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Abstract

Deep learning models have shown their advantage in many different tasks, including neuroimage 

analysis. However, to effectively train a high-quality deep learning model, the aggregation of a 

significant amount of patient information is required. The time and cost for acquisition and 

annotation in assembling, for example, large fMRI datasets make it difficult to acquire large 

numbers at a single site. However, due to the need to protect the privacy of patient data, it is hard 

to assemble a central database from multiple institutions. Federated learning allows for 

population-level models to be trained without centralizing entities’ data by transmitting the global 

model to local entities, training the model locally, and then averaging the gradients or weights in 

the global model. However, some studies suggest that private information can be recovered from 

the model gradients or weights. In this work, we address the problem of multi-site fMRI 

classification with a privacy-preserving strategy. To solve the problem, we propose a federated 

learning approach, where a decentralized iterative optimization algorithm is implemented and 

shared local model weights are altered by a randomization mechanism. Considering the systemic 

differences of fMRI distributions from different sites, we further propose two domain adaptation 

methods in this federated learning formulation. We investigate various practical aspects of 

federated model optimization and compare federated learning with alternative training strategies. 
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Overall, our results demonstrate that it is promising to utilize multi-site data without data sharing 

to boost neuroimage analysis performance and find reliable disease-related biomarkers. Our 

proposed pipeline can be generalized to other privacy-sensitive medical data analysis problems. 

Our code is publicly available at: https://github.com/xxlya/Fed_ABIDE/.
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1. Introduction

Data has non-rivalrous value, a term from the economics literature (Weimer and Vining, 

2017), meaning that it can be utilized by multiple parties at a time to create additional data 

products or services. Pooling data together will have synergistic effects. For example, for 

developing a deep neural network for image recognition tasks, a vast training set is needed 

that captures the complexity of the problem (in some cases as many as ten thousand images). 

However, similar data at scale tend not to be available in healthcare, resulting in a lack of 

generalizability and accuracy for models and concerns regarding the reproducibility of 

results. Sharing large amounts of medical data is essential for precision medicine, with one 

important example being functional MRI (fMRI) data related to certain neurological 

diseases or disorders. The time and cost for acquisition and annotation in gathering large 

fMRI datasets make it difficult to recruit large numbers at a single site. Deep learning 

models have shown their advantage in fMRI analysis (Suk et al., 2016; Shen et al., 2017). 

Without assembling data from a number of different locations, the typically limited amount 

of data available from a single site becomes an obstacle to building an accurate deep 

learning model for neuroimage analysis.

However, there are many concerns regarding medical data sharing. For example, patients 

might be concerned about sharing their medical data, due to the risk that it will be shared 

with employers or used for future health insurance decision-making if their data are stored 

and accessed by multiple users, even when deidentified (Roski et al., 2014). There are 
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questions about whether deidentified data are truly anonymous. From a legal point of view, 

data sharing is regulated by different federal and state laws. The power of regulation might 

vary due to the content of the data, its identifiability, and the context of its use (Rosenbaum 

and Painter, 2005). Many governmental agencies have their own privacy and data-sharing 

policies (POLICY et al., 2003). In addition, health systems are concerned that competitors 

will be able to use their data when they compete for customers. Providers worry that if their 

health statistics are publicly available, they will lose patients or be sanctioned if they cannot 

assess their performance (Heitmueller et al., 2014).

To tackle the data-sharing problem, Federated learning (Li et al., 2019a) was introduced to 

protect privacy by using training data distributed among multiple parties. Instead of 

transferring data directly to a centralized data warehouse for building machine learning 

models, in a federated learning setup, each party retains its data and performs decentralized 

computing. Hence, federated learning addresses privacy concerns and encourages multi-

institution collaboration.

Another problem existing in utilizing data from different parties is domain shift. Diverse 

domains of data are common because institutions can have very different methods of data 

generation and collection. The scanners used in different institutions may be from different 

manufacturers, may be calibrated differently and may have different acquisition protocols 

specified. For example, in data from the Autism Brain Imaging Data Exchange (ABIDE I) 

(Di Martino et al., 2014), the University of Utah School of Medicine (USM) site used a 3T 

Siemens TrioTim MR scanner, the New York University (NYU) site used a 3T Siemens 

Allegra MR scanner, while the University of Michigan (UM) site used a 3T GE Signa MR 

scanner. Also, the instructions given to each subject were different at different sites. The 

USM site told participants to ”Keep your eyes open and remain awake, letting thoughts pass 

through your mind without focusing on any particular mental activity” while participants at 

the UM site looked at a fixation cross in the middle of the screen and participants at the 

NYU site were asked to look at a white cross-hair against a black background that was 

projected on a screen but some participants’ eyes were closed during scanning. Figure 1 

shows the heterogeneous fMRI data distribution of NYU and USM sites, although both of 

the sites used the scanners from the same manufacturer. One of the challenges of imaging 

studies of brain disorders is to detect robust findings across sites.Recent studies (Yao et al., 

2019; Wang et al., 2018) have shown promising results of utilizing domain adaptation 

techniques to assist heterogeneous data analysis, including the applications in medical image 

analysis areas (Chen et al., 2019; Yang et al., 2019a). Therefore, federated learning, together 

with domain adaptation methods, has the potential to extract reliable, robust neural patterns 

from brain imaging data of patients having different psychiatric disorders.

Our contributions are summarized as follows:

1. We formulate a new privacy-preserving pipeline for multi-site fMRI analysis and 

investigate various practical aspects of the federated model’s communication 

frequency and privacy-preserving mechanisms.

2. To the best of our knowledge, we investigate domain adaptation in federated 

learning for medical image analysis for the first time. Domain shift due to 
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heterogeneous data distribution is a challenging issue when utilizing medical 

images from different institutions.

3. We propose to evaluate performance based on the biomarkers detected by the 

model, in addition to direct assessment of accuracy metrics.

Paper structure:

In Section 2, we summarize related work about federated learning and unsupervised domain 

adaptation, the two techniques we focus on in this paper. In Section 3, we introduce the 

methods used for our study. Specifically, in Section 3.1, we propose the privacy-preserving 

federated learning setup for multi-site fMRI analysis; in Section 3.2, we propose two domain 

adaptation methods to boost federated learning performance; and in Section 3.3, we propose 

the biomarker detection and evaluation methods. The experiments, results, and evaluation 

methods are presented in Section 4. We conclude the paper in Section 5.

2. Related Work

2.1. Federated Learning

Generally, federated learning can be achieved by two approaches: 1) each party training the 

model using private data and where only model parameters being transferred and 2) using 

encryption techniques to allow safe communications between different parties (Yang et al., 

2019b). In this way, the details of the data are not disclosed in between each party. In this 

paper, we focus on the first approach, which has been studied in (Dean et al., 2012; Shokri 

and Shmatikov, 2015; McMahan et al., 2016).

Obtaining sufficient data is a major challenge in the field of medical imaging. Apart from 

data collection, labeling medical image data that require expert knowledge can be addressed 

by the collaboration between institutions. However, there are lots of potential legal and 

technical issues when sharing medical data to a centralized location, especially among 

international institutions. In the medical imaging field, multi-institutional deep learning 

without sharing patient data was firstly investigated in (Sheller et al., 2018). Later, another 

work (Li et al., 2019b) empirically studied privacy-preserving issues using a sparse vector 

technique and investigated model weights sharing schemes for imbalanced data. We note 

that the randomization mechanism for privacy protection and domain adaptation issues have 

not been studied in federated learning for medical images. We address these two issues in 

our study.

2.2. Domain Adaptation

Domain Adaptation aims to transfer the knowledge learned from a source domain to a target 

domain. Then, a model trained over a data set from a source domain is further refined to 

adapt to a data set from a different target domain. Unsupervised domain adaptation methods 

have been extensively studied (Gholami et al., 2018; Zhao et al., 2019; Hoffman et al., 2018; 

Long et al., 2015; Ganin and Lempitsky, 2014; Tzeng et al., 2017; Zhu et al., 2017; Long et 

al., 2018). However, these efforts cannot meet the requirements of federated settings: data 

are stored locally and cannot be shared, which hinders adaptive approaches in mainstream 

domains because they require access to source and target data (Tzeng et al., 2014; Long et 
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al., 2017; Ghifary et al., 2016; Sun and Saenko, 2016; Ganin and Lempitsky, 2014; Tzeng et 

al., 2017). Federated domain adaptation has been recently proposed (Peng et al., 2019; 

Peterson et al., 2019). In our study, we investigate adopting those two federated domain 

adaptation methods in our multi-source and multi-target federated learning domain 

adaptation problem.

3. Methods

3.1. Basic privacy-preserving federated learning setup

In this section, we formulate multi-site fMRI analysis without data sharing in a federated 

learning framework. Then we introduce the randomized mechanism for privacy protection. 

Finally, we show the details of training such a privacy-preserving federated learning network 

step by step.

3.1.1. Problem definition—Let matrix Di denote the data held by the data owner site i. 

Define N sites {ℱ1,....ℱN}, all of whom wish to train a deep learning model by 

consolidating their respective data {D1,....DN}. For medical imaging problems, usually, the 

data size at each site is limited to train an accurate deep learning model. A conventional 

method is to put all data together and use D = D1 ⋃ · · · ⋃ DN to train a model ℳMIX. At the 

same time, some data sets may also contain label data. We denote the feature space as X, the 

label space as Y and we use ℐ to denote the sample ID space. The feature space X, label Y
and sample IDs ℐ constitute the complete training dataset (ℐ, X, Y). In our multi-site fMRI 

classification scenario: Di is fMRI data, ℱi is the institution owning private fMRI data; X is 

the extracted fMRI feature and label Y can be the diagnosis or phenotype we want to 

predict. In this setting, data sets share the same feature space but are different in samples. 

For example, different sites have different subjects. However, the features are all fMRI 

signals extracted from the same preprocessing pipeline. Therefore, we can summarize the 

data distribution as:

Xi = Xj, Yi = Yj, ℐi ≠ ℐj, ∀Di, Dj, i ≠ j, (1)

which belongs to the horizontal federated learning category where different data sets have 

large overlap on features while they have small overlap on samples (Yang et al., 2019b).

In this scenario, due to regulation and other issues, each medical institution will not share 

data with the other parties. A federated learning system is a learning process where the data 

owners collaboratively train a model ℳFED, in which any data owner ℱi does not expose its 

data Di to others. In our problem setting, assume there is a central server for computing (not 

for data storage). All the different medical institutions (sites) use the same deep learning 

architecture for the same task. Each institution trains the deep learning model in-house and 

updates the model weight information to a central server at a particular frequency during 

training. The shared weights are blurred by additive random noise ε to protect data from 

inverse interpretation leakage. Once the central server receives all the weights, it summarizes 
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them and updates the new weights to each institution. The simplified pipeline is depicted in 

Figure 2.

3.1.2. Privacy-preserving decentralized training—The simplified federated 

learning framework is depicted in Figure 2, which contains two key steps in decentralized 

optimization: 1) local update, and 2) communicating to a global server. The detailed training 

procedure is presented in Algorithm 1. The objective function in Algorithm 1 for training 

data in any site n is cross-entropy loss:

ℒce
n = − ∑

ni
[ynilog(pni) + (1 − yni)log(1 − pni)] (2)

where yni is the label of ith subject in the training label set Yn = {yn1, …, yn Yn } and pni is the 

corresponding model output, which estimates the probability of that label, given an input. 

All the training inputs and training labels are sampled from feature space Xn and label space 

Yn.

3.1.3. Randomized mechanism for privacy protection—Differential privacy 

(Dwork et al., 2014, 2006b) is a popular approach to privacy-preserving machine learning 

(Shokri and Shmatikov, 2015)

Algorithm 1

Privacy-preserving federated learning for multi-site fMRI analysis

Input: 1. X = {X1, . . ., XN}, fMRI data from N institutions/sites; 2. fw = {fwi, . . ., fwN}, local models within N 
sites, where wi is local model weights; 3. Y = {Yi, . . ., YN}, fMRI labels; 4. M(·), noise generator that is used for 
privacy-preservation (explained in the following section); 5. K, number of optimization iterations; 6. τ, global 
model updating pace, which means the global model and the private models communicate per τ steps in each 
optimization iteration; 7. {opt1(·),...,optN(·)}, optimizer returning updated model weights w.r.t. objective function 
ℒ.

1: {w1
(0), …, wN

(0)} ← randomize parameters
▷ initialize local model

2: for k = 1 to K do

3:  t ← 0 ▷ initialize pace counter

4:  for n = 1 to N do

5:   wn(k) optn(ℒ(fwn(k − 1)(Xn, Y n))

6:  end for

7:  t ← t + 1 ▷ models communicate

8:  if t%τ = 0 then

9:
  w(k) 1

N ∑n (wn(k) + M(wn(k))) ▷ update global model per τ steps

10:   for n = 1 to N do

11:    wn(k) w(k) ▷ deploy weights to local model

12:   end for

13:  end if

14: end for
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Return: global model fw(K)

and establishes a strong standard for privacy guarantees for aggregated database-based 

algorithms. Informally, differential privacy aims to provide a bound, ϵ, that the attacker 

could learn virtually nothing more about an individual than they would learn if it were 

absent from the dataset as the individual’s sensitive information is almost irrelevant in the 

outputs of the model. The bound ϵ represents the degree of privacy preference that can be 

controlled by each party. A lot of research has tried to protect differential privacy at the data 

level when a model is learned in a centralized manner (Shokri and Shmatikov, 2015; Abadi 

et al., 2016). To protect the data from inversion attack, such as inferring data from model 

weights, a differential privacy-preserving randomized mechanism can be incorporated into 

the learning process. Given a deterministic real-valued function h : D → ℝm, h’s L1 

sensitivity sh is defined as the maximum of the absolute distance ‖h(D) − h(D′)‖1, where ‖D
− D′‖1 = 1, meaning that there is only one data point difference between D and D′ (Dwork 

et al., 2014) (Definition 3.1). In our case h computes the m weight parameters in the deep 

learning model. Introducing noise in the training process (inputs, parameters, or outputs) can 

limit the granularity of information shared and ensure ε-differential privacy (Dwork et al., 

2006b) (Definition 1) for all S ⊆ Range(h), and then (Dwork et al., 2006a):

Pr[ℎ(D) ∈ S] ≤ eϵPr[ℎ(D′) ∈ S], (3)

or

Pr[ℎ(D) ∈ S] ≤ eϵPr[ℎ(D′) ∈ S] + δ, (4)

where the additional additive term δ is the probability of ϵ-differential privacy being broken. 

Here, we introduce two approaches: 1) Gaussian mechanism, and 2) Laplace mechanism, 

which can enjoy good privacy guarantees (Chaudhuri et al., 2019) by adding noise to the 

shared weights.

Gaussian Mechanism: The Gaussian mechanism adds N(0, sℎ
2σ2) noise with mean 0 and 

standard deviation shσ to a function h(D) with global sensitivity sh. h(D) will satisfy (ϵ, δ)-

differential privacy if δ ≥ 4
5exp(−(σϵ)2/2) and ϵ < 1 (Dwork et al., 2014) (Theorem 3.22). 

Hereby, we linked the Gaussian noise parameter σ to the privacy parameters ϵ and δ.

Laplace Mechanism: The Laplace Distribution centered at 0 with scale b is the distribution 

with probability density function:

Lap(b): = Lap(x ∣ b) = 1
2exp(− x

b ), (5)

and the variance of the Laplace distribution is σ2 = 2b2. The Laplace mechanism adds 

Lap(sh/ϵ) noise to a function h(D) with global sensitivity sh and preserves (ϵ, 0)-difference 

privacy. Hereby, we linked the Laplace noise parameter b to the privacy parameters ϵ.
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In our case, mapping function h is a deep learning model and it is not tractable to compute 

the sensitivity sh. For simplicity of discussion, sensitivity sh is assumed to be 1. From the 

mechanisms described above, we can control noise parameters to meet certain privacy 

requirement, as the noise parameters are linked to privacy parameters as shown above.

3.2. Boosting multi-site learning with domain adaptation

Although federated learning is promising for better privacy and efficiency, there is the 

additional issue that the data at each site likely have different distributions, leading to 

domain shift between the sites (Quionero-Candela et al., 2009). The main hypothesis here is 

that domain adaptation techniques can improve overall accuracy of different sites in a 

federated learning setting, and that holds even when noise is added for privacy-preservation, 

especially for the sites whose data distributions are quite different from the other sites. In 

this subsection, we investigate two domain adaptation methods: 1) Mixture of Experts 

(MoE), adaptation near the output layer, and 2) Adversarial domain alignment, adaptation on 

the data knowledge representation level.

3.2.1. Mixture of Experts (MoE) domain adaptation—Mixture of Experts (MoE) 

(Masoudnia and Ebrahimpour, 2014; Shazeer et al., 2017; Wang et al., 2018) is an approach 

to conditionally combine experts to process each input. In deep learning, experts mean deep 

learning models. An MoE layer for feed-forward neural networks is a trainable gating 

network that dynamically assigns gated weights to combine multiple networks. Then, all 

parts of the big model that contains all expert models and the MoE layer are trained jointly 

by back-propagation.

Mixing the outputs of a collaboratively-learned general model and a domain expert was 

proposed for domain adaptation (Peterson et al., 2019). Improving from the previous work 

(Peterson et al., 2019), we integrate randomized mechanism into MoE. Each participating 

party has an independent set of labeled training examples that they wish to keep private, 

drawn from a party-specific domain distribution. These users collaborate to build a general 

model for the task but maintain private, domain-adapted expert models. The final predictor is 

a weighted average of the outputs from the general and private models. These weights are 

learned using a MoE architecture (Masoudnia and Ebrahimpour, 2014), so the entire model 

can be trained with gradient descent. More specifically, given an input data x ∈ Xi, the 

output of the global model is yG = fw(x), which is learned using the strategy in Algorithm 1. 

In the binary classification setting, the output is the model’s predicted probability for the 

positive class. As shown in Figure 3a, we train another local model fϕi in the meantime, 

which is defined as a private model. The private model can have different architecture from 

fw and it does not communicate with the global model. The output of the private model is yP 

= fϕi (x). fϕi is trained using the regular deep learning setting, without including privacy-

related noise. The final output that entity i uses to label data is

yi = ai(x)yG + 1 − ai(x) yP . (6)
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The weight ai(x) is called a gating function in the MoE, and we use a non-linear layer 

ai(x) = σ(ψiT ⋅ x + bi) to compute ai(x), where σ is the sigmoid function, and ψi and bi are 

learned weights by end-to-end training together with the federated learning architecture.

3.2.2. Adversarial domain alignment—In the federated setting, the data are locally 

stored in a privacy-preserving manner. For the domain adaptation problem, we have multiple 

source domains and want to generalize the domains into a common space of target data. Due 

to the data sharing limitation of federated learning, we cannot train a single model that has 

access to the source domain and target domain simultaneously. To address this issue, we 

employed federated adversarial alignment (Peng et al., 2019) that introduces two modules (a 

domain-specific local feature extractor, and a global discriminator) in the classification 

networks and divides optimization into two independent steps. Using this method (Figure 

3b), for source site Ds, we train a local feature extractor, Gs. For the target site Dt, we train a 

local feature generator Gt. For each (Ds, Dt) source-target domain pair, we train an 

adversarial domain discriminator D to align the distributions. First, domain discriminator D 
is trained to identify which domain the features come from, then the feature generators (Gs, 

Gt) are trained to confuse the discriminator D. In this setting of privacy preserving, the 

discriminator D only gets access to the output features with noise coverage of Gs and Gt, 

without leaking the original data. Specifically, the inputs of source discriminator D are M ◦ 
Gt(xt) and M ◦ Gs(xs), where M(·) is a noise generator. Therefore, the data-leakage of target 

site is prevented in training the discriminator D on the source side. Given the source domain 

data XS and target data XT, the objective for discriminating the source domain from the 

others Ds is defined as:

ℒadvD(XS, XT , Gs, Gt) = − Exs ∼ XS[logDs(Gs(xs))]
− Ext ∼ XT[log(1 − Ds(M ∘ Gt(xt)))] . (7)

Algorithm 2

Federated Adversarial Domain Alignment

Input: 1. X = {X1, . . . , XN}, fMRI data from N institutions/sites; 2. GθG = {GθG1, …, GθGN}, local 

feature generators within N sites, where θGn is the generator’s parameters of site n; 3. 

CθC = {CθC1, …, CθCN}, local classifiers within N sites, where θCn is the classifier’s parameters of site n; 

4. DθD = {DθD1, …, DθDN}, discriminators from embedded features, where θDn is the discriminator 

parameters that identify the data from site n; 5. Y = {Y1,...,YN}, fMRI labels (HC or ASD); 6. M(·), noise 
generator; 7. K, number of optimization iterations; 8. τ, global model updating pace; 9. {GθG, Cθc}, global 

model.

1: Initialize parameters {θG, θC, θD}

2: for k = 1 to K do

3:  t ← 0 ▷ initialize pace counter

4:  for i = 1 to N do

5:
  Sample mini-batch from source site {(Xi

S, Y i
S)}i = 1

N
 and target site {(Xj

T )}j = 1
N

Li et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6:
  Compute gradient with cross-entropy classification loss ℒce (Eq. 2) to update θGi

(k) and θCi
(k)

7:   Domain Alignment:

8:
  Update θDi

(k), {θGi
(k), θGj

(k)} with Eq. 7 and Eq. 8 respectively to align the domain distribution

9:  end for

10:  t ← t + 1 ▷ models communicate

11:  if t%τ = 0 then

12:
  θG

(k) 1
N ∑n (θGi

(k) + M(θGi
(k)))

13:
  θC

(k) 1
N ∑n (θCi

(k) + M(θCi
(k))) ▷ update global model per τ steps

14:   for n = 1 to N do

15:
   θGi

(k) θG
(k)

16:
   θCi

(k) θC
(k) ▷ deploy weights to local model

17:   end for

18:  end if

19: end for

Return: global model {GθG, Cθc}

In the second step, LadvD remains unchanged, but LadvG is updated with the following 

objective:

ℒadvG(XS, XT , Gs, Gt) = − Exs ∼ XS[logDs(Gs(xs))]
− Ext ∼ XT[log(Ds(M ∘ Gt(xt))] . (8)

By end-to-end training of the federated learning model with the alignment module, we can 

minimize the discrepancy between the source and target domains. The implementation 

details are described in Algorithm 2.

3.3. Evaluate model by interpreting biomarkers

The primary goal of psychiatric neuroimaging research is to identify objective and 

repeatable biomarkers that may inform the disease (Heinsfeld et al., 2018). Finding the 

biomarkers associated with ASD is extremely helpful in understanding the underlying roots 

of the disorder and can lead to earlier diagnosis and more targeted treatment. Alteration in 

brain functional connectivity is expected to provide potential biomarkers for classifying or 

predicting brain disorders (Du et al., 2018). Deep learning methods are promising tools for 

investigating the reliability of patterns of brain function across large and heterogeneous data 

sets (Varoquaux and Thirion, 2014).

We held the hypothesis that reliable biomarkers could be detected from a reliable model. 

The guided gradient-based explanation method (Simonyan et al., 2013; Springenberg et al., 

2014) is perhaps the most straightforward and easiest approach for data feature importance 
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interpretation. The advantage of gradient-based explanation method is easy to compute. By 

calculating the difference of the output w.r.t the model input then applying norm, a score can 

be obtained. The gradient-based score can be used to indicate the relative importance of the 

input feature since it represents the change in input space, which corresponds to the positive 

maximizing rate of change in the model output.

gk
c = ReLU ∂yc

∂xk
(9)

where c ∈ {0, . . . , C − 1} is the correct class of input, C is the total number of classes, and 

yc is the score for class c before softmax layer, xk is the kth feature of the input. gk
c can 

indicate the importance of feature k for classifying an input as class c. We use this method to 

interpret the important features (ROIs) as biomarkers.

Given the important biomarkers, first, we propose to examine their consistency, i.e., whether 

the biomarkers are robust across different datasets. Second, we should examine whether the 

biomarkers are meaningful. For the relatively important features selected, such as the 

features with the top K important scores, we can ”decode” them to associated functional 

keywords based on prior knowledge and compute the correlation score vkeyword
c  for the 

keyword with the biomarkers in class c. The informative biomarkers of the inputs in the 

different classes c should have different functional representations, which means we expect 

large |Δ| = |vkeyword
c  − vkeyword

c′ | for the informative biomarkers, where c′ ∈ C\c. The larger 

the difference, the more representative and informative the biomarkers.

4. Experiments and Results

4.1. Data

4.1.1. Participants—The study was carried out using resting-state fMRI (rs-fMRI) data 

from the Autism Brain Imaging Data Exchange dataset (ABIDE I preprocessed, (Di Martino 

et al., 2014)). ABIDE is a consortium that provides preciously collected rs-fMRI ASD and 

matched controls data for the purpose of data sharing in the scientific community. However, 

in reality, collecting data in a consortium like ABIDE is not easy as strict agreement need to 

be reached by different parties. Therefore, although the data were shared in ABIDE, we 

studied the multi-site data from the federated learning perspective. To ensure the deep 

learning model could perform on a single site, we downloaded Regions of Interests (ROIs) 

fMRI series of the top four largest sites (UM1, NYU, USM, UCLA1) from the preprocessed 

ABIDE dataset with Configurable Pipeline for the Analysis of Connectomes (CPAC), band-

pass filtering (0.01 – 0.1 Hz), no global signal regression, parcellated by Harvard-Oxford 

(HO) atlas. Skipping subjects lacking filename, we downloaded 106, 175, 72, 71 subjects 

from UM1, NYU, USM, UCLA1 separately. HO parcellated each brain into 111 ROIs. Since 

some subjects did not contain complete ROIs, we removed the incomplete data, resulting in 

88, 167, 52, 63 subjects for UM1, NYU, USM, UCLA1 separately. Due to a lack of 

sufficient data, we used sliding windows (with window size 32 and stride 1) to truncate raw 

time sequences of fMRI. After removing incomplete subjects, the compositions of four sites 
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were shown in Table 1. We denoted UM for UM1 and UCLA for UCLA1. We summarized 

the phenotype information of the subjects under our study in Table 2.

4.1.2. Data preprocessing—The task we performed on the ABIDE datasets was to 

identify autism spectrum disorders (ASD) or healthy control (HC). We used the mean time 

sequences of ROIs to compute the correlation matrix as functional connectivity. The 

functional connectivity provided an index of the level of co-activation of brain regions based 

on the time series of rs-fMRI brain imaging data. Each element of the correlation matrix was 

calculated using Pearson correlation coefficient, which ranged from −1 to 1: values close to 

1 indicated that the time series were highly correlated and values close to −1 indicate that the 

time series are anti-correlated. Then, we applied the Fisher transformation on the correlation 

matrices to emphasize the strong correlations. As the correlation matrices were symmetric, 

we only kept the upper-triangle of the matrices and flattened the triangle values to vectors, 

with the purpose of using them for the inputs of multilayer perceptron (MLP) classifiers. 

The number of resultant features was defined by R(R − 1)/2, where R was the number of 

ROIs. Under the HO atlas (111 ROIs), the procedure resulted in 6105 features.

4.2. Federated training setup and hyper-parameters discussion

A multi-layer perceptron (MLP) 6105–16–2 (corresponding to 6105 nodes for the input 

(first) layer, 16 nodes for the hidden layer, and 2 nodes for the output layer) was used for 

classification. The outputs of the MLPs were the probability of the given input being 

classified as each class. We used cross-entropy as the objective function. We performed 5-

fold cross-validation (subject-wise splitting), and each entry of the input vectors was 

normalized by training set mean and standard deviation (std) within each site. As we 

performed overlapping truncation for data augmentation in data processing, we used the 

majority voting method to evaluate the final classification performance. For example, we 

augmented m input instances for a single subject, and if more than m/2 instances were 

classified as ASD, then we assigned ‘ASD’ label to the subject. Adam optimization was 

applied with initial learning rate 1e-5 and reduced by 1/2 for every 20 epochs and stopped at 

the 50th epoch. In each epoch, we performed local updates multiple times instead of once 

based on communication pace τ. We set the total steps of each epoch as 60, and the batch 

size of each site was the number of training data over 60.

First, we investigated the effects of changing communication pace on classification accuracy, 

as communication between models would be costly. To select the best communication pace 

τ, we did not apply any noise on the shared weights in the experiment. As the results in 

Figure 4 show, there was no significant difference between the accuracies when τ varied 

from 5 to 30.

Then, we investigated adding the randomization mechanism on shared weights to protect the 

data from inversion attack, such as inferring data from model weights, given local model 

weights. Here we tested the Gaussian and Laplace mechanism, which corresponded to L2 

and L1 sensitivity. Institutions may want to specify the level of privacy they want to 

preserve, which would be reflected in the noise levels. For the Gaussian mechanism 

experiment, we generated Gaussian noise εn ∼ N(0, ασ) adding to local model weights, 
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where σ was the standard deviation of the local model weights and a was the noise level. We 

varied α from 0.001 to 1. For the Laplace mechanism experiment, we generated Laplace 

noise εn ∼ Lap(ασ/ 2) adding to local model weights, where σ was the scale parameter, and 

a was the standard deviation of the local model weights. We varied α from 0.001 to 1. As the 

results in Figure 5 and Figure 6 show, there was a trade-off between model performance and 

noise level (privacy-preserving level). When the noise level was too high (α = 1 in our 

setup), corresponding to high privacy-preserving levels, the models failed in the 

classification task.

4.3. Comparisons with different strategies

To demonstrate the proposed federated learning framework in Algorithm 1 (Fed) could 

improve multi-site fMRI classification, we compared the proposed methods (τ = 20 and α = 

0.01) with four alternative, non-federated strategies: 1) training and testing within the single 

site (Single); 2) training using one site and testing on another site (Cross); 3) collecting 

multi-site data together for training (Mix) and 4) creating an ensemble model using the 

models from different sites (Ensemble). Ensemble method averaged the outputs from 

aSingle model that was trained within the site and a Cross model that was trained by another 

site. Single and Cross preserved data privacy, while could not incorporate the data. Mix 
could take use of all the data from different sites, while could not preserve data privacy. The 

classification performance of Mix was expected to perform better than Fed as it used more 

data information. To fairly compare the results, we tried to choose the best model parameters 

for different strategies by varying the model as little as possible. Because the sizes of the 

available training data for Single, Cross and Ensemble strategies were much smaller than 

those of Mix and Fed strategies, we changed the MLP architecture to 6105–8–2 to avoid 

overfitting, while all the other training settings and data splitting settings were the same as 

described in Section 4.2.

Considering the fact that data distribution was heterogeneous, we also tried to use the 

domain adaptation methods introduced in Section 3.2 to boost the classification performance 

of Fed. For the combination of federated training and MoE (Fed-MoE) strategy, we trained a 

private classifier simultaneously with the federated architecture. The same as Single, we 

used MLPs 6105-8-2 as the private models. The gate function was implemented by an MLP 

with two fully-connected (FC) layers 6105-8-1 and a sigmoid non-linearity layer. For the 

combination of federated training and adversarial alignment (Fed-Align) strategy, we used 

four discriminators D to discriminate whether the data came from the source domain. We 

treated the first two layers of the federated MLPs 6105–16 as a feature generator G, and 

each site had a different G. Following the randomized mechanism in Fed, we sent the 

generated features blurred by Gaussian noises εn ∼ N(0, 0.01σ) to the inputs of D. The input 

of the classifier C was a 16-dim vector. The global model was the concatenation of G − C. 

Only the G and C weights of local models were shared with the global model. For the whole 

network training, the setup was the same as training a Fed model, except that we started to 

propagate adversarial loss on D (Eq. 7) after training the G − C part for 5 epochs.

How to utilize data for training and testing in different classification strategies was explained 

in Figure 7. All the implemented model architectures were shown in the Appendix. The 
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comparison results were shown in Table 9. In Cross, we denoted the site used for training as 

‘tr<site>‘. As the testing data were all the other whole sites, there was no standard deviation 

(std) to report. Also, we ignored the performance of the site used for training. The other 

results were reported using the ‘mean (std)’ format. By comparing the mean accuracy only, 

we highlighted the best accuracy in Table 9. The reason why Cross results were better than 

Single was probably because more data were included in training (no data splitting). For 

example, the total number of training instances at the UCLA site with Single strategy was 

85×63×0.8 (5-fold) = 4284, while using the Cross strategy training on the USM site then 

testing on the UCLA site included 205 × 52 = 10660 training instances. Ensemble results 

were not good, probably because the ensemble methods could not make use of the decisions 

made by different models and counter-productively weakened the prediction power. The 

mean accuracy of Fed was higher than the best Cross learning case for each single site. In 

addition, Fed was significantly better than Single by two sample t test with p < 0.001 for 

each site. We also observed that Fed-MoE (p = 0.003) and Fed-Align (p < 0.001) 

significantly improved accuracy on NYU site when comparing with Fed. The accuracy on 

UM site using Fed-Align was significantly better than the accuracy using Fed (p = 

0.018).The accuracy on UCLA site using Fed-MoE showed potential to improve the 

classification results compared with using Fed (p = 0.094). Using domain adaptation 

methods did not improve the performance on the USM site, which was probably caused by 

the data distribution of the USM site. We validated the hypothesis in the following 

discussion.

4.4. Evaluate model from interpretation perspective

We tried to understand the model mechanism by interpreting how each model made a 

particular decision and how the adaptation methods affected the decision-making process.

4.4.1. Aligned feature embedding—We used t-SNE (Maaten and Hinton, 2008) to 

visualize the latent space embedded by the first fully connected layer in Figure 8a and 

Figure 8b for our federated learning model without and with adversarial domain alignment. 

We found the alignment method overall improved domain adaptation. In Figure 8a, we also 

noticed that the features of the USM site (blue crosses) mixed with other domains. We 

assumed that could be the reason why the adversarial domain alignment methods did not 

improve federated learning accuracy for the USM site.

4.4.2. MoE gating value—The core of MoE was to mix the outputs of a collaboratively-

learned global model and a private model in each site. Over time, a site’s gate function a(x) 

learned whether to trust the global model or the private model more for a given input. The 

private model needed to perform well on only the subset of the data points for which the 

global model failed. While the global model still benefited from the data product (model 

weights) sharing but received weaker updates on these hard ”private” data points. This 

meant that users with unusual domains had a smaller effect on the global model, which 

might increase their ability to generalize (Ji et al., 2019). We show the gating value 

associated with a federated global model for each testing data point in Figure 9. Again, we 

noticed that the gating values were almost uniformly distributed in the range [0,1], which 

meant the MoE layer functioned as an inter-medium to coordinate the decisions of the 
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private and global model, except that the gating values of USM site were skewed to 0s and 

1s. This showed evidence for why Fed-MoE did not perform better than Fed on the USM 

site.

4.4.3. Neural patterns: connectivity in the autistic brain—Note that we 

defined ”informativeness” as the difference of functional representations between ASD and 

HC groups and ”robustness” as the consistency of biomarker detection results across 4 sites. 

Whether informative and robust biomarkers can be interpreted is another dimension to 

evaluate a deep learning model apart from using accuracy-related metrics. Here, we used the 

guided back-propagation method (Eq. 9) to interpret feature importance on Fed and Single 
model separately. The features of inputs were the functional connectivity between brain 

ROIs. First, we calculated gc = gk
c

k = 1
6105

 for each testing point. To get the ROI level 

evaluation, we built a symmetric grad matrix G where the i jth entry is the gc of functional 

connectivity between ROI i and j. We summed G over columns resulting in a 111-dim vector 

sc standing for the importance score of the 111 ROIs. We normalized sc = src r = 1
111  by 

dividing max(sc) to bound it to [0, 1]. We averaged the results for all the test data points in 

each site. The ROIs with the top 10 important scores for classification (2 classes) and 

normalized importance scores on the ROIs were plotted for HC (Figure 10) and ASD 

(Figure 11). Fed detected robust biomarkers across 4 sites, while the biomarkers detected by 

Single were different across different sites. Further, we listed the correlations between the 

biomarkers with functional keyword maps in Table 4 by Neurosynth (Yarkoni et al., 2011). 

The biomarkers detected by Fed were more distinguishable than those of Single, as the 

differences between correlation values for HC and ASD group were larger than those of 

Single (see the |Δ| scores of Fed are larger than those of Single in Table 4). Therefore, we 

found the biomarkers detected by Fed were more informative. We could infer from Table 4 

that the semantic, comprehension, social and attention-related functional connectivity was 

more salient in the HC group, while memory and reward-related functional connectivity was 

more salient in the ASD group. Hence, the biomarkers detected by Fed were more robust 

and informative. The names of the biomarkers of each group detected by Fed and Single 
were listed in the Appendix.

4.5. Limitation and discussion

Although, based on our empirical investigation that the communication pace, which 

controled how often the local and global model update the weight information, did not affect 

the classification performance, we could not draw the conclusion that the pace parameter 

was irrelevant. A more extensive range of pace values should be examined according to the 

application. Also, we used practical approaches to investigate privacy-preserving 

mechanisms. However, the sensitivity of the mapping function h : D → ℝm, the deep 

learning classifier in our case, was difficult to estimate. Hence, we did not explicitly give the 

bound ϵ. A recent study (Zhu et al., 2019) also demonstrated Gaussian and Laplace noise 

higher than a certain scale can be a good defense to reconstruction attack. According to the 

specific application and dataset, we can empirically estimate a suitable noise level from 

attacking perspective as well. In our experiments, we used the averaging method to 

incorporate models’ outputs for Ensemble. To achieve better performance for Ensemble, 
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more advanced ensemble methods could be exploited, such as gradient tree boosting, 

stacking, and forest of randomized trees (Zhou, 2012). We evaluated the biomarkers at the 

ROI-level. The functional connectivity also could be used as biomarkers. More advanced 

deep learning models can be explored as well. In order to show the strong direct associations 

between the biomarkers and disease diagnosis or treatment outcome prediction, down-

stream tasks such as regression to ADOS scores using the biomarkers are worthy of 

exploring. We found that domain adaptation methods were not always a beneficial addition 

to the federated model. Based on the results presented in Section 4.3 and Section 4.4, we 

found that domain adaption techniques improved the classification accuracy of some sites 

but not all (two out of four sites were better and one site kept the same for MoE and MoE by 

comparing mean accuracies). This could be because the current model updating strategy is 

not optimal. Going forward, we plan to examine the distribution of the latent features of 

different data owners first, then decide whether to adopt our proposed domain adaptation 

methods. In contrast to other FL applications, such as typing recommendations in Google 

and Apple, where there might be millions of FL participants, there are many fewer 

participants in multi-site medical data analysis. Hence, the number of FL participants might 

play a role here, especially if we use an averaging strategy to update the global model. 

Incorporating more advanced model-selection and updating strategies will help avoid 

including the wrong private model in updating (Mohri et al., 2019; Nishio and Yonetani, 

2019).

5. Conclusion

In this work, we have presented a privacy-preserving federated learning framework for 

multi-site fMRI analysis. We have investigated the communication pace and the privacy-

preserving randomized mechanisms for the problem of using brain functional connectivity to 

classify ASD and HC. To overcome the domain shift issue, we have proposed two strategies: 

MoE and adversarial domain alignment to boost federated learning model performance. We 

have also evaluated the deep learning model for neuroimaging from the biomarker detection 

perspective.

Our results have demonstrated the advantage of using a federated framework to utilize multi-

site data without data sharing compared to alternative methods. We have shown federated 

learning performance can potentially be boosted by adding domain adaptation and discussed 

the condition of benefits. In addition, the proposed federated learning model has revealed 

possible brain biomarkers for identifying ASD. Our work also has broader implications into 

other disease areas, particularly rare diseases with fewer patients. In these situations, 

utilizing data across multiple sites is critical and required for meaningful conclusions.

Our approach brings new hope for accelerating deep learning applications in the field of 

medical imaging, where data isolation and the emphasis on data privacy have become 

challenges. It can establish a unified model for multiple medical institutions while protecting 

local data, allowing medical institutions to work together with the required data security.
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Appendix

Architecture of the models

We provide the detailed model architecture for each strategy we used in our study. For each 

fully connected (FC), we provide the input and output dimension. For drop-out (Dropout) 

layers, we provide the probability of an element to be zeroed. We denote batch 

normalization layers as (BN), relu layers as (ReLU) and softmax layers as Softmax.

Models for Single, Cross and Ensemble are shown in Table 5.

Table 5:

Model architecture for ABIDE rs-fMRI classification task under Single, Cross and Ensemble 
strategies.

Layer Configuration

MLPs

1 Dropout (0.5), FC (6105, 8), ReLU, BN

2 Dropout (0.5), FC (8, 2), Softmax

Models for Cross and Ensemble is shown in Table 6.

Table 6:

Model architecture for ABIDE rs-fMRI classification task under Fed and Mix strategies.

Layer Configuration

MLPs

1 Dropout (0.5), FC (6105, 16), ReLU, BN

2 Dropout (0.5), FC (16, 2), Softmax

Models for Fed-MoE strategy is shown in Table 7.

Table 7:

Model architecture for ABIDE rs-fMRI classification task under Fed-MoE strategy.

Layer Configuration Layer Configuration

Private Model Global Model

1 Dropout (0.5), FC (6105,8), ReLU, BN 1 Dropout (0.5), FC (6105,16), ReLU, BN

2 Dropout (0.5), FC (8,2) 2 Dropout (0.5), FC (16,2)

Layer Configuration
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Layer Configuration Layer Configuration

Private Model Global Model

MoE

1 FC (2,1), Sigmoid

Models for Fed-Align strategy is shown in Table 8

Names of the biomarkers

We list the top 10 important ROIs (plotted in Figure 10 and Figure 11 in descending order.

1. HC biomarkers detected by Fed:

Table 8:

Model architecture for ABIDE rs-fMRI classification task under Fed-Align strategy.

Layer Configuration

Feature Generator

1 Dropout (0.5), FC (6105, 16), ReLU, BN

Domain Discriminator

1 FC (6105, 8), ReLU

2 FC (8, 1), sigmoid

Classifier

1 Dropout (0.5), FC (16, 2), Softmax

NYU : ’Right Heschl’s Gyrus (includes H1 and H2)’ ’Right Inferior Temporal Gyrus’ ’Right 

Superior Frontal Gyrus’ ’Right Precentral Gyrus’ ’Left Intracalcarine Cortex’ ’Left 

Cingulate Gyrus’ ’Left Temporal Pole’ ’Right Superior Temporal Gyrus’ ’Right Middle 

Temporal Gyrus’ ’Left Planum Polare’

UM : ’Right Heschl’s Gyrus (includes H1 and H2)’ ’Right Inferior Temporal Gyrus’ ’Right 

Superior Frontal Gyrus’ ’Right Precentral Gyrus’ ’Left Intracalcarine Cortex’ ’Left 

Cingulate Gyrus’ ’Right Superior Temporal Gyrus’ ’Left Temporal Pole’ ’Right Middle 

Temporal Gyrus’ ’Left Planum Polare’

USM : ’Right Heschl’s Gyrus (includes H1 and H2)’ ’Right Inferior Temporal Gyrus’ ’Right 

Superior Frontal Gyrus’ ’Right Precentral Gyrus’ ’Left Intracalcarine Cortex’ ’Left 

Cingulate Gyrus’ ’Right Middle Temporal Gyrus’ ’Left Planum Polare’ ’Right Superior 

Temporal Gyrus’ ’Left Temporal Pole’

UCLA : ’Right Heschl’s Gyrus (includes H1 and H2)’ ’Right Superior Frontal Gyrus’ ’Right 

Inferior Temporal Gyrus’ ’Right Precentral Gyrus’ ’Left Intracalcarine Cortex’ ’Left 

Cingulate Gyrus’ ’Left Temporal Pole’ ’Right Superior Temporal Gyrus’ ’Right Middle 

Temporal Gyrus’ ’Left Planum Polare’

2. HC biomarkers detected by Single:
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NYU : ’Right Middle Temporal Gyrus’ ’Right Occipital Pole’ ’Right Supramarginal 

Gyrus’ ’Left Paracingulate Gyrus’ ’Right Precentral Gyrus’ ’Right Frontal Orbital 

Cortex’ ’Right Temporal Pole’ ’Right Frontal Medial Cortex’ ’Right Parahippocampal 

Gyrus’ ’Left Parietal Operculum Cortex’

UM : ’Right Supramarginal Gyrus’ ’Right Middle Temporal Gyrus’ ’Left Inferior Temporal 

Gyrus’ ’Left Inferior Frontal Gyrus’ ’Left Paracingulate Gyrus’ ”Right Heschl’s Gyrus 

(includes H1 and H2)” ’Left Lingual Gyrus’ ’Right Superior Temporal Gyrus’ ’Left Frontal 

Orbital Cortex’ ’Left Superior Temporal Gyrus’

USM : ’Right Middle Temporal Gyrus’ ’Right Supramarginal Gyrus’ ’Left Superior 

Temporal Gyrus’ ’Right Occipital Pole’ ’Left Paracingulate Gyrus’ ’Right Precentral 

Gyrus’ ’Left Inferior Temporal Gyrus’ ’Left Middle Temporal Gyrus’ ’None’ ’Left 

Hippocampus’

UCLA : ’Right Supramarginal Gyrus’ ’Right Middle Temporal Gyrus’ ’Right Occipital 

Pole’ ’Right Precentral Gyrus’ ’Right Temporal Occipital Fusiform Cortex’ ’Left Lingual 

Gyrus’ ’Left Inferior Temporal Gyrus’ ’Left Paracingulate Gyrus’ ’Right Cingulate 

Gyrus’ ’Left Inferior Frontal Gyrus’

3. ASD biomarkers detected by Fed:

NYU : ’Left Accumbens’ ’Left Parahippocampal Gyrus’ ’Right Thalamus’ ”Right Heschl’s 

Gyrus (includes H1 and H2)” ’Right Pallidum’ ’Left Middle Frontal Gyrus’ ’Right 

Precentral Gyrus’ ’Right Parahippocampal Gyrus’ ’Left Cuneal Cortex’ ’Left Temporal 

Fusiform Cortex’

UM : ’Left Accumbens’ ’Left Frontal Operculum Cortex’ ’Right Thalamus’ ’Right Lateral 

Occipital Cortex’ ’Right Pallidum’ ’Left Postcentral Gyrus’ ’Left Juxtapositional Lobule 

Cortex (formerly Supplementary Motor Cortex)’ ’Right Middle Frontal Gyrus’ ’Right 

Occipital Fusiform Gyrus’ ’Left Central Opercular Cortex’

USM : ’Left Accumbens’ ’Left Frontal Operculum Cortex’ ’Right Thalamus’ ’Right 

Pallidum’ ’Right Lateral Occipital Cortex’ ’Left Juxtapositional Lobule Cortex (formerly 

Supplementary Motor Cortex)’ ’Left Postcentral Gyrus’ ’Right Middle Frontal Gyrus’ ’Left 

Central Opercular Cortex’ ’Right Occipital Fusiform Gyrus’

UCLA : ’Left Accumbens’ ’Left Frontal Operculum Cortex’ ’Right Thalamus’ ’Right 

Lateral Occipital Cortex’ ’Right Pallidum’ ’Left Juxtapositional Lobule Cortex (formerly 

Supplementary Motor Cortex)’ ’Left Postcentral Gyrus’ ’Right Middle Frontal 

Gyrus’ ’Right Occipital Fusiform Gyrus’ ’Left Central Opercular Cortex’

4. ASD biomarkers detected by Single:

NYU : ’Right Occipital Fusiform Gyrus’ ’Left Angular Gyrus’ ’Left Putamen’ ’Left 

Thalamus’ ’Left Supracalcarine Cortex’ ’Right Cingulate Gyrus’ ’Left Frontal Operculum 

Cortex’ ’Left Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex)’ ’Right 

Thalamus’ ’Left Accumbens’
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UM : ’Left Supracalcarine Cortex’ ’Left Accumbens’ ’Right Middle Frontal Gyrus’ ’Left 

Temporal Fusiform Cortex’ ’Right Occipital Fusiform Gyrus’ ’Left Parahippocampal 

Gyrus’ ’Left Subcallosal Cortex’ ’Left Hippocampus’ ’Left Middle Frontal Gyrus’ ’Right 

Pallidum’

USM : ’Right Occipital Fusiform Gyrus’ ’Left Putamen’ ’Right Cingulate Gyrus’ ’Right 

Middle Frontal Gyrus’ ’Left Middle Frontal Gyrus’ ’Right Temporal Pole’ ’Left 

Caudate’ ’Right Pallidum’ ’Right Central Opercular Cortex’ ’Right Paracingulate Gyrus’

UCLA : ’Left Putamen’ ’Right Occipital Fusiform Gyrus’ ’Right Cingulate Gyrus’ ’Right 

Temporal Pole’ ’Right Central Opercular Cortex’ ’Left Caudate’ ’Right Paracingulate 

Gyrus’ ’Right Parahippocampal Gyrus’ ’Right Middle Frontal Gyrus’ ’Left Angular Gyrus’

Additional experiments using alternative atlas

Following the preprocessing pipeline in Section 4.1.2, we replaced the structural Harvard-

Oxford (HO) atlas with a functional atlas, the Craddock 200 (CC200), which parcellates 

brain into 200 ROIs. We replicated the main experiment of our work as shown in Section 

4.3, but changed the input dimension of each MLP from 6105 to 19900(= 200 × 100 − 100). 

The comparison results were shown in Appendix Table 9. Overall, the accuracies of using 

CC200 was lower than the accuracies of using HO. This could be caused by overfitting as 

the number of parameters required for training CC200 data is higher than HO due to the 

dimensionality of the input. In Cross, we denoted the site used for training as ‘tr<site>‘. As 

the testing data were all the other whole sites, there was no standard deviation (std) to report. 

Also, we ignored the performance of the site used for training. The other results were 

reported using the ‘mean (std)’ format. By comparing the mean accuracy only, we 

highlighted the best accuracy in Table 9. Fed-MoE outperformed Fed on NYU, UM and 

UCLA site and Fed-Align outperformed Fed on NYU, UM and UCLA site by comparing 

mean accuracies. All Fed and Fed+Domain Adaptation strategies showed significant 

improvement compared to Cross, Single and Ensemble strategies. The results showed the 

replicability of our method on a different atlas.

Table 9:

Results of using different training strategies with atlas CC200. Numbers shown are mean 

classification accuracies and corresponding stds.

NYU UM USM UCLA

trNYU - 0.559 0.669 0.689

trUM 0.611 - 0.577 0.492

trUSM 0.635 0.693 - 0.587

trUCLA 0.580 0.681 0.750 -

Single 0.610(0.062) 0.681(0.071) 0.689(0.083) 0.536(0.121)

Ensemble 0.626(0.054) 0.676(0.053) 0.694(0.092) 0.649(0.069)

Fed 0.648(0.157) 0.693(0.055) 0.789(0.153) 0.652(0.098)

Fed-MoE 0.664(0.072) 0.705(0.070) 0.756(0.061) 0.663(0.146)
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NYU UM USM UCLA

Fed-Align 0.683(0.097) 0.694(0.109) 0.712(0.053) 0.667(0.106)

Mix 0.652(0.052) 0.690(0.092) 0.752(0.090) 0.725(0.130)

Additional experiments on ASD sex classification

Following the preprocessing pipeline in Section 4.1.2, in an effort to illustrate that our 

approach works effectively on another problem, we present new results on gender 

classification for ASD subjects. We replicated the main experiment of our work as shown in 

Section 4.3, but excluded USM site as it only contained male ASDs. The comparison results 

were shown in Table 10. Strategy Basline was denoted as the random guess accuracy. We 

found obvious improvement in using federated related strategies and Mix strategy, whereas 

the other strategies that only could train the model using the data in a single site did not 

show improvement.

Fig. 12: 
Interpreting brain biomarkers associated with identifying Male among ASD subjects from 

federated learning model (Fed) and using single site data for training (Single). The colors 

stand for the relative importance scores of the ROIs and the values are denoted on the color 

bar. The names of the strategies and sites are denoted on the left-upper corners of each 

subfigure. Each row shows the results of NYU, UM, UCLA site from top to bottom.

Table 10:

Results of ASD sex classification using different training strategies. Numbers shown are 

mean classification accuracies and corresponding stds.

NYU UM UCLA

trNYU - 0.837 0.838

trUM 0.877 - 0.865

trUCLA 0.890 0.814 -

Single 0.879(0.010) 0.902(0.013) 0.887(0.048)

Ensemble 0.915(0.029) 0.917(0.048) 0.891(0.062)
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NYU UM UCLA

Fed 0.972(0.033) 0.913(0.054) 0.925(0.098)

Fed-MoE 0.967(0.033) 0.917(0.048) 0.937(0.108)

Fed-Align 0.973(0.028) 0.906(0.048) 0.955(0.054)

Mix 0.983(0.029) 0.925(0.052) 0.975(0.059)

Baseline 0.857 0.890 0.838

Following Section 4.4.3, we used gradient-based feature importance analysis method 

(Section 3.3) to calculate gc = gk
c

k = 1
6105

 for each testing point firstly. To get the ROI level 

evaluation, we built a symmetric grad matrix G where the ijth entry was the gc of functional 

connectivity between ROI i and j. We summed G over columns resulting in a 111-dim vector 

sc standing for the importance score of the 111 ROIs. We normalized sc = src r = 1
111  by 

dividing max(sc) to bound it to [0, 1]. We averaged the results for all the test data points in 

each site. The ROIs with the top 10 important scores for ASD subjects sex classification and 

normalized importance scores on the ROIs were plotted for male ASD (Figure 12). The sex 

effects on Frontal Gyrus and Angular Gyrus were pointed out in recent work (Alaerts et al., 

2016) and our methods highlighted those ROIs in Figure 12.”
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Highlights

• A novel framework for multi-site fMRI analysis without data-sharing using 

privacy-preserving federated learning.

• The first employment of domain adaptation techniques on federated learning 

formulation for medical image analysis.

• Comparisons to baseline strategies and innovative model evaluation methods 

from the biomarker interpretation perspective.

• New insights into utilizing multi-site medical data to improve both tasks 

performance and replicable and informative biomarker detection.

• Potential solution to training deep learning models on multiple small, 

heterogeneous, privacy-sensitive medical datasets.
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Fig. 1: 
fMRI distribution of different sites
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Fig. 2: 
The simplified example of privacy-preserving federated learning strategy for fMRI analysis.
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Fig. 3: 
Domain adaptation strategies for our proposed federated learning setup.
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Fig. 4: 
Investigate communication pace τ vs accuracy
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Fig. 5: 
Investigate Gaussian mechanism vs accuracy
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Fig. 6: 
Investigate Laplace mechanism vs accuracy
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Fig. 7: 
Different classification strategies
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Fig. 8: 
t-SNE visualization of latent space.
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Fig. 9: 
The histogram of MoE gated values assigned to federated global model.

Li et al. Page 34

Med Image Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
Interpreting brain biomarkers associated with identifying HC from federated learning model 

(Fed) and using single site data for training (Single). The colors stand for the relative 

importance scores of the ROIs and the values are denoted on the color bar. The names of the 

strategies and sites are denoted on the left-upper corners of each subfigure. Each row shows 

the results of NYU, UM, USM, UCLA site from top to bottom.
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Fig. 11: 
Interpreting brain biomarkers associated with identifying ASD from federated learning 

model (Fed) and using single site data for training (Single). The colors stand for the relative 

importance scores of the ROIs and the values are denoted on the color bar. The names of the 

strategies and sites are denoted on the left-upper corners of each subfigure. Each row shows 

the results of NYU, UM, USM, UCLA site from top to bottom.
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Table 1:

Data summary of the dataset used in our study

NYU UM USM UCLA

Total Subject 167 88 52 63

ASD Subject 73 43 33 37

HC Subject 94 45 19 26

ASD Percentage 44% 49% 63% 59%

fMRI Frames 176 296 236 116

Overlapping Trunc 145 265 205 85
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Table 2:

Data phenotype summary.

SITE AGE ADOS IQ SEX

ASD

UM 12.4(2.2) - 102.8(18.8) M36F7

USM 22.9(7.3) 12.6(3.0) 99.8(16.4) M33F0

NYU 14.7(7.1) 11.5(4.1) 107.4(16.5) M65F8

UCLA 13.0(2.7) 10.4(3.6) 103.5(13.5) M 31 F 6

HC

UM 14.1(3.4) - 106.7(9.6) M32F 13

USM 20.8(8.2) - 117.1(14.4) M 19 F 0

NYU 15.2(5.9) - 112.6(13.5) M 69 F 25

UCLA 13.4(2.3) - 104.9(10.4) M 22 F 4

Values reported with mean (std) format. M: Male, F: Female, ADOS score: - means information not available
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Table 3:

Results of using different training strategies

NYU UM USM UCLA

trNYU - 0.716 0.673 0.682

trUM 0.611 - 0.712 0.682

trUSM 0.641 0.625 - 0.730

trUCLA 0.575 0.648 0.750 -

Single 0.601(0.064) 0.648(0.065) 0.695(0.108) 0.571(0.100)

Ensemble 0.611(0.012) 0.638(0.054) 0.654(0.088) 0.634(0.064)

Fed 0.647(0.049) 0.728(0.073) 0.849(0.124) 0.712(0.075)

Fed-MoE 0.671(0.082) 0.728(0.083) 0.809(0.098) 0.744(0.130)

Fed-Align 0.676(0.071) 0.751(0.053) 0.829(0.091) 0.712(0.089)

Mix 0.671(0.035) 0.740(0.063) 0.829(0.137) 0.710(0.128)
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Table 4:

Correlations between the detected biomarkers and functional keywords maps decoded by Neurosynth.

Sementic Comprehension Social Attention Memory Reward

Fed

HC 0.054 0.096 0.099 0.088 0.009 −0.078

ASD −0.048 −0.035 −0.081 0.007 0.031 0.017

|Δ| 0.102 0.131 0.180 0.081 0.022 0.095

Single

HC 0.050 0.043 0.069 0.053 0.022 −0.062

ASD −0.029 −0.005 −0.094 0.005 0.041 0.010

|Δ| 0.079 0.048 0.163 0.048 0.019 0.072

|Δ| is the absolute difference between the scores of HC and ASC groups.
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