
sensors

Article

A Novel Deep Learning Model for the Detection and
Identification of Rolling Element-Bearing Faults

Alex Shenfield * and Martin Howarth

National Centre for Excellence in Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK;
m.howarth@shu.ac.uk
* Correspondence: a.shenfield@shu.ac.uk

Received: 13 August 2020; Accepted: 3 September 2020; Published: 8 September 2020
����������
�������

Abstract: Real-time acquisition of large amounts of machine operating data is now increasingly
common due to recent advances in Industry 4.0 technologies. A key benefit to factory operators
of this large scale data acquisition is in the ability to perform real-time condition monitoring and
early-stage fault detection and diagnosis on industrial machinery—with the potential to reduce
machine down-time and thus operating costs. The main contribution of this work is the development
of an intelligent fault diagnosis method capable of operating on these real-time data streams to
provide early detection of developing problems under variable operating conditions. We propose a
novel dual-path recurrent neural network with a wide first kernel and deep convolutional neural
network pathway (RNN-WDCNN) capable of operating on raw temporal signals such as vibration
data to diagnose rolling element bearing faults in data acquired from electromechanical drive systems.
RNN-WDCNN combines elements of recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) to capture distant dependencies in time series data and suppress high-frequency
noise in the input signals. Experimental results on the benchmark Case Western Reserve University
(CWRU) bearing fault dataset show RNN-WDCNN outperforms current state-of-the-art methods in
both domain adaptation and noise rejection tasks.

Keywords: condition monitoring; fault diagnosis; deep learning; artificial intelligence

1. Introduction

Recent advances in the Industrial Internet-of-Things have meant that real-time acquisition of large
amounts of machine operating data is now increasingly common. This data can inform many aspects
of industrial plant management—from high-level process optimization across a factory (or even across
multiple sites) to monitoring the performance of individual machines. However, of critical importance
within the manufacturing industry is the ability for this data to provide remote condition monitoring
of machinery. In many situations, the breakdown of a machine has a significant impact not only on the
production capacity and operating costs of a factory but also on employee safety.

Rolling element bearings are one of the key components in many types of industrial machinery,
including mechanical power transmission systems and other forms of electromechanical drive systems,
and degradation of these has a significant impact on both the performance and lifespan of a system.
Several studies [1–3] have estimated that between 40% and 70% of electromagnetic drive system
failures are due to bearing faults. Vibration data is commonly used in the detection and identification
of faults in rolling element bearings, with bearing damage producing impulse responses in the vibration
signal where bearing components contact the fault area [4]. Envelope analysis [5] is often used as the
primary tool for diagnosis of bearing faults from these vibration signals; however, it often requires
extensive domain knowledge (such as rotating shaft speed and load angle for the specific machine

Sensors 2020, 20, 5112; doi:10.3390/s20185112 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2931-8077
https://orcid.org/0000-0002-6959-261X
http://www.mdpi.com/1424-8220/20/18/5112?type=check_update&version=1
http://dx.doi.org/10.3390/s20185112
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 5112 2 of 24

being analyzed) and its accuracy can be significantly affected by factors such as signal noise, changes
in operating conditions, and rotational slips in the system.

In the past 10–15 years, there has been substantial interest in intelligent data-driven fault diagnosis
techniques that overcome many of the limitations of envelope analysis based methods. Conventional
machine learning approaches to this data-driven fault diagnosis process consists of three main stages:

• Feature extraction—where meaningful features are extracted from the raw time series data using
signal processing techniques.

• Feature selection—where the dimensionality of the features extracted in the previous step is
reduced to the most important features.

• Classification—where the selected features are used to identify the class of the fault in the system.

For vibration-based fault detection and diagnosis, there are a range of features from both the
frequency domain and the time domain that are commonly used to characterize the vibration signals;
including signal amplitudes, kurtosis, and power spectral densities. These features have been used
in the literature to identify bearing faults using machine learning methods such as Artificial Neural
Networks (ANNs) [6], Support Vector Machines (SVMs) [7–9], and k-Nearest Neighbor classifiers [10].
However, a key drawback with this approach is that these handcrafted features have to be decided a
priori (often by trial and error) and the success of the classification algorithm is highly dependent on
the choice of features used as an input. Many of the existing intelligent data-driven fault diagnosis
techniques in the literature struggle to adapt to different working conditions (such as different motor
loads, different rotating shaft speeds, or varying amounts of environmental noise). This is due in part
to the features extracted in one domain not necessarily transferring optimally to a different domain.

In recent years, deep learning approaches have been shown to consistently outperform other
techniques on a range of natural language processing and computer vision tasks [11,12]. One of the
most significant advantages of applying deep learning approaches is their capability for end-to-end
learning without the need for complex feature engineering steps. The ability of deep learning
algorithms to automatically extract information of interest from the raw data not only helps ensure
robust decision making, but also makes their use more feasible in many domains.

In this paper, we propose a novel deep learning model for fault detection and diagnosis of
time-series data that addresses many of the problems with existing intelligent data-driven fault
diagnosis techniques. The key contributions of this paper are:

1. We propose a novel deep learning framework for fault detection on time-series data that
combines elements of convolutional neural networks (CNNs) with a recurrent neural network
(RNN) pathway.

2. We show that our proposed framework works directly on the raw temporal data obviating the
need for manual feature extraction or noise removal.

3. We show that our framework exhibits excellent robustness to both environmental noise and
changes in operating conditions.

4. We compare our framework to several state-of-the-art approaches using both conventional
machine learning techniques and deep learning approaches.

The rest of this paper is organized as follows: Section 2 will provide a brief introduction to the core
deep learning concepts used in our framework and some related work; Section 3 describes our novel
deep learning framework for fault detection on time-series data; Section 4 outlines our experimental
design and discusses the results of our experiments; and Section 5 will present our conclusions and
some ideas for further work. Code to replicate all the experiments in this paper is available [13].



Sensors 2020, 20, 5112 3 of 24

2. Background and Related Work

2.1. Convolutional Neural Networks

In the past decade, Convolutional Neural Networks (CNNs) have been responsible for major
breakthroughs in computer vision and image processing [14–16], obtaining state-of-the-art results
on a range on benchmark and real-world tasks. More recently, one-dimensional CNNs have shown
significant promise in dealing with structured language data in tasks such as machine translation [17,18]
and document classification [19,20]. In 2018, Bai et al. [21] showed that, for many sequence modeling
tasks, 1D CNNs using current best practices such as dilated convolutions often perform as well as or
better than recurrent neural network architectures.

Convolutional neural networks are a class of feed-forward neural networks consisting of multiple
convolutional stages that perform the task of feature extraction and a single output stage that combines
the extracted high-level features to predict the desired output. Figure 1 shows an example of a simple
one-dimensional CNN architecture.

Figure 1. Simple 1D convolutional neural network (CNN) architecture with two convolutional layers.

Each of the convolutional stages in Figure 1 shows a set of learnable convolutional filters followed
by a pooling operation. These convolutional filters act to extract the high-level features (such as edges
and curves in an image) from a supplied input by convolving a set of weights with the input and
applying a non-linear activation function. The outputs of this are then fed into a pooling operation
which reduces the spatial size of the features extracted by the convolutional filters whilst emphasizing
the dominant features learned by each filter. As the input progresses through the convolutional stages
(left to right on Figure 1), the network learns more problem-specific features.

2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are capable of capturing the dynamic temporal behavior in
an input sequence. RNNs do this by retaining and utilizing information about what has happened
in previous time steps, allowing them to “remember” information about the entire input sequence.
Whilst RNNs can theoretically capture input dependencies over long time intervals, Bengio et al. [22]
have shown that, in practice, training such networks with gradient descent methods becomes less



Sensors 2020, 20, 5112 4 of 24

efficient as the temporal span of the input sequence dependencies increases—thus resulting in RNNs
becoming difficult to train successfully.

The Long-Short Term Memory (LSTM) recurrent neural network architecture [23] (shown in
Figure 2) overcomes some of the difficulties of training ordinary RNNs by introducing both a memory
cell and a gating mechanism to improve the ability to learn from long input sequences. The memory cell
provides a continuous path through the network, allowing multiple LSTM cells to be joined together
without suffering from the “vanishing gradient problem” common to ordinary RNN architectures.
Information is then added to this memory cell state via three gates:

1. The forget gate, which controls how much of the previous state the LSTM should remember.
2. The input gate, which controls how much new information the LSTM should add to its memory.
3. The output gate, which controls how much of the memory we are going to use in the output of

the state at the current time step.

Figure 2. Basic Long-Short Term Memory (LSTM) architecture.

The computation of the LSTM states at a given time step (t) can be expressed as [24]:

ft = σ(Wfxt + Ufht−1 + b f ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ tanh(ct) (5)

where:

xt = the input vector
ft = the activation vector of the forget gate at time t
it = the activation vector of input gate at time t
ot = the activation vector of the output gate at time t



Sensors 2020, 20, 5112 5 of 24

ct = the memory cell activation vector at time t
ht = the hidden state activation vector at time t
Wf, Wi, and Wo = the input kernels for the respective gates
Uf, Ui, and Uo = the recurrent kernels for the respective gates
b f , bi, bo, and bc = the biases
σ = the logistic sigmoid function
◦ = the matrix product
tanh = the hyperbolic tangent activation function

Recently, Cho et al. [25] proposed the Gated Recurrent Unit (GRU) model as a variant of the
LSTM architecture. The key difference is that the GRU architecture combines both the forget and input
gates into a single “update gate”, producing a model that is simpler and has fewer weights to update
and thus can train significantly faster.

Several researchers have compared GRU and LSTM based recurrent neural networks [26–28],
with no clear winner emerging. A general rule-of-thumb is that GRU based RNNs train faster and
seem to perform better for smaller amounts of data (as they are less prone to overfitting in such cases),
but LSTM based RNNs have greater expressive power in capturing longer-term relationships in the
data (but this comes at a cost of computational complexity and potential overfitting).

Whilst both LSTM and GRU models can capture input dependencies over long time intervals,
they can sometimes struggle to identify dependencies if they are widely spaced (for example, if the
first and last elements of a long sequence are important for making a correct prediction). Recently
Bahdanau et al. [29] proposed an attention mechanism to help with this issue in neural machine
translation. In their model of attention, a context vector (C) is used to capture information about the
importance of the other elements in a given input sequence in making an accurate prediction.

2.3. Deep Learning in Intelligent Data Driven Fault Diagnosis

In the last few years, there has been increasing interest in applying deep learning-based
approaches to data-driven fault diagnosis. These approaches fall broadly into two categories: those that
reshape the input signals in some way into two dimensions, and those that operate on one-dimensional
signals such as time-varying vibration data.

Guo et al. [30], Lu et al. [31] and Xia et al. [32] all reshaped the one-dimensional input signals into
two-dimensional matrices of features and applied simple 2D CNN architectures to those feature
matrices to categorize bearing damage. In contrast, Wen et al. [33] used a more sophisticated
preprocessing method to turn the time domain signals into grayscale images and implemented a
deeper 2D CNN (based on LeNet-5 [34]) to diagnose bearing faults across three different datasets.

Zhang et al. [35] proposed a deep one-dimensional CNN with a wide first layer kernel (WDCNN)
capable of working directly on the raw temporal signals without the need for complex preprocessing.
Zhuang et al. [36] also proposed a 1D CNN capable of operating on raw vibration signals but used
dilated convolutions and residual connections to improve robustness to noise and domain shifts at
the cost of some complexity in tuning the model parameters. Zhang et al. [37] adapted the WDCNN
proposed in [35] to work with limited data—a common challenge in fault diagnosis where components
are rarely allowed to run to failure.

3. The RNN-WDCNN Model for Fault Diagnosis

3.1. The RNN-WDCNN Model Architecture

In this paper, a novel dual-path deep learning network, combining a recurrent neural network
path and a deep convolutional network path (RNN-WDCNN) is proposed and applied to fault
diagnosis for rolling element bearings. This model architecture, shown in Figure 3, is inspired by
the Long-Short Term Memory Fully Convolutional Network (LSTM-FCN) architecture proposed by
Karim et al. [38]. LSTM-FCN has been shown to perform well across a range of benchmark tasks in
time-series classification [39]; however, the small kernel size in the first convolutional layer hampers



Sensors 2020, 20, 5112 6 of 24

the ability of the fully convolutional network path to capture distant dependencies in the raw temporal
signals from the noisy machine operating data (e.g., the raw vibration signals for bearing fault diagnosis
used in this work). This problem is even more pronounced when these signals are sampled at a high
sampling rate as the parts of interest in the signal are correspondingly further apart. As well as this,
the relatively shallow nature of the convolutional pathway (using three convolutional stages) restricts
the ability of the network to capture complex representations of low-level features.

Figure 3. The proposed recurrent neural network with wide first kernel and deep convolutional
path (RNN-WDCNN).

To overcome these limitations, the concept of using a wide first layer kernel followed by multiple
stages of convolutional layers with smaller kernels, proposed in Zhang et al. [35], is incorporated into
the dual path model in place of the relatively shallow convolutional path. The deep convolutional path
of the proposed model, therefore, consists of five convolutional stages for feature extraction and a final
dimension reduction stage to compress the learned feature representations. Each of the convolutional
stages comprises a set of 1D convolutional filters to learn the features of significance from the raw input
signals, a rectified linear unit activation function (ReLU) to introduce non-linearities into the network,
a batch normalization block [40] to improve the training process by reducing the internal co-variance
shift by normalizing layer inputs between batches, and a max-pooling block to down-sample the input
representation and improve the local translation invariance (i.e., the robust of the learned feature map
to the position of the features within the input signals). The first of these convolutional stages in this
deep convolutional path uses a very wide filter kernel both to suppress high-frequency noise in the
input signals and to capture distant dependencies, whilst the remaining convolutional stages use
smaller kernel sizes and serve to allow the convolutional path to acquire complex representations of
the features of the input signals.

As can be seen from the model architecture in Figure 3, as well as using a very wide convolutional
filter kernel in the first layer of the convolutional path, a 1D convolutional layer with a wide filter
kernel is also added before the recurrent neural network block in the RNN path. This helps primarily
to suppress high-frequency noise in the raw input signals but also to learn useful features to feed
into the RNN block. The primary job of the RNN block in the dual-path architecture is to help
capture dynamic temporal features that span large numbers of time steps. These temporally diverse



Sensors 2020, 20, 5112 7 of 24

features learned by the RNN path act to complement the more locally situated features learned by the
convolutional path and improve the final classification results. As will be discussed in Section 3.2,
several different candidate RNN architectures are investigated in this work, including those augmented
with an attention mechanism (as described in [29]).

Finally, the deep convolutional path and the RNN path are concatenated together and fed to a
output classification layer which uses the softmax function to transform the raw logits into a probability
distribution corresponding to the classes of bearing fault (where all elements lie in the range [0, 1] and
sum to 1). This softmax function is defined as:

So f tmax (xi) =
exp (xi)

∑j exp
(
xj
) , (6)

where xi and xj are the i-th and j-th elements of the raw logits vector from the model, respectively.
The parameters of the two pathways are outlined in Table 1. As shown in Table 1, the RNN block

in the recurrent pathway is comprised of 128 RNN cells as this strikes a good balance between the
ability to capture long-term dynamics in the signal and the complexity of the recurrent path. This value
was found by an initial hyper-parameter search.

Table 1. Details of the proposed RNN-WDCNN model structure.

Convolutional Pathway

No. Layer Type Kernel Size Stride Number of Kernels

C1 1D Convolution 256 × 1 2 × 1 16
C2 Max Pooling 1D 2 × 1 2 × 1 16
C3 1D Convolution 3 × 1 2 × 1 32
C4 Max Pooling 1D 2 × 1 2 × 1 32
C5 1D Convolution 3 × 1 2 × 1 64
C6 Max Pooling 1D 2 × 1 2 × 1 64
C7 1D Convolution 3 × 1 2 × 1 64
C8 Max Pooling 1D 2 × 1 2 × 1 64
C9 1D Convolution 3 × 1 2 × 1 64
C10 Max Pooling 1D 2 × 1 2 × 1 64
C11 Fully connected 100 N/A 1

Recurrent Pathway

No. Layer Type Kernel Size Stride Number of Kernels

R1 1D Convolution 256 × 1 2 × 1 16
R2 Max Pooling 1D 2 × 1 2 × 1 16
R3 RNN block N/A N/A 128

Output

No. Layer Type Kernel Size Stride Number of Kernels

O1 Softmax 10 N/A 1

3.2. Training the RNN-WDCNN Model

Xavier uniform initialization [41] was used to initialize all the weights of the RNN-WDCNN
model (for both the RNN and WDCNN paths). To update the model weights during training, gradient
descent-based backpropagation was applied using the Stochastic Gradient Descent (SGD) optimizer
and a Cyclical Learning Rate (CLR) strategy [42], with the categorical cross-entropy function used
to evaluate the training and validation loss of the network. Categorical cross-entropy compares the
distribution of the output predictions of the model with the one-hot encoded ground truth vector.
The closer the model’s outputs are to this vector, the lower the resulting loss. In this work, the ground
truth vector represents the one-shot encoded class of the rolling element bearing fault indicated by the
input vibration signals.



Sensors 2020, 20, 5112 8 of 24

The range of the learning rates for the CLR strategy was chosen by gradually increasing the
learning rate from very low (1 × 10−10) to very high (10) and plotting the behavior of the loss value.
The maximum and minimum (i.e., base) learning rates were then chosen as the points between when
the loss decreases most sharply, as shown in Figure 4. Learning rates were adjusted between the base
learning rate and the maximum learning rate using the triangular2 policy (whereby the maximum
learning rate is halved after each cycle), with the step size chosen so that there would be three cycles
over the course of the training process (with the training process finishing at the end of the third
cycle). A batch size of 8 was used during this training process as small batch sizes have been shown
to improve the generalization performance of a trained model by helping the optimizer converge to
flatter minima in the search landscape [43].

Figure 4. Finding the optimal learning rate range to use in the cyclical learning rate strategy.

Recurrent dropout [44] and standard dropout [45] were applied during training to reduce
over-fitting and improve model generalization. Recurrent dropout was applied with a probability of
0.1 to both the inputs and hidden states of the RNN cells, and standard dropout was applied to both
convolutional and RNN paths (with a probability of 0.5) before concatenation. A variety of recurrent
neural network architectures have been investigated in this work and their performance is assessed in
Section 4. These include:

• A basic LSTM model (LSTM)
• A basic GRU model (GRU)
• An LSTM model with Attention (ALSTM)
• A GRU model with Attention (AGRU)

4. Experimental Results

4.1. Data Description

To validate the effectiveness of the novel dual-path recurrent neural network with wide first kernel
and deep convolutional pathway proposed in this work for intelligent data-driven fault diagnosis
applications, the benchmark bearing fault dataset from Case Western Reserve University (CWRU)
Bearing Data Center [46] is used. The CWRU bearing fault dataset has been widely used in the
literature for investigating both conventional fault diagnosis techniques [47,48] and data-driven fault



Sensors 2020, 20, 5112 9 of 24

diagnosis methods using machine learning [49,50] and deep learning [35–37]. The data used in this
study were collected from both the drive end accelerometer (close to the fault location) and the fan
end accelerometer (remote from the fault location) of the test apparatus shown in Figure 5. Data were
collected over a range of motor loads (from 0 hp to 3 hp) and for a variety of single point damage
conditions, with bearing damage introduced by using electro-discharge machining (EDM) to induce
faults of varying types and severity (see Table 2 for a list of fault conditions).

Figure 5. The Case Western Reserve University Bearing Center test apparatus (original image taken
from [46]).

Contrary to much of the literature, in this work, we use the 48 kHz sampled vibration signals from
the fan end and drive end accelerometers rather than the 12 kHz sampled data. Smith and Randall [48]
have stated that, although for this dataset the 12 kHz sampled data may be easier to diagnose,
many bearing faults manifest themselves at high frequencies and thus an effective fault diagnosis
framework must be capable of operating on data sampled at a high sampling rate.

One drawback of deep learning models is their need for large amounts of data for training the
model; however, in fault diagnosis applications it is rare to have large amounts of data due to the
inherent difficulties in running machinery in fault conditions for prolonged periods of time. In this
study, data augmentation was used to increase the amount of training data available to train the model
and help reduce over-fitting. To do this, a sliding window approach was used to extract multiple
overlapping samples from the input sequences (as shown in Figure 6). Each input sequence was
acquired under a single fault condition, so the augmented sequences were all assigned the same
fault label as the original input sequence. The experiments in this study use a window length of
4096 data points and a step size of 64 to create the training data. A window of 4096 data points was
chosen to capture at least two complete revolutions of the load-bearing shaft—i.e., the rotating motor
shaft—and therefore impacts on the bearing fault area. The number of data points in a complete
revolution of the load-bearing shaft is given by N = Fs×60

ω (where N is the number of data points, Fs is
the sampling frequency, and ω is the rotating shaft speed in rpm). As Table 3 shows, the rotating shaft
speed varies between 1772 rpm and 1730 rpm for the operating conditions investigated in this work.
At a sampling rate of 48 kHz, this gives between 1626 and 1665 data points per complete revolution
which means a window length of 4096 data points is guaranteed to capture at least two bearing fault
impacts. This approach is similar to that taken by other works in the literature that use the 12 kHz
sampled data [35,36]. The test data was created using the same window length but without samples
overlapping. The labels for both the training and testing datasets were evenly distributed between the
fault classes (as shown in Table 4) for each of the load conditions.



Sensors 2020, 20, 5112 10 of 24

Table 2. Bearing fault descriptions for the Case Western Reserve University (CWRU) dataset.

Fault ID Fault Cause Severity

1 Normal N/A
2 Inner Race Fault 0.007 inch
3 Ball Fault 0.007 inch
4 Outer Race Fault 0.007 inch
5 Inner Race Fault 0.014 inch
6 Ball Fault 0.014 inch
7 Outer Race Fault 0.014 inch
8 Inner Race Fault 0.021 inch
9 Ball Fault 0.021 inch
10 Outer Race Fault 0.021 inch

Figure 6. Sliding window data augmentation.

Table 3. Operating conditions considered in these experiments.

Dataset Motor Load Shaft Speed

A 1 hp 1772 rpm
B 2 hp 1750 rpm
C 3 hp 1730 rpm

Table 4. Fault label distribution for each load condition (note that each load condition consists of the
same number of training and testing samples).

Fault ID Total Training Sample Total Testing Samples(with Data Augmentation)

1 5625 88
2 5625 88
3 5625 88
4 5625 88
5 5625 88
6 5625 88
7 5625 88
8 5625 88
9 5625 88

10 5625 88

For the experiments outlined in the rest of this section, the proposed RNN-WDCNN model
is compared to the WDCNN model proposed in Zhang et al. [35] and the state-of-the-art deep
learning-based models (SRDCNN) model proposed in Zhuang et al. [36] (see Section 2.3 for more
discussion of these approaches). These models have been re-implemented based on the descriptions in
the respective papers to allow for an equitable comparison of the performance of all three models on the
48 kHz sampled data. All models have been implemented in the Keras deep learning framework [51]
with the TensorFlow back end [52] and code is available at https://github.com/al3xsh/rolling-

https://github.com/al3xsh/rolling-element-bearing-fault-detection
https://github.com/al3xsh/rolling-element-bearing-fault-detection


Sensors 2020, 20, 5112 11 of 24

element-bearing-fault-detection. The three deep learning-based models are further compared to
two conventional machine learning approaches using Fast Fourier Transform (FFT)-based features
(one using a multilayer perceptron (FFT-MLP), and one using support vector machines (FFT-SVM)).
The results presented in the following sections are the mean and standard deviation for 10 independent
runs of each model, with the 10 runs performed using stratified 10-fold cross-validation (so for each
run the model is trained with a slightly different subset of the training data—maintaining the balance
of classes in the dataset—and then the performance validated on the held out part of the training set,
before finally evaluating the model under different working conditions or environmental noise levels).

The accuracy of the fault classification is considered as the primary performance metric (because
the fault classes are evenly balanced and the importance of detecting each fault class is equal); however,
results for precision, recall, and the F1 score are also presented to allow greater insight into the
performance of all the models tested in this section. Precision provides information about the ability of
a classifier to correctly label samples, whilst recall shows the ability of a classifier to find all samples
that belong to a class. The precision metric thus helps to understand the false positives generated
by a model and recall helps to understand the false negatives. The F1 score is a weighted mean
of both precision and recall. Note that, because multiple fault classes are considered, the precision,
recall, and F1 score metrics are macro-averaged (i.e., each metric is calculated per class and then the
macro-average is calculated by taking the arithmetic mean over all the classes).

4.2. Performance under Different Working Loads

In this set of experiments, the domain adaptation performance of the RNN-WDCNN model is
investigated to see how well it generalizes to similar data acquired under different operating conditions
(i.e., motor load and shaft speed). datasets using three distinct sets of operating conditions were used
in this study. These are shown in Table 3.

In this section two scenarios are considered:

1. The model is trained using data acquired under one set of operating conditions and then tested
individually against unseen data acquired under different, but fixed, operating conditions.

2. The model is trained using data from two different sets of operating conditions and then tested
against unseen data acquired under the third set of operating conditions (again fixed, but different
from the two used in training).

4.2.1. Scenario 1: Single Source Domain to a Single Target Domain

Table 5 provides details of the arrangement of the datasets used in this scenario. As mentioned in
Section 4.1, the data used for training has been augmented using a sliding window approach, and the
data used for testing (the target domain in Table 5) is split into non-overlapping windows of the same
length as the training samples. Figure 7 shows the differences in performance in this scenario between
the four versions of RNN-WDCNN considered in this work (i.e., models using the GRU, LSTM, AGRU,
and ALSTM based recurrent pathways).

It can be seen from Figure 7 that there are only small differences in the domain adaptation
performance between the different recurrent architectures investigated for use with RNN-WDCNN,
with the basic LSTM model (LSTM-WDCNN) performing slightly better on average across the domain
shifts considered in this scenario. It is only in the domain shift from dataset C to dataset B where
a different recurrent architecture (the LSTM pathway with attention—ALSTM-WDCNN) performs
significantly better. For the rest of the experiments in this section, we therefore, use the LSTM-based
recurrent pathway in the RNN-WDCNN framework.

Figure 8 shows a comparison between the accuracy of the proposed RNN-WDCNN model,
two state-of-the-art deep learning-based models (WDCNN and SRDCNN), and two FFT based methods
(FFT-MLP and FFT-SVM) in this scenario. Tables 6–8 also present performance data for the precision,
recall, and F1 score metrics (respectively) for this domain adaptation scenario. Figure 8 and Tables 6–8
show that all three deep learning-based models generally perform well in adapting to small changes in

https://github.com/al3xsh/rolling-element-bearing-fault-detection
https://github.com/al3xsh/rolling-element-bearing-fault-detection


Sensors 2020, 20, 5112 12 of 24

operating conditions (i.e., when the source domain and target domain are reasonably similar); however,
as the operating conditions of the two domains become further apart the proposed RNN-WDCNN
model can be seen to outperform the other models tested. It can also be seen from Figure 8 and
Tables 6–8 that the FFT based models generally struggle to adapt to different working domains,
with their overall performance significantly worse than the deep learning-based models.

Figure 7. Domain adaptation accuracy comparison between the different recurrent pathways in
recurrent neural network with a wide first kernel and deep convolutional neural network pathway
(RNN-WDCNN) for scenario 1 (best values are highlighted in bold).

Table 5. Arrangement of the data for domain adaptation scenario 1.

Training Domain (Labeled Data) Target Domains (Unlabeled Data)

Dataset A Dataset B & Dataset C
Dataset B Dataset A & Dataset C
Dataset C Dataset A & Dataset B

Figure 9 shows the confusion plots for the proposed RNN-WDCNN model when tested
under different operating characteristics from those on which it was trained. It can be seen from



Sensors 2020, 20, 5112 13 of 24

these results that the key problematic dataset for domain adaptation is dataset A—with the
RNN-WDCNN model frequently mistaking minor rolling element damage in dataset A (fault B007)
for moderate outer raceway damage (fault OR014) when trained with either dataset B or C. However,
Smith and Randall [48] have shown that many of the rolling element faults in the Case Western Reserve
University Bearing Fault data also exhibit signs of inner and outer raceway faults when analyzed
using conventional methods, with the vibration signatures of these other faults often overwhelming
the rolling element fault vibration signature. The combination of a shift in operating conditions and
the presence of an outer raceway fault, as well as the minor rolling element damage comprising the
target fault condition, could explain the classification of B007 as OR014.

Figure 8. Domain adaptation accuracy comparison between RNN-WDCNN and WDCNN,
state-of-the-art deep learning-based models (SRDCNN), and FFT-based methods for scenario 1
(best values are highlighted in bold).



Sensors 2020, 20, 5112 14 of 24

Figure 9. Confusion plots for the RNN-WDCNN model on the 6 different domain adaptation cases
considered in scenario 1.

Table 6. Precision scores of the models considered in this work (as a percentage) for the domain
adaptation task considered in scenario 1 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A to B 100.00 (± 0.00) 99.89 (± 0.07) 97.89 (± 0.34) 94.97 (± 0.24) 90.07 (± 0.60)
A to C 99.25 (± 0.72) 97.86 (± 1.01) 88.66 (± 4.66) 81.90 (± 1.02) 79.29 (± 0.63)
B to A 95.92 (± 0.48) 95.34 (± 0.33) 96.32 (± 0.65) 95.63 (± 0.62) 94.69 (± 0.24)
B to C 99.92 (± 0.09) 99.85 (± 0.09) 97.71 (± 1.95) 87.59 (± 0.73) 89.68 (± 0.44)
C to A 83.46 (± 1.29) 80.41 (± 1.77) 77.03 (± 6.51) 75.86 (± 1.24) 78.95 (± 0.64)
C to B 99.17 (± 1.09) 96.24 (± 1.06) 93.17 (± 6.03) 85.27 (± 0.61) 83.12 (± 0.49)

Average 96.29 (± 0.61) 94.93 (± 0.72) 91.80 (± 3.36) 86.87 (± 0.74) 85.97 (± 0.51)



Sensors 2020, 20, 5112 15 of 24

Table 7. Recall scores of the models considered in this work (as a percentage) for the domain adaptation
task considered in scenario 1 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A to B 100.00 (± 0.00) 99.89 (± 0.08) 97.66 (± 0.37) 94.88 (± 0.25) 90.00 (± 0.56)
A to C 99.17 (± 0.86) 97.41 (± 1.45) 85.53 (± 5.10) 82.06 (± 1.15) 79.06 (± 0.76)
B to A 93.00 (± 1.40) 91.31 (± 1.18) 94.19 (± 1.47) 95.64 (± 0.59) 94.09 (± 0.31)
B to C 99.92 (± 0.09) 99.85 (± 0.09) 97.26 (± 2.66) 87.27 (± 0.79) 89.49 (± 0.49)
C to A 86.16 (± 3.22) 77.27 (± 2.47) 78.67 (± 5.31) 80.80 (± 1.10) 81.24 (± 0.30)
C to B 98.94 (± 1.51) 94.94 (± 2.10) 92.65 (± 4.16) 85.90 (± 0.42) 83.89 (± 0.32)

Average 96.20 (± 1.18) 93.45 (± 1.23) 90.99 (± 3.18) 87.76 (± 0.72) 86.29 (± 0.46)

Table 8. F1 scores of the models considered in this work (as a percentage) for the domain adaptation
task considered in scenario 1 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A to B 100.00 (± 0.00) 99.89 (± 0.08) 97.64 (± 0.38) 94.86 (± 0.25) 89.98 (± 0.55)
A to C 99.16 (± 0.88) 97.35 (± 1.53) 83.92 (± 5.92) 81.56 (± 1.12) 78.68 (± 0.83)
B to A 91.87 (± 2.12) 89.51 (± 1.75) 93.56 (± 1.95) 95.60 (± 0.61) 94.14 (± 0.32)
B to C 99.92 (± 0.09) 99.85 (± 0.09) 97.18 (± 2.79) 86.91 (± 0.82) 89.16 (± 0.50)
C to A 82.97 (± 3.28) 72.74 (± 3.09) 74.40 (± 6.79) 77.42 (± 1.07) 78.66 (± 0.31)
C to B 98.91 (± 1.57) 94.75 (± 2.42) 90.89 (± 5.69) 82.55 (± 0.38) 82.19 (± 0.38)

Average 95.47 (± 1.32) 92.35 (± 1.49) 89.60 (± 3.92) 86.48 (± 0.71) 85.47 (± 0.48)

4.2.2. Scenario 2: Multiple Source Domains to a Single Target Domain

As can be seen from the results presented in Section 4.2.1, although the proposed RNN-WDCNN
model performs extremely well when the operating conditions of the source and target domains are
similar, the performance suffers somewhat when the operating conditions of the two domains are
further apart. In particular, as shown in the confusion plots in Figure 9, this domain shift can act to
hinder classification when there are potential additional undiagnosed fault conditions. Following the
approach in Zhang et al. [37], this scenario considers the case where labeled fault data from multiple
operating conditions is available. In this case, the model can be trained using data acquired under
these multiple operating conditions to provide a more robust fault diagnosis system. Table 9 shows
the arrangement of the data in the scenario considered in this section, with Figure 10 and Tables 10–12
showing the results of these experiments.

Table 9. Arrangement of the data for domain adaptation scenario 2.

Training Domains (Labeled Data) Target Domain (Unlabeled Data)

Dataset A & Dataset B Dataset C
Dataset A & Dataset C Dataset B
Dataset B & Dataset C Dataset A

As shown in Figure 10 and Tables 10–12, the use of training data from multiple operating
conditions significantly improves the performance of all the algorithms tested in this scenario in terms
of accuracy, precision, recall, and F1 score. This combination of multiple source domains for training
has the greatest impact on the success of identifying fault conditions in the unseen dataset A, where all
algorithms now achieve greater than 90% accuracy and four of the tested architectures achieve greater
than 95% accuracy, with the FFT based models performing particularly well in this domain adaptation
case. Overall in this scenario, RNN-WDCNN and WDCNN perform best of all the algorithms tested
(with no significant difference between the overall performance of the two algorithms).



Sensors 2020, 20, 5112 16 of 24

Figure 10. Domain adaptation accuracy comparison between RNN-WDCNN and WDCNN, SRDCNN,
and FFT-based methods for scenario 2 (best values are highlighted in bold).

Table 10. Precision scores of the models considered in this work (as a percentage) for the domain
adaptation task considered in scenario 2 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A and B to C 99.89 (± 0.13) 99.69 (± 0.12) 96.95 (± 3.46) 89.54 (± 0.59) 88.84 (± 0.31)
A and C to B 100.00 (± 0.00) 99.92 (± 0.05) 99.77 (± 0.06) 97.39 (± 0.54) 93.52 (± 0.58)
B and C to A 97.18 (± 1.48) 97.05 (± 0.84) 91.44 (± 5.64) 96.92 (± 0.38) 94.71 (± 0.35)

Average 99.02 (± 0.54) 98.89 (± 0.34) 96.05 (± 3.05) 94.61 (± 0.51) 92.35 (± 0.41)

Table 11. Recall scores of the models considered in this work (as a percentage) for the domain
adaptation task considered in scenario 2 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A and B to C 99.89 (± 0.13) 99.68 (± 0.12) 95.70 (± 5.52) 89.47 (± 0.57) 88.92 (± 0.33)
A and C to B 100.00 (± 0.00) 99.92 (± 0.05) 99.76 (± 0.06) 97.30 (± 0.61) 93.30 (± 0.63)
B and C to A 95.53 (± 2.89) 95.62 (± 1.80) 91.51 (± 2.33) 96.78 (± 0.41) 94.25 (± 0.34)

Average 98.47 (± 1.01) 98.41 (± 0.66) 95.66 (± 2.64) 94.52 (± 0.53) 92.16 (± 0.43)

Table 12. F1 scores of the models considered in this work (as a percentage) for the domain adaptation
task considered in scenario 2 (best values are highlighted in bold).

Domain Shift RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

A and B to C 99.89 (± 0.13) 99.68 (± 0.12) 95.24 (± 6.40) 88.99 (± 0.63) 88.60 (± 0.31)
A and C to B 100.00 (± 0.00) 99.92 (± 0.05) 99.76 (± 0.06) 97.30 (± 0.61) 93.20 (± 0.68)
B and C to A 94.98 (± 3.56) 95.28 (± 2.20) 89.22 (± 3.61) 96.80 (± 0.41) 94.22 (± 0.37)

Average 98.29 (± 1.23) 98.29 (± 0.79) 94.74 (± 3.36) 94.36 (± 0.55) 92.01 (± 0.46)



Sensors 2020, 20, 5112 17 of 24

Figure 11 shows two of the confusion plots for the proposed RNN-WDCNN model in this
domain adaptation scenario (the case of unseen dataset B is omitted, since RNN-WDCNN obtains
100% accuracy under these conditions). It can be seen that, although the use of data from multiple
operating conditions significantly improves the classification performance (particularly with respect to
the classification of severe rolling elements faults—fault B021), in the more difficult case (training on
datasets B and C and testing on unseen dataset A) RNN-WDCNN still often mistakes minor rolling
element damage in dataset A (fault B007) for moderate outer raceway damage (fault OR014). This lends
weight to the hypothesis that the data for minor rolling element damage under 1 hp load in the CWRU
dataset also contains an undiagnosed outer raceway fault (as discussed in Section 4.2.1, above).

Figure 11. Confusion plots for the RNN-WDCNN model on the two of the domain adaptation cases
considered in scenario 2.

4.3. Performance under Varying Amounts of Noise

In this section, the robustness of the proposed RNN-WDCNN model to noisy environments is
investigated. Under real-world industrial operation, there are often many sources of electronic noise
(such as complex wiring runs, brushed DC motors, and high speed switching transients), and so an
effective data-driven intelligent fault diagnosis platform must be able to operate accurately under
these noisy conditions.

In this scenario, 50% of the data for each set of operating conditions is held back and used to
create an unseen test set. The models are then trained on the remaining 50% of the data (with sliding
window data augmentation used to artificially increase the number of samples available for training).
Once the model is trained, it is then tested under noisy conditions using the data from the test set
with varying amounts of Gaussian white noise added to the signals to obtain signals with different
signal-to-noise ratios (from −4 dB to 10 dB). The signal-to-noise ratio (SNR) is defined as:

SNRdB = 10 log10

(Psignal

Pnoise

)
, (7)

where Psignal and Pnoise are the power of the signal and the power of the noise, respectively.
As in the domain adaptation experiments in Section 4.2, firstly the performance of the different

recurrent pathways in the presence of noise is investigated. Figure 12 shows that the performance
is again similar; however, the LSTM model performs slightly better than the other architectures in
the presence of larger amounts of noise. The LSTM based recurrent pathway is therefore used in the
RNN-WDCNN framework for the rest of the experiments in this section.



Sensors 2020, 20, 5112 18 of 24

Figure 12. Noise rejection accuracy comparison between the different recurrent pathways in
RNN-WDCNN (best values are highlighted in bold).

Figure 13 and Tables 13–15 show a comparison of the noise rejection performance between the
proposed RNN-WDCNN model, the two state-of-the-art deep learning-based models (WDCNN and
SRDCNN), and the two FFT based methods (FFT-MLP and FFT-SVM). It can clearly be seen that,
under small amounts of noise, all the algorithms perform well (with better than 90% accuracy when
the signal-to-noise ratio is 4 dB or greater). However, as the noise level increases, RNN-WDCNN
significantly outperforms the other algorithms—achieving better than 98% accuracy at a signal-to-noise
ratio of −4 dB.

Figure 14 shows the confusion plot for the proposed RNN-WDCNN model under the most
severe noise conditions considered in this experiment (i.e., when the SNR is equal to −4 dB). It can be
seen from Figure 14 that the largest effect of the introduction of noise on the classification accuracy
of RNN-WDCNN is in the consideration of rolling element faults. This may be partly because,
as Smith and Randall [48] have shown (and as discussed in Section 4.2.1 above), many of the rolling
element faults in the CWRU Bearing Fault data also exhibit signs of inner and outer raceway faults and



Sensors 2020, 20, 5112 19 of 24

the addition of noise may act to obscure the true fault condition. However, even under this severe noise
condition, the classification accuracy of RNN-WDCNN is excellent (with greater than 98% accuracy).

Figure 13. Noise rejection accuracy comparison between RNN-WDCNN and WDCNN, SRDCNN,
and FFT based methods (best values are highlighted in bold).

Table 13. Precision scores of the models considered in this work (as a percentage) for noise rejection
performance (best values are highlighted in bold).

SNR RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

Average 99.80 (± 0.14) 96.81 (± 1.15) 78.56 (± 3.96) 92.13 (± 0.30) 90.89 (± 0.33)

None 100.00 (± 0.00) 100.00 (± 0.01) 100.00 (± 0.00) 99.63 (± 0.08) 99.51 (± 0.10)
10 dB 100.00 (± 0.00) 100.00 (± 0.01) 99.88 (± 0.06) 99.30 (± 0.11) 98.12 (± 0.22)
8 dB 100.00 (± 0.00) 99.99 (± 0.01) 99.68 (± 0.16) 98.72 (± 0.18) 97.95 (± 0.11)
6 dB 100.00 (± 0.00) 99.99 (± 0.02) 98.44 (± 1.14) 98.29 (± 0.27) 97.13 (± 0.29)
4 dB 100.00 (± 0.00) 99.90 (± 0.07) 94.06 (± 2.50) 96.36 (± 0.31) 95.57 (± 0.39)
2 dB 100.00 (± 0.00) 98.92 (± 0.52) 81.53 (± 7.57) 94.37 (± 0.32) 93.57 (± 0.37)
0 dB 99.96 (± 0.06) 95.56 (± 1.72) 63.90 (± 7.09) 88.83 (± 0.35) 86.96 (± 0.41)

−2 dB 99.68 (± 0.24) 91.55 (± 2.37) 48.11 (± 7.06) 81.56 (± 0.47) 79.79 (± 0.43)
−4 dB 98.60 (± 0.92) 85.41 (± 5.61) 21.44 (± 10.05) 72.09 (± 0.56) 69.40 (± 0.64)



Sensors 2020, 20, 5112 20 of 24

Table 14. Recall scores of the models considered in this work (as a percentage) for noise rejection
performance (best values are highlighted in bold).

SNR RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

Average 99.79 (± 0.16) 94.09 (± 1.85) 76.30 (± 3.32) 90.92 (± 0.35) 89.84 (± 0.38)

None 100.00 (± 0.00) 100.00 (± 0.01) 100.00 (± 0.00) 99.63 (± 0.08) 99.51 (± 0.10)
10 dB 100.00 (± 0.00) 100.00 (± 0.01) 99.88 (± 0.06) 99.27 (± 0.13) 98.09 (± 0.23)
8 dB 100.00 (± 0.00) 99.99 (± 0.01) 99.67 (± 0.16) 98.68 (± 0.19) 97.91 (± 0.12)
6 dB 100.00 (± 0.00) 99.99 (± 0.02) 98.15 (± 1.59) 98.20 (± 0.31) 97.07 (± 0.32)
4 dB 100.00 (± 0.00) 99.90 (± 0.07) 90.86 (± 5.19) 96.09 (± 0.38) 95.35 (± 0.43)
2 dB 100.00 (± 0.00) 98.82 (± 0.62) 77.59 (± 5.01) 93.88 (± 0.39) 92.92 (± 0.45)
0 dB 99.96 (± 0.06) 93.94 (± 2.77) 60.59 (± 5.91) 87.27 (± 0.53) 84.91 (± 0.74)

−2 dB 99.67 (± 0.25) 84.61 (± 5.01) 37.66 (± 6.05) 77.03 (± 0.60) 76.64 (± 0.55)
−4 dB 98.45 (± 1.13) 69.59 (± 8.11) 22.31 (± 5.90) 68.20 (± 0.49) 66.17 (± 0.44)

Table 15. F1 scores of the models considered in this work (as a percentage) for noise rejection
performance (best values are highlighted in bold).

SNR RNN-WDCNN WDCNN SRDCNN FFT-SVM FFT-MLP

Average 99.79 (± 0.16) 93.63 (± 1.98) 73.29 (± 3.79) 90.71 (± 0.36) 89.62 (± 0.38)

None 100.00 (± 0.00) 100.00 (± 0.01) 100.00 (± 0.00) 99.63 (± 0.08) 99.51 (± 0.10)
10 dB 100.00 (± 0.00) 100.00 (± 0.01) 99.88 (± 0.06) 99.26 (± 0.13) 98.09 (± 0.23)
8 dB 100.00 (± 0.00) 99.99 (± 0.01) 99.67 (± 0.17) 98.68 (± 0.19) 97.91 (± 0.12)
6 dB 100.00 (± 0.00) 99.99 (± 0.02) 98.14 (± 1.61) 98.21 (± 0.31) 97.08 (± 0.31)
4 dB 100.00 (± 0.00) 99.90 (± 0.07) 89.65 (± 6.64) 96.10 (± 0.38) 95.37 (± 0.43)
2 dB 100.00 (± 0.00) 98.81 (± 0.63) 73.43 (± 6.41) 93.93 (± 0.38) 92.95 (± 0.45)
0 dB 99.96 (± 0.06) 93.67 (± 2.92) 54.68 (± 6.94) 87.29 (± 0.51) 84.86 (± 0.72)

−2 dB 99.67 (± 0.25) 82.66 (± 6.18) 30.03 (± 6.42) 76.46 (± 0.70) 75.91 (± 0.62)
−4 dB 98.45 (± 1.11) 67.70 (± 7.94) 14.12 (± 5.84) 66.84 (± 0.59) 64.89 (± 0.47)

Figure 14. Confusion plot for the RNN-WDCNN model in the case of severe additive noise
(SNR −4 dB).

4.4. Inference and Training Time Costs

A key consideration of any fault diagnosis method is the time cost required to produce a
classification result. In this section, we consider both the time needed to train each of the models
considered in Sections 4.2 and 4.3 and the inference time of each model (i.e., the time needed to classify
a single sequence using a trained model). Table 16 shows the average training time (in seconds) for
each model on each of the three scenarios considered in Sections 4.2.1, 4.2.2 and 4.3, and the average
inference time (in milliseconds) for a single 4096 sample sequence. The training times presented in this



Sensors 2020, 20, 5112 21 of 24

section are averaged over 10 independent runs for each algorithm. The six deep learning algorithms
considered in this paper are trained for 25 epochs using the cyclical learning rate strategy described in
Section 3.2 (which experiments showed resulted in all six models converging). The two FFT-based
methods were trained until convergence by monitoring the improvement in loss value and stopping
once no further improvement could be seen. The inference time for each model was measured whilst
processing a single sample at a time and averaged over 100,000 vibration sequences. This inference
time is the same for each of the different scenarios considered in this paper because the sequence
length remains the same. Note that, for the FFT based methods, this inference time includes the time
taken to extract the FFT features. All models were trained and executed on a PC with Intel i7-7700
CPU, 32 GB of RAM, and nVidia GeForce GTX 1070 GPU.

As shown by Table 16, although the deep learning methods generally take much longer to train
than the FFT-based machine learning methods in each of the scenarios considered, the inference times
of the deep learning methods are significantly shorter. This is because the deep learning methods
operate directly on the raw temporal vibration signals rather than requiring a time-consuming feature
extraction step. The fastest method in terms of inference time is WDCNN (taking 1.56 ms to process a
single vibration sequence) but the proposed RNN-WDCNN algorithm without attention still performs
well (taking 3.53 ms to process a single vibration sequence using the LSTM variant). In the real-world
deployment of an intelligent fault diagnosis system, it is the inference time of the algorithm that is
the most important timing metric. This is because the training of the model is a one time cost and
can be done offline, whereas the classification of a sequence must be done continuously and in an
online fashion. In the dataset considered in this work, each 4096 element vibration sequence represents
85 ms of data (with the data acquired at 48 kHz). With an inference time of 3.53 ms, this would allow
the proposed RNN-WDCNN intelligent fault diagnosis system to process the vibration data online
in real-time.

Table 16. Time costs for training and inference of the models considered in this work (best values are
highlighted in bold). Note that the top four models in this table are the variants of RNN-WDCNN
considered in the initial experiments in Sections 4.2 and 4.3.

Training Times (s) Inference Times (ms)

Domain Adaptation Scenario 1 Domain Adaptation Scenario 2 Noise Rejection Scenario Single Sequence

LSTM-WDCNN 3189 (± 8.97) 6389 (± 17.56) 4874 (± 10.54) 3.53 (± 1.56)
GRU-WDCNN 3266 (± 7.01) 6554 (± 8.31) 4970 (± 11.62) 3.94 (± 1.04)
ALSTM-WDCNN 6792 (± 10.37) 13594 (± 18.66) 10296 (± 13.29) 6.42 (± 1.60)
AGRU-WDCNN 5700 (± 13.71) 11389 (± 36.27) 8685 (± 21.86) 5.60 (± 1.37)

WDCNN 1144 (± 8.36) 2228 (± 7.05) 1747 (± 6.40) 1.56 (± 0.76)
SRDCNN 5274 (± 26.39) 10501 (± 11.92) 7978 (± 8.77) 2.21 (± 0.48)
FFT-SVM 547 (± 2.69) 1091 (± 1.18) 930 (± 1.64) 10.06 (± 0.34)
FFT-MLP 529 (± 1.53) 1030 (± 3.55) 890 (± 5.98) 10.21 (± 0.26)

5. Conclusions and Further Work

The key contribution of this work is the development of an intelligent fault diagnosis framework
capable of operating in real-time on unprocessed sensor signals to allow early detection of impending
failures under variable load conditions. The proposed novel dual-path deep learning model obtains
state-of-the-art classification performance, while also addressing many of the problems with existing
intelligent data-driven fault diagnosis techniques such as being able to operate on raw time series
data (with no need for complex feature engineering) and robustness to noise and changes in operating
conditions. The novel dual-path model proposed in this work outperforms current-state-of-the-art
methods both using data from shifted domains (i.e., when the testing data is acquired under different
operating conditions from those under which the model was trained) and using data acquired under
noisy conditions. The proposed model also performs well in terms of inference time, being able to
classify input sequences faster than conventional FFT based methods.



Sensors 2020, 20, 5112 22 of 24

The experiments conducted in this paper on the Case Western Reserve University Bearing Center
dataset have shown that our proposed novel dual-path model outperforms several conventional
classifiers and current state-of-the-art algorithms. Surprisingly, the inclusion of attention in the
recurrent pathway of the RNN-WDCNN model did not make a significant difference to the
performance of our model in either shifted domains or under noisy conditions. This may be because,
although the attention mechanism helps to capture widely spaced dependencies, these widely spaced
features do not transfer well between domains. Further work is planned to perform more detailed
studies into the effects of the individual elements of our model, including looking at the performance
of the model in different applications where domain shifts are less common.

Although the Case Western Reserve University Bearing Center dataset used in this study has
become the de facto benchmark for vibration-based bearing fault diagnosis, Smith and Randall [48]
have shown that it has several flaws (including undiagnosed fault conditions that can significantly
affect classification performance). In further work, we would like to test our fault diagnosis framework
on a wider range of data—including real-world fault conditions (rather than just artificial faults
induced using EDM). Another promising area for further work is the diagnosis of motor faults from
other signals (such as motor current signals or torque data) rather than vibration data as these can
often be acquired directly from the programmable logic controller (PLC) rather than requiring the
installation of additional sensors.

Author Contributions: Conceptualization, A.S.; methodology, A.S.; investigation, A.S.; writing—original draft,
A.S.; writing—review and editing, A.S. and M.H.; funding acquisition, M.H.; resources, A.S. and M.H.; supervision,
M.H. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to acknowledge the financial support of UKRI and the Newton AgriTech
Challenge under grant number BB/S020993/1.

Acknowledgments: The authors gratefully acknowledge support from Google under the GCP research
credits program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Motor Reliability Working Group. Report of Large Motor Reliability Survey of Industrial and Commercial
Installations, Part I. IEEE Trans. Ind. Appl. 1985, IA-21, 853–864.

2. Thorsen, O.; Dalva, M. A survey of faults on induction motors in offshore oil industry, petrochemical
industry, gas terminals, and oil refineries. IEEE Trans. Ind. Appl. 1995, 31, 1186–1196. [CrossRef]

3. Bonnett, A.H.; Yung, C. Increased Efficiency Versus Increased Reliability. IEEE Ind. Appl. Mag. 2008,
14, 29–36. [CrossRef]

4. McFadden, P.D.; Smith, J.D. Model for the vibration produced by a single point defect in a rolling element
bearing. J. Sound Vib. 1984, 96, 69–82. [CrossRef]

5. Hochmann, D.; Bechhoefer, E. Envelope bearing analysis: Theory and practice. In Proceedings of the 2005
IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 3658–3666.

6. Samanta, B.; Al-Balushi, K.R.; Al-Araimi, S.A. Artificial neural networks and support vector machines with
genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 2003, 16, 657–665. [CrossRef]

7. Fernández-Francos, D.; Martínez-Rego, D.; Fontenla-Romero, O.; Alonso-Betanzos, A. Automatic bearing
fault diagnosis based on one-class v-SVM. Comput. Ind. Eng. 2013, 64, 357–365. [CrossRef]

8. Saidi, L.; Ben Ali, J.; Fnaiech, F. Application of higher order spectral features and support vector machines
for bearing faults classification. ISA Trans. 2015, 54, 193–206. [CrossRef]

9. Senanayaka, J.S.L.; Kandukuri, S.T.; Khang, H.V.; Robbersmyr, K.G. Early detection and classification
of bearing faults using support vector machine algorithm. In Proceedings of the 2017 IEEE Workshop
on Electrical Machines Design, Control and Diagnosis (WEMDCD), Nottingham, UK, 20–21 April 2017;
pp. 250–255.

10. Tian, J.; Morillo, C.; Azarian, M.H.; Pecht, M. Motor Bearing Fault Detection Using Spectral Kurtosis-Based
Feature Extraction Coupled with K-Nearest Neighbor Distance Analysis. IEEE Trans. Ind. Electron. 2016,
63, 1793–1803. [CrossRef]

http://dx.doi.org/10.1109/28.464536
http://dx.doi.org/10.1109/MIA.2007.909802
http://dx.doi.org/10.1016/0022-460X(84)90595-9
http://dx.doi.org/10.1016/j.engappai.2003.09.006
http://dx.doi.org/10.1016/j.cie.2012.10.013
http://dx.doi.org/10.1016/j.isatra.2014.08.007
http://dx.doi.org/10.1109/TIE.2015.2509913


Sensors 2020, 20, 5112 23 of 24

11. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of
residual connections on learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017.

12. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. In Proceedings
of the 6th International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada,
30 April–3 May 2018.

13. Shenfield, A. Rolling Element Bearing Fault Detection Using Deep Learning. 2020. Available online:
https://github.com/al3xsh/rolling-element-bearing-fault-detection (accessed on 3 September 2020).

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

15. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

17. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning.
In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017;
pp. 1243–1252.

18. Gehring, J.; Auli, M.; Grangier, D.; Dauphin, Y. A convolutional encoder model for neural machine translation.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017; pp. 123–135.

19. Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y. Very deep convolutional networks for text classification.
In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), Valencia, Spain, 3–7 April 2017; pp. 1107–1116.

20. Johnson, R.; Zhang, T. Deep pyramid convolutional neural networks for text categorization. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Vancouver, BC, Canada, 30 July–4 August 2017; pp. 562–570.

21. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks
for Sequence Modeling. arXiv 2018, arXiv:1803.01271.

22. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 1994, 5, 157–166. [CrossRef] [PubMed]

23. Hochreiter, S.; Schmidhuber, J. Long-Short Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

24. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput.
2000, 12, 2451–2471. [CrossRef] [PubMed]

25. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014,
arXiv:1406.1078.

26. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv 2014, arXiv:1412.3555.

27. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 2342–2350.

28. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey.
IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef]

29. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA,
USA, 7–9 May 2015.

30. Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to
bearing fault diagnosis. Measurement 2016, 93, 490–502. [CrossRef]

31. Lu, C.; Wang, Z.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional
network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [CrossRef]

https://github.com/al3xsh/rolling-element-bearing-fault-detection
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1016/j.measurement.2016.07.054
http://dx.doi.org/10.1016/j.aei.2017.02.005


Sensors 2020, 20, 5112 24 of 24

32. Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors
and Convolutional Neural Networks. IEEE/ASME Trans. Mechatron. 2018, 23, 101–110. [CrossRef]

33. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis
Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

34. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

35. Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good
Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [CrossRef]

36. Zhuang, Z.; Lv, H.; Xu, J.; Huang, Z.; Qin, W. A Deep Learning Method for Bearing Fault Diagnosis through
Stacked Residual Dilated Convolutions. Appl. Sci. 2019, 9, 1823. [CrossRef]

37. Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited Data Rolling Bearing Fault Diagnosis with
Few-Shot Learning. IEEE Access 2019, 7, 110895–110904. [CrossRef]

38. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series
Classification. IEEE Access 2018, 6, 1662–1669. [CrossRef]

39. Karim, F.; Majumdar, S.; Darabi, H. Insights into LSTM Fully Convolutional Networks for Time Series
Classification. IEEE Access 2019, 7, 67718–67725. [CrossRef]

40. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 448–456.

41. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy,
13–15 May 2010; pp. 249–256.

42. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 27–29 March
2017; pp. 464–472.

43. Keskar, N.S.; Nocedal, J.; Tang, P.T.P.; Mudigere, D.; Smelyanskiy, M. On large-batch training for deep
learning: Generalization gap and sharp minima. In Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017.

44. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016; pp. 1050–1059.

45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Case Western Reserve University Bearing Data Center. Case Western Reserve University Bearing Data
Center Website. Available online: https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-
western-reserve-university-bearing-data-center-website (accessed on 26 May 2020).

47. Lou, X.; Loparo, K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst.
Signal Process. 2004, 18, 1077–1095. [CrossRef]

48. Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University
data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [CrossRef]

49. Yuwono, M.; Qin, Y.; Zhou, J.; Guo, Y.; Celler, B.G.; Su, S.W. Automatic bearing fault diagnosis using particle
swarm clustering and Hidden Markov Model. Eng. Appl. Artif. Intell. 2016, 47, 88–100. [CrossRef]

50. Nayana, B.R.; Geethanjali, P. Analysis of statistical time-domain feature effectiveness in identification of
bearing faults from vibration signal. IEEE Sens. J. 2017, 17, 5618–5625. [CrossRef]

51. Chollet, F. Keras. 2015. Available online: https://keras.io/ (accessed on 27 May 2020).
52. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available
online: https://www.tensorflow.org/ (accessed on 26 May 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMECH.2017.2728371
http://dx.doi.org/10.1109/TIE.2017.2774777
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/s17020425
http://dx.doi.org/10.3390/app9091823
http://dx.doi.org/10.1109/ACCESS.2019.2934233
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1109/ACCESS.2019.2916828
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://dx.doi.org/10.1016/S0888-3270(03)00077-3
http://dx.doi.org/10.1016/j.ymssp.2015.04.021
http://dx.doi.org/10.1016/j.engappai.2015.03.007
http://dx.doi.org/10.1109/JSEN.2017.2727638
https://keras.io/
https://www.tensorflow.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Convolutional Neural Networks
	Recurrent Neural Networks
	Deep Learning in Intelligent Data Driven Fault Diagnosis

	The RNN-WDCNN Model for Fault Diagnosis
	The RNN-WDCNN Model Architecture
	Training the RNN-WDCNN Model

	Experimental Results
	Data Description
	Performance under Different Working Loads
	Scenario 1: Single Source Domain to a Single Target Domain
	Scenario 2: Multiple Source Domains to a Single Target Domain

	Performance under Varying Amounts of Noise
	Inference and Training Time Costs

	Conclusions and Further Work
	References

