical representation of CPC (a) and BM-MSC (b) interaction networks based on proteomics data sets.
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