Skip to main content
. 2020 Sep 8;20(18):5112. doi: 10.3390/s20185112

Table 1.

Details of the proposed RNN-WDCNN model structure.

Convolutional Pathway
No. Layer Type Kernel Size Stride Number of Kernels
C1 1D Convolution 256 × 1 2 × 1 16
C2 Max Pooling 1D 2 × 1 2 × 1 16
C3 1D Convolution 3 × 1 2 × 1 32
C4 Max Pooling 1D 2 × 1 2 × 1 32
C5 1D Convolution 3 × 1 2 × 1 64
C6 Max Pooling 1D 2 × 1 2 × 1 64
C7 1D Convolution 3 × 1 2 × 1 64
C8 Max Pooling 1D 2 × 1 2 × 1 64
C9 1D Convolution 3 × 1 2 × 1 64
C10 Max Pooling 1D 2 × 1 2 × 1 64
C11 Fully connected 100 N/A 1
Recurrent Pathway
No. Layer Type Kernel Size Stride Number of Kernels
R1 1D Convolution 256 × 1 2 × 1 16
R2 Max Pooling 1D 2 × 1 2 × 1 16
R3 RNN block N/A N/A 128
Output
No. Layer Type Kernel Size Stride Number of Kernels
O1 Softmax 10 N/A 1