Skip to main content
. 2020 Sep 22;20(18):5446. doi: 10.3390/s20185446

Table A4.

Analysis of the processing algorithm, performance evaluation, and software for the studies of the wearable category published before 2018.

Study Algorithm Performance Evaluation Performance Value Analysis Software
Agcayazi 2017 [123] - Graphical monitoring - -
Aileni 2017 [134] - - - -
Basra 2017 [145] Frequency analysis Graphical monitoring - MATLAB
Bhattacharya 2017 [156] Threshold detection Graphical comparison - Blynk
Das 2017 [162] - Graphical monitoring - Audacity
Fajkus 2017 [83] Frequency analysis Relative error 3.9% MATLAB
Gorgutsa 2017 [84] Received signal strength indicator Graphical monitoring - Custom application
Guay 2017 [85] - Graphical monitoring - Labview
Kam 2017 [86,87,88] - Relative error <4.08% Labview
MATLAB
Kano 2017 [89] - Graphical monitoring - -
Koch 2017 [90] Custom algorithm Graphical monitoring - -
Milici 2017 [91] Peak detection Graphical comparison - -
Nakazumi 2017 [92] - Graphical monitoring - -
Park 2017 [93] - Graphical monitoring - MATLAB
Presti 2017 [94] Max-min detection Bland-Altman analysis 0.006–0.008 bpm (BA MOD) MATLAB
Valipour 2017 [95] - Root mean square error
Bland-Altman analysis
1.26 bpm (RMSE)
0.1 bpm (BA, MOD)
-
White 2017 [96] Frequency analysis - - MATLAB
Yan 2017 [97] - Graphical monitoring - -
Mahbub 2016–2017 [98,99] - Graphical monitoring - -
Chethana 2016 [100] Frequency analysis - - -
Güder 2016 [101] - Graphical monitoring - -
Lepine 2016 [102] Kalman filter Absolute error 2.11–5.98 bpm MATLAB
Massaroni 2016 [103] Max-min detection Bland-Altman analysis
Percentage error
<0.14 s (BA, MOD)
1.14% (PE)
-
Massaroni 2016 [49] Max-min detection
Custom algorithm
Relative error −1.59% (RE for RR)
14% (RE for TV)
MATLAB
Moradian 2016 [104] - Graphical monitoring - -
Nag 2016 [105] - Graphical monitoring - -
Nam 2016 [106] Frequency analysis Mean relative error <1% MATLAB
Raji 2016 [107] Threshold detection Root mean square error 1.7–2 bpm -
Ramos-García 2016 [108] Peak detection
Frequency analysis
Correlation factor 0.41 -
Rotariu 2016 [109] Peak detection - - LabWindows/CVI
Atalay 2015 [110] Frequency analysis - -
Ciocchetti 2015 [111] Peak detection
Custom algorithm
Manual verification
Correlation factor
Percentage error
Bland-Altman analysis
0.87 (correlation)
8.3% (PE)
<0.002 s (BA, mean difference, time between peaks)
MATLAB
Estrada 2015 [112] Peak detection
Custom Algorithm
Correlation factor
Bland-Altman analysis
0.8–0.97 (correlation)
−0.01 bpm (BA, MOD)
MATLAB
Gargiulo 2015 [113] - Relative error <10% MATLAB
Grlica 2015 [114] - Graphical monitoring - C#
Hernandez 2015 [115] Max-min detection
Frequency analysis
Bland-Altman analysis
Mean absolute error
Root mean square error
0.15 bpm (BA, MOD)
0.38 bpm (MAE)
1.25 bpm (RMSE)
-
Jiang 2015 [116] Custom algorithm Respiration simulation - -
Karlen 2015 [117] Custom algorithm Bland-Altman analysis
Root mean square error
6.01 bpm (RMSE) MATLAB
Kazmi 2015 [118] - Graphical comparison - Easy pulse analyzer
Cool term software
Kuvios HRV
Metshein 2015 [21] - Graphical comparison - -
Teichmann 2015 [119] Frequency analysis (Frequency modulation)
Custom algorithm
Graphical comparison - Microcontroller
Wei 2015 [120] - - - -
Yang 2015 [3] Manual verification Graphical comparison - Labview
Bifulco 2014 [121] - - - -
Fekr 2014 [122] Numeric integration algorithm Correlation factor
Relative error
0.85 (correlation)
0.2% (RE)
-
Hesse 2014 [124] Peak detection Mean absolute error 0.32 bpm Microcontroller
Krehel 2014 [125] - Correlation factor
Bland-Altman analysis
±3 bpm (BA) MATLAB
Min 2014 [126] Peak detection
Custom Algorithm
Correlation factor
Bland-Altman analysis
0.98 (correlation)
0.0015 bpm (BA, MOD)
MATLAB
Petrovic 2014 [127] - Mean relative error
Bland-Altman analysis
8.7% (RE-MV-)
10.5% (RE-TV-)
−1 (BA, MOD)
MATLAB
Labview
Sanchez 2014 [128] - - - -
Wo 2014 [129] Frequency analysis - - Labview
Yang 2014 [130] - Graphical monitoring - -
Yoon 2014 [131] Kalman filter Relative error 7.3% MATLAB
Labview
Chan 2013 [132] - Absolute error <2 bpm -
Huang 2013 [133] - Accuracy 98.8% -
Kundu 2013 [161] - Accuracy
Coefficient of determination
100% (acc)
0.906 (r2)
-
Padasdao 2013 [135] Frequency analysis (Fast Fourier Transform) Bland-Altman analysis
Mean absolute error
0.23–0.48 bpm (BA, MOD)
0.00027 bpm (MAE)
-
Cao 2012 [2] Peak detection Graphical comparison - Labview
Chiu 2012 [136] Frequency analysis Paired t-test No statistical difference with reference MATLAB
Favero 2012 [137] - - - -
Mathew 2012 [138] Zero-crossing detection Graphical monitoring - Labview
Scully 2012 [139] Frequency analysis (Frequency modulation) Graphical comparison - MATLAB
Trobec 2012 [140] ECG-derived algorithm - - MATLAB
Witt 2012 [141] - Graphical comparison - -
Zieba 2012 [142] Manual verification - - Labview
Carlos 2011 [143] - Graphical monitoring - Custom application
Ciobotariu 2011 [144] Max-min detection
Custom algorithm
Graphical comparison - C#
Guo 2011 [146] Peak detection Simulation
Graphical comparison
- Labview
Hoffmann 2011 [17] Custom algorithm Correlation factor
Relative error
0.92 (correlation) -
Liu 2011 [147] Empirical Mode Decomposition Mean percentage error
Root mean square error
6.1%, 14.6% (MPE)
4.1 bpm, 9.8 bpm (RMSE)
-
Liu 2011 [148] Principal Component Analysis
Frequency analysis
Relative error 10% -
Mann 2011 [149] Threshold detection Correlation factor 0.97 -
Ono 2011 [150] Custom algorithm Displacement comparison - Objective-C
Silva 2011 [151] Frequency analysis Graphical comparison - -
Yang 2011 [152] - - - -
Yoo 2010–2011 [153,154,155] - Graphical monitoring - Labview
Ansari 2010 [157] Frequency analysis - - -
De Jonckheere 2010 [158] - Graphical comparison
Bland-Altman analysis
- -
Mitchell 2010 [159] Manual verification Graphical comparison - Physput
Zhang 2010 [160] - Biofeedback (audiovisual feedback signal) - MATLAB