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1. Introduction

As the world’s population gradually grows older, more and more adults are experiencing
sensory–motor disabilities due to stroke, traumatic brain injury, spinal cord injury and other diseases.
People with such disabilities can greatly benefit from the help of robotic technologies. For example,
rehabilitation robots can help stroke survivors perform the intensive, repetitive exercises needed
for relearning motions, robotic prostheses can replace body parts after amputations, and robotic
orthoses and exoskeletons can strengthen body parts that have been permanently weakened by disease.
Together, all these technologies thus have the potential to greatly improve quality of life for people
with disabilities.

However, while the effectiveness of assistive and rehabilitation robots has been demonstrated in
several clinical trials (which have found, e.g., that rehabilitation robots are approximately as effective as
human therapists), the technology has not yet been broadly adopted by health facilities and end-users.
This limited adoption is not due to inappropriate mechanical design—state-of-the-art robots have many
degrees of freedom and are mechanically robust to suboptimal operating conditions, allowing them to
theoretically deliver support in a variety of real-world environments. Instead, the main limitation is
the lack of clarity about how assistive and rehabilitation robots can intelligently recognize and react to
both user needs and desires as well as environmental factors in order to provide appropriate support.
For example, how can a prosthetic leg recognize the walking terrain and the user’s desired gait speed
in order to enable safe, efficient gait? How can an upper body exoskeleton recognize what the user
is trying to do (e.g., lift a box) and how can it tailor its assistance to the characteristics of the user
(e.g., strength) and task (e.g., box weight)? How can a rehabilitation robot intelligently guide a person
with chronic limb impairment through a series of exercises in order to gradually restore limb function
over the course of several weeks? Such questions need to be addressed using novel sensor fusion
algorithms that can intelligently combine potentially unreliable data from multiple different types of
sensors as a basis for decision making and device control.

This Special Issue aims to showcase recent advances in sensor fusion for assistive and rehabilitation
robots. It consists of eight papers that present the development and evaluation of exciting technological
advances from diverse application areas. It is our hope that the presented technologies will reach
clinical evaluation in the next few years and will eventually become widespread in clinical practice
and everyday life, improving the quality of life for people with disabilities. Furthermore, we hope
that the presented papers will inspire other researchers to conduct further work in this exciting area,
thus serving as a foundation for broader research and development.
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2. Contributions

The first paper, by Huang et al. [1], presents a novel wheelchair robot with attached leg exoskeletons
for leg muscle exercise. The authors implemented an exoskeleton control system based on master–slave
control and sensor fusion and conducted experiments to evaluate exercise efficiency with regard to the
gluteus medius muscles. As many people with lower leg disabilities use wheelchairs, the proposed
technology allows them to maintain mobility while also enabling pedaling exercises that can strengthen
the limb and prevent atrophy, thus combining assistive and rehabilitation functions.

The second paper, by Kubota et al. [2], presents an evaluation of a lower-limb rehabilitation
robot that induced eccentric tibialis anterior muscle contraction by controlling strength and speed
using a combination of velocity and force feedback. In a long-term evaluation with 11 elderly
participants, the authors found significant differences between training and control phases, though they
did not find positive results in a cross-over test. Still, the results demonstrate the feasibility of
such biofeedback-based training and indicate directions for the future improvement of lower-limb
rehabilitation devices.

The third paper, by Sánchez Manchola et al. [3], presents two gait phase partitioning algorithms
based on a single foot-worn inertial measurement unit. Intended for future use with lower-limb
exoskeletons, the algorithms are based on either thresholding or hidden Markov models, and are
trained and evaluated during treadmill walking tasks. The hidden-Markov-model-based method
demonstrated particularly good performance and could potentially become widespread in any
technology that requires accurate gait phase partitioning—not just lower-limb exoskeletons, but also
full-body exoskeletons and lower-limb prostheses.

The fourth paper, by Farago et al. [4], presents an electromyography-based muscle health model
for elbow trauma patients. Surface electromyography recordings were collected from healthy and
injured limbs of 30 elbow trauma patients during 10 different motions, and multiple classifiers were
used to distinguish between healthy and injured states. This shows the feasibility of using sensor fusion
methods to automatically evaluate the health of elbow muscles. In the future, the method could be
expanded to allow dynamic monitoring of muscle health as patients progress through the rehabilitation
process, and could potentially even be used by intelligent rehabilitation robots to automatically plan
therapy exercises.

The fifth paper, by Orand et al. [5], presents a single-subject evaluation of a device for bilateral
upper-limb training that incorporates camera-based limb tracking and tactile feedback. The subject
underwent six weeks of training, and clinical measures showed pre-post improvement on several
scales. Though limited by the small sample size, the results indicate high potential of the presented
technology as a low-cost tool for self-administered exercise that could be performed at home or in
community settings, resulting in cheaper and more accessible motor rehabilitation as well as a lower
burden on clinical rehabilitation facilities.

The sixth paper, by Krausz et al. [6], begins with the hypothesis that the significant gait prediction
errors currently seen in robotic lower-limb prostheses are due to the inter- and intra-subject variability
of the data sources used for such prediction. They propose the addition of environmental data from
a depth sensor worn on the belt, and analyze the variability of such a sensor compared to kinetic,
kinematic, and electromyographic data. By demonstrating improvements in separability, repeatability,
clustering and desirability across subjects and activities, the authors present a convincing case that
the incorporation of vision-based environmental data into lower-limb assistive robots could greatly
improve the effectiveness and robustness of such robots.

The seventh paper, by Hlucny and Novak [7] (co-authored by one of the guest editors), presents a
proof-of-concept system that uses a combination of inertial measurement units and machine learning
to automatically classify different types of human bilateral lifting behaviors. While not yet suitable for
real-time use, the proposed method can accurately identify parameters such as the start and end points
of a lift and whether the user is lifting in an ergonomic or unergonomic fashion. This information
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could, in the future, be used to control assistive devices such as trunk exoskeletons for physically
demanding occupations, reducing the risk of lower-back injury in, e.g., manual materials handling.

Finally, the eighth paper, by Krausz and Hargrove [8], carries out a survey of teleceptive (remote,
contactless) sensing for wearable assistive robotic devices. Related to the aforementioned sixth
paper, the authors argue that teleceptive sensing has high potential for providing environmental and
contextual awareness that could greatly improve the effectiveness and robustness of assistive robots.
They provide a thorough review of different teleception sensor modalities and sensor fusion methods;
furthermore, they identify several barriers to clinical translation and suggest several possible research
directions, which will help guide further work in this exciting but still fragmented field.
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