ﬂ SCNSors m\py

Article

Lightweight Driver Behavior Identification Model
with Sparse Learning on In-Vehicle CAN-BUS
Sensor Data

Shan Ullah and Deok-Hwan Kim *

Department of Electronic Engineering, Inha University, Incheon 22212, Korea; shan.ullah@iesl.inha.ac.kr
* Correspondence: deokhwan@inha.ac kr; Tel.: +82-(0)32-860-7424

check for
Received: 15 July 2020; Accepted: 31 August 2020; Published: 4 September 2020 updates

Abstract: This study focuses on driver-behavior identification and its application to finding
embedded solutions in a connected car environment. We present a lightweight, end-to-end
deep-learning framework for performing driver-behavior identification using in-vehicle controller
area network (CAN-BUS) sensor data. The proposed method outperforms the state-of-the-art
driver-behavior profiling models. Particularly, it exhibits significantly reduced computations (i.e.,
reduced numbers both of floating-point operations and parameters), more efficient memory usage
(compact model size), and less inference time. The proposed architecture features depth-wise
convolution, along with augmented recurrent neural networks (long short-term memory or gated
recurrent unit), for time-series classification. The minimum time-step length (window size) required
in the proposed method is significantly lower than that required by recent algorithms. We compared
our results with compressed versions of existing models by applying efficient channel pruning
on several layers of current models. Furthermore, our network can adapt to new classes using
sparse-learning techniques, that is, by freezing relatively strong nodes at the fully connected layer for
the existing classes and improving the weaker nodes by retraining them using data regarding the
new classes. We successfully deploy the proposed method in a container environment using NVIDIA
Docker in an embedded system (Xavier, TX2, and Nano) and comprehensively evaluate it with regard
to numerous performance metrics.

Keywords: driver-behavior identification; deep learning; Jetson Xavier; network pruning; sparse
learning; convolutional neural network (CNN); long short-term memory (LSTM); edge computing

1. Introduction

Over the years, machine-learning algorithms have revolutionized the human lifestyle.
Additionally, the continued evolution of hardware technologies (e.g., multi-core CPUs and GPUs in
compact devices) has increased the benefits of intelligent algorithms in terms of their deployment in
industries. During the past decades, the automobile industry has accelerated toward the future vehicle
technology, making cars smarter and more connected than before. In addition to advanced mechanical
components, modern vehicles are replete with multiple embedded computers that are responsible for
vehicle control, safety features, and infotainment. The connectivity of cars via Wifi and 3G /4G wireless
communication, as well as the intelligent embedded systems inside cars, has opened opportunities for
employing cloud-based services and edge computing in automobiles. In a connected car environment,
the driver can access his/her car, which is further connected to the edge server that provides all
driving-related services. These services include insurance services [1,2] by awarding scores to the
drivers, providing traffic information, providing optimal route information [3] (based on fuel efficiency
and shortest distance), manufacturer services [4] (e.g., predictive vehicle maintenance), and monitoring

Sensors 2020, 20, 5030; d0i:10.3390/s20185030 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6048-9392
http://www.mdpi.com/1424-8220/20/18/5030?type=check_update&version=1
http://dx.doi.org/10.3390/s20185030
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5030 2 of 21

services. The increasing number of in-vehicle sensors and their connectivity with the driver and other
vehicles via edge and cloud for multiple services is increasing the comfort level of society. However,
the continuous connectivity of connected vehicles entails security concerns, rendering cars more
vulnerable to hacking and theft [5,6]. This has attracted the continuous attention of researchers toward
driver-behavior profiling for identifying [5,7,8] the driver for several other applications.

The behavior of a driver can be characterized by analyzing the unique features associated
with his/her driving skills and habits. The driving information is usually acquired using
in-vehicle sensors [9,10] or sometimes smartphone-based sensors [9,11]. The in-vehicle controller area
network-BUS (CAN-BUS) data include the information corresponding to the steering wheel, vehicle
speed, brake-pedal position, and so forth, and the smartphone sensor data include the information
related to speed, orientation, and acceleration. Recently, the in-vehicle CAN-BUS data have been
regarded as accurate and reliable for driver profiling [10]; moreover, they have been analyzed for driver
identification [5-8,12] and monitoring [9]. With the rapid development of the Internet-of-Vehicles
technology and the popularization of smart terminal devices such as onboard diagnostic (OBD) devices
(the OBD-II protocol provides data from the vehicle ECU), multi-dimensional CAN-BUS data can be
easily captured. Driving-behavior recognition is essentially a classification task based on in-vehicle
CAN-BUS data. The selection of key features and combinations thereof significantly affect the accuracy
of classification algorithms. During the past decades, several machine-learning algorithms have been
proposed for performing driver identification. With regard to deploying the corresponding algorithms,
one has multiple choices. One possible choice is smartphone applications, as smartphones can now
be fully integrated with vehicles owing to automotive operating systems such as Android Auto [13],
Automotive Grade Linux (AGL) [14], and Qnx Automotive OS [15]. However, in the case of mobile
edge computing, the connected car behaves like an IoT device; moreover, it can request the edge server
for services such as driver identification and several other driving-related services that are also offered
in other environments. In this study, we consider the mobile edge computing for a connected car
environment and focus on possible embedded solutions that can be deployed in edge server. Moreover,
we explore state-of-the-art deep-learning algorithms, namely, fully convolutional networks-LSTM
(FCN-LSTM) [8] and DeepConvRNN-Attention [7], for driver identification and its feasibility to be
implemented in embedded hardware. We evaluated each algorithm with regard to its advantages and
disadvantages. By addressing the issues and combining the merits of each algorithm, we propose a
lightweight deep-learning solution. We further assessed both the algorithms using network pruning,
which reduces the model size, thereby improving the performance of the driver-identification models.
However, network pruning can reduce the model size only to a certain extent. Therefore, our proposed
model outperforms even the compressed versions of existing algorithms. Additionally, with regard
to absorb a greater number of classes, we effectively applied sparse learning on the fully connected
layer of the proposed model, thereby achieving adaptability and further enhancing the identification
performance. Finally, we successfully deployed the optimized proposed deep-learning model on
NVIDIA docker to run them in a container environment using Jetson embedded platform (Xavier,
Tx2, Nano). This enabled the model to be run as an instance (container), and adjust more classes
incrementally using sparse learning, by multiple containers.

This paper deals with driver identification using the driver’s behavior data (in-vehicle sensors).
Considering the distinctive features of driver behavior, our objective is to identify the driver of a given
unseen driving data, using a lightweight deep learning model. To this end, we propose a complete
end-to-end framework for driver identification, containing a feature of tackling a more significant
number of classes by sparse learning. The following are the key contributions of this study:

o A lightweight deep-learning network is proposed for performing driver-behavior identification
using in-vehicle CAN-BUS sensor data. Our proposed architecture outperforms state-of-the-art
methods. Particularly, it exhibits higher accuracy, efficient memory usage, less computational
complexity (number of floating-point operations (FLOPs) and the number of parameters), which
improves the inference time.

Sensors 2020, 20, 5030 3of 21

e Our proposed architecture requires a shorter window size, such as 40 s, for driver identification,
compared with previous research, which required at least 60 s time-series data to perform
the classification.

o We study the impact of window size(number of time steps) and degree of overlap by sliding
window on accuracy and computational complexity, determining the optimal values for
our network.

e To further validate the effectiveness of our lightweight model, we also evaluated the current
research methods by applying channel pruning at different layers to make them lightweight.
We assess the optimal extent of pruning without significantly compromising the accuracy of
existing models. Nevertheless, the proposed solution obtains a more compact size compared to
that of existing methods by introducing depthwise convolutions. We presented a detail results in
terms of inference time and memory usage at Jetson embedded system (Xavier, TX2, and Nano).

e Forrobust testing of our proposed model, we introduce anomalous data at different time sequences
and finally apply anomaly detection method (one-class support vector machine). We presented a
comparison of robustness with existing algorithms.

e To sustain the lightweight model and adjust new classes without affecting the accuracy, we make
our proposed solution adaptable for new classes by developing a state-of-the-art sparse-learning
technique at the fully connected layer. Accordingly, we carefully select the relatively substantial
nodes for existing classes, freeze them, and re-train our network by improving the weaker nodes
to classify new classes. This ensures that a high accuracy is sustained for existing classes, thereby
providing room to adjust new classes without affecting the network size.

o We deployed the proposed algorithm equipped with sparse learning in the container environment
of NVIDIA-Docker using the Jetson platform (Xavier, Tx2, and Nano). In this regard, our
proposed model acts like active instance (container) and supports incremental learning to absorb
a greater number of classes. This makes our model favorable candidate to deploy in real-time
conditions (container is a virtualization method gradually becoming a base environment for edge
computing applications).

2. Related Work

Driver-behavior profiling using driving information is an emerging trend in multiple markets,
including user-based insurance and traffic safety and monitoring. It is a prolific research area with
an ample number of studies. In this section, we describe the existing studies based on three primary
categories: data source, machine-learning models, and applied platform.

2.1. Data Source

Driving information can be captured using several different sources, which mainly include
in-vehicle sensors and smartphone sensors. In References [5-8,10,12], the authors utilized CAN-Bus
data for driver identification. The car sensors communicated via CAN-BUS (OBD-II protocol),
and the CAN-Bus data could be acquired using the OBD-II adapter. The in-vehicle sensor data
included parameters related to the engine (e.g., engine coolant temperature and friction torque),
fuel (e.g., long-term fuel trim bank and fuel consumption), and transmission (e.g., wheel velocity and
transmission oil temperature). Similarly, in other studies [11,16,17], the authors used smartphone
sensor data for driver-behavior profiling and many other applications [9]. Smartphones are equipped
with sensors including GPS sensors, accelerometers, magnetometers, and gyroscopes, all of which can
provide information regarding speed, acceleration, rotational speed , and several other combinations of
parameters used for driver profiling. However, some researchers are emphasizing a hybrid approach
based on combining vision (camera) and other sensors (LiDAR, GPS, IMU, etc.) for learning driver
behavior [18-20] under complex situations such as those entailing goal-oriented action, stimulus-driven
action, and cause-attention (e.g., stop a vehicle to let a pedestrian pass (cause) and analyze how the
driver attends the situation (attention)). For the driver monitoring applications, several researchers

Sensors 2020, 20, 5030 4 of 21

have utilized camera video/image only [21,22]. Some other works employed physiological sensor
data from bio-signals to identify a distracted driver [23]. Among the data obtained from different
data sources, CAN-BUS data are the most reliable, feasible, and widely used for driver-behavior
profiling [10]. The security dataset [5] provides up to 51 features captured using the CAN-BUS data;
furthermore, it has been used by several researchers for driver identification [7,8]. In this study,
we have used the same security dataset for driver identification.

2.2. Machine-Learning Models

Studies that focused on the modeling of individual driver behaviors used many state-of-the-art
machine-learning models. These include statistical classification algorithms such as decision trees,
random forests, k-nearest neighbors [5], hidden Markov model [24], Gaussian mixture models [25],
k-means clustering [10,26], and support vector machines [26]. However, most of them suffered
from various shortcomings, such as data dependency and the limitation of working under specific
conditions only, which were overcome by the robust nature of deep-learning algorithms [7], which offer
a significant advantage with regard to feature learning. Driver recognition using sensor data can be
considered as time-series classification problem as scalar data from vehicle sensor contains temporal
information in sequential manner. Therefore, deep learning frameworks for time-series classification
can be explored, which are as follows.

2.2.1. CNN-RNN Architectures

Standard convolutional neural network (CNN) layers have shown promising results for extracting
dense spatial features from data such as 2D images [27] . Recurrent neural networks (RNNs) are
widely used for sequential-data processing, such as natural-language processing, and other time-series
processing problems, to learn temporal dependencies [28]. Over the past few years, CNNs have been
employed as powerful techniques to apply at a temporal dimension of the sensor data, along with
pooling operations for human-activity recognition [29] by using multivariate time-series data. Similarly,
multi-scale CNNs [30], and fully convolutional networks (FCN) [31] are used for end-to-end, univariate
time-series classification. However, for more promising temporal feature extraction, the combination
of CNNs and RNNSs has offered remarkable results, such as wearable activity recognition [29], defect
recognition [32], and driver-behavior identification [7], in the state-of-the-art research. All these
combinations mostly contain CNNs followed by RNNs in sequential order (refer to Figure la).
On the other hand, the augmentation of the LSTM layer is not sequential in the case of FCN-LSTM
(refer to Figure 1b); moreover, it has improved the performance of FCNs with regard to time-series
classification [31]. However, these combinations can vary depending on the temporal modeling
problem and the nature of the dataset. In this study, we explore these two combinations, employed
in state-of-the-art algorithms, for a similar task, which is “driver-behavior identification.” For better
visualization, we consider these structures as being in series in the case of DeepConvRNN [29]
and in parallel in the case of FCN-LSTM [31]. Recently, researchers have exploited each of these
structures in (i) DeepConvRNN-Attention [7] and (ii)FCN-LSTM [8] for driver-behavior identification.
We study the parameter optimization of both the algorithms to make them lightweight and adaptable
by evaluating their advantages and disadvantages. Finally, we propose a novel deep-learning model
that is lighter than the state-of-the-art models in addition to outperforming them in terms of inference
time and accuracy.

Sensors 2020, 20, 5030 5of 21

CANbus Pre-Processing Windowing Deep Neural Network

N

CAN bus
° (] (] (] R

Attention-RNN

[
instances

v

ture
mUrs
ts
Attention Unit

Basic LSTM/
Attention LSTM|

g
E=
5
<
)
c
2
a
c
[}
£
[=]

ps per fea

hay
G

>

Max Pool
Output Layer
Input
v
Concat ’

c
©
o
>
w
=
>
3
>
ol
iy

.

Fully Connected Layer ‘

of Time Ste|

v
Depthwise Convolution
Depthwise Convolution

Py

ConvlD Iﬂ

[RelU [

Noy

Global Pooling

v

*

v
ConvlD |~
| ReLu |~
-

v

I~
3
S
&
&

15 Features | 45 Statistical Features| DEGPCOHVRN N-Attention

(Feature Engineering) (LSTM/GRU) 15 Features

(60x15) FCN-LSTM

(a) (b)

Figure 1. State-of-the-art deep-learning architectures for driver identification trained using the OCS
Lab security dataset(CAN bus), (a) DeepConvRNN-Attention [7], and (b) FCN-LSTM [8].

It is to clarify that, FCN-LSTM and DeepConvRNN-Attention are the independent studies, focused
to provide high-end accuracy on the driving dataset. We opted to choose these studies, due to the
reason that, they have used the same dataset [5] and are considered to be the best candidates to
achieve higher accuracy in recent years. We further evaluate them in terms of parameter utilization.
Before explaining the proposed architecture, we first provide the details of these models accordingly.

2.2.2. Driver Identification Using DeepConvRNN-Attention

The deep learning architecture in Reference [7] comprises a convolutional layer followed
by attention-based RNNs in sequential order, as depicted in Figure la. For driver-behavior
identification, the authors utilized a popular architecture, DeepConvRNN, previously used
for similar time-series classification applications, such as human-activity recognition [29];
furthermore, the author significantly improved the classification accuracy by adding attention
mechanism at the end of RNNs, thereby justifying the name of the proposed model, which
is DeepConvRNN-Attention(Attention-GRU/ Attention-LSTM). The model was trained using the
Ocslab [5] security driving dataset for performing driver profiling and identification. The authors
utilized 15 substantial features that were further processed with statistical (mean, median, and standard
deviation) features. For statistical feature processing, they used a window size of (60 x 1) with a
stride of 1; using which, they created a 45-dimensional feature (15 x 3) set whose size was the same
as that of the original features set , as depicted in Figure 1a as a pre-processing step. The attention
mechanism [33] is exploited to prioritize specific valuable feature instances for deriving class scores.
In order to obtain competitive accuracy, authors have utilized two layers of RNNs with size of 128 each.
Accordingly, these RNNs layers and fully connected layer contribute major portion of parameters
due to sequentially adding them after depthwise convolution which itself contains less parameters.
Depending upon the number of depth-multipliers of depthwise convolution, the subsequent layers
can drastically increase the parameters if added in sequential order as shown in Figure 1a.

2.2.3. Driver Identification Using FCN-LSTM

In Reference [8], the authors utilized FCN-LSTM [31] for driver-behavior profiling. Previously,
the FCN-LSTM [31] was proposed for time-series-sequence classification, and it achieved remarkable
results with minimum data pre-processing. The authors in [8], successfully avoided all the
feature engineering (moving mean, std, and median) using FCN-LSTM, utilizing only lightweight
pre-processing (normalization only) for driver-behavior classification. The deep-learning framework
comprises a fully convolutional block augmented by an LSTM block, followed by a dropout, as depicted
in Figure 1b. The fully convolutional block further contains three stacked temporal convolutional [34]

Sensors 2020, 20, 5030 6 of 21

layers with the kernel size of 128, 256, and 128, respectively. For driver classification, the input is a set of
60 x 15-sized batches , where 60 represents the time-step length and 15 the number of driving features.
The CNN layers receive data as univariate time series with multiple steps (60 x 15), whereas the LSTM
block receives the input as multivariate time series(15 x 60) that has N (15) variables with a single time
step. This is achieved by applying dimensional shuffling before the LSTM block, thereby achieving
convergence in less number of iterations. Accordingly, the competitive accuracy can be achieved using
fewer number of hidden neurons in LSTM layer that is, 10 neurons in this case, which further reduces
the size of the network significantly. The FCN-LSTM [8] utilized 3 times less parameters than that of
DeepConvRNN-Attention [7] with slightly less accuracy, which inspired us to use FCN-LSTM and
further improve the accuracy and reduce more parameters accordingly.

2.3. Applied Platform

With regard to deploying driver-behavior-profiling algorithms for real-time applications, there
exist multiple options, such as the use of smartphones integrated with vehicles (e.g., AGL [8,14]),
in-vehicle dedicated embedded computers (e.g., advanced driver-assisted systems [35]), and cloud- or
edge-based services in a connected car ecosystem [36]. This study broadly consider the application
of driver identification algorithms on an edge server under the umbrella of mobile edge computing.
Therefore, the scope of this study is to demonstrate the implementation of the proposed method in
a container environment (i.e., using NVIDIA docker), which is one of the virtualization methods
gradually becoming a base environment for edge computing [37,38]. For the effective deployment of
deep learning models, the market offers numerous dedicated low-power, energy-efficient embedded
system solutions. Among the competitive embedded solutions, NVIDIA Jetson is the most popular, as it
offers a wide range of developer kits (e.g., CUDA Toolkit and CuDNN) that offer various specifications.
The NVIDIA Jetson series has many distinct features, including energy efficiency, low weight, compact
form-factor, high performance per watt, and low-power GPU cores [39]. According to the analysis
presented in Reference [40], Jetson provides a higher peak performance than those of Raspberry Pi
and Intel Movidius (Neural Compute Stick). We chose the Jetson series for deploying the proposed
driver-behavior-identification framework on Jetson platform (Xavier,Ix2, and Nano).

3. Methodology

In this section, we provide an overview of the different methods and platforms that have been
used in this study. We start with a brief description of the problem statement, and the datasets used in
the experiments. Subsequently, we present the detail of proposed deep-learning algorithm used for
classification. Finally, we explain the proposed optimization methods and deployment environment
used in the experiments.

3.1. Problem Formulation

If the driver-profiling algorithm is deployed in a real-time situation entailing a connected car
environment, the driver will be identified in more than 60 s because the algorithm must wait to
complete a single frame requirement (T,). The first possible, total time(T,,) to infer the classification
is presented by Equation (1), where Ty, is the time based on window size required by an algorithm, T,
is the time for preprocessing (i.e, feature engineering time (moving mean, std, and median)), and T; is
the inference time by classification algorithm (usually less than 1 s).

Ttotal =Ty + Tp + Ti- (1)

Although other algorithms [8] do not require feature engineering, they still require a window
of 60 s to process time-series data for driver classification. The window size of time steps should be
reduced for early identification of the driver. However, in the case of a connected car environment,
where multiple cars are connected to edge servers and require fast processing, lightweight algorithms

Sensors 2020, 20, 5030 7 of 21

must be developed for real-time applications to fulfill requests in a short time with high accuracy.
Similarly, with the development of an edge-computing environment with container orchestration
(e.g., Kubernetes and SWAM [37,38]), deep-learning frameworks must be made more adaptable
to the new environment via sparse learning and other techniques for new classes without losing
significant accuracy on the existing classes. In this research, we have addressed aforementioned
issues by introducing light-weight deep learning model equipped with sparse learning to absorb
greater number of classes in real-time situation. The detail of our proposed model will be provided in
subsequent sections.

3.2. OCS Lab—Security Driving Dataset

It is an open-sourced dataset generated by Byung Il Kwak, et al. [5] and is freely available
online [41]. The dataset provides in-vehicle CAN-BUS sensor data that contain the driving information
of 10 different drivers (A-J) who have followed the same path. For data acquisition, every driver
performed four trips (two round trips) using the same model car manufactured by KIA Motors
Corporation. The track contained different road types (city way, motorway, and parking lot) in the
city of Seoul, South Korea. The total length of the trip was approximately 23 Km. The data comprise
51 features extracted from the car ECU acquired through the OBD-II protocol with the frequency of
1 Hz. The dataset holds 94,401 records and was used in Information Protection R&D Data Challenge
2018-19 under the section “Theft detection based on vehicle driving data” [42]. Moreover, in the
dataset paper [5], the authors shortlisted 15 substantial features out of 51 for driver identification
and proposed statistical machine-learning models for driver classification. The feature selection
method by the authors reported in Reference [5] is based on the InfoGainAttributeEval evaluation
method, which is previously implemented in Weka [43]. This is one of the ranker search methods
for feature selection. Several researchers have utilized these shortlisted features from the dataset for
driver-behavior identification [7,8]. Therefore, our proposed model also utilized the same selected
features as list in the Table 1 for driver behavior identification.

Table 1. Features selected for driver identification.

Dataset # of Selected Features Features

Long_Term_Fuel _Trim_Bank1,Intake_air_pressure,
Accelerator_Pedal_value, Fuel_consumption,Torque_of_friction,
Maximum_indicated_engine_torque, Engine_torque,

15 Calculated_LOAD_value,Activation_of_Air_compressor,
Engine_coolant_temperature, Transmission_oil_temperature,
Wheel_velocity_front_left-hand,Wheel_velocity_front_right-hand,
Wheel_velocity_rear_left-hand, Torque_converter_speed

Security Driving
Dataset [5]

Unlike other studies [5,7], where extensive feature engineering is performed as a pre-processsing
step, we perform data normalization only, prior to fed our network for classification. The formula to
compute normalization step is presented in Equation (2), where max(xn) and min(x;,) are the maximum
and minimum values present in the corresponding column of feature, and X, is the normalized
variable.

3.3. Our Proposed Framework

With the motivation to build a lightweight deep-learning model, we propose to replace the 1D
CNN with 2D depth-wise convolutional layers in the same configuration as that in the FCN-LSTM [8].
We successfully achieve state-of-the-art performance with significantly reduced number of parameters.
The details of the proposed deep-learning architecture are shown in Figure 2. Unlike other algorithms
that use 60 s of data, our proposed model employs only 40 s of driving sequence data from the
Ocslab dataset [5] and outputs the classifications scores for the identification of 10 drivers (A-J). Our
framework comprises a depthwise separable convolutional layer augmented by an RNN. In the case of

Sensors 2020, 20, 5030 8 of 21

the RNN, both the gated recurrent unit (GRU) and LSTM are evaluated for performance comparison.
Each layer of the architecture is explained in the following section.

Xn — min(xy)

X, = . . 2)
max(xy) — min(xy)
9 2 T
= [+ []
5 o &
-= ~ 1]
(%] E c
5 = c
kel 0 5]
b : 2 A\
v n =
< © S
s @ 2 \
= K S\
Q_ © (8] X
o] ©
(- S| —» c]l —>||€
= g < =
1 B — AL
> N >
: : : =
o e 8 T; [
0
—> a2 — — 21- &
S|e 212 =
£ H E 3
% 5 < 0
9 s 8 o
\ (=] 0
L | — 2

Figure 2. Proposed framework for driver identification.
3.3.1. Depthwise Convolution

Depthwise-separable convolutions were efficiently utilized in Reference [44] to build lightweight
deep neural networks. The computation cost of depthwise convolution is represented by Equation (3),
where M denotes the number of input channels and Dy the size of the kernel that produces the output
feature map of size Dp. However, in the case of standard convolution, the computational cost is N
times than that for depthwise convolution, where N denotes the number of output channels.

Dy-Dy- M- Dg - Dy.)

Our model applies depthwise convolutions on time series. The input size is Wt x Fy, where Wt
denotes length of time steps (40 s here) and Fy the number of features (15 here). The number of input
channels is equal to Fy so that convolutions can be applied on each channel separately upon receiving
data as univariate time series with multiple time steps. Each group of outputs of the convolution
layer corresponds to the feature map. The optimum results were achieved using a rectified linear unit
(ReLU) as the activation function for the convolution layers. The values of depth-multiplier are set to
20 and 10 to produce output channels equal to the filters_in * depth-multiplier for the first and second
convolutional layers, respectively.

Similarly, the kernel sizes for the first and second depthwise convolutional layers are 9 x 1 and
5 x 1, respectively. However, to control the size of the network within a feasible range, a max-pooling
layer is introduced between the depthwise convolution layers, as depicted in Figure 2. The kernel size is
set to 7 x 1 with the stride of 1 x 2, thereby reducing the size and to overcome the over-fitting problem.
The depthwise convolution layer was also used for similar applications in DeepConvRNN-Attention.
However, the size of the network drastically increases because of adding x 2 LSTM layers (each having
128 hidden states) in sequential order (refer to Figure 1a). In our case, we replaced the 1D CNN with a
depthwise layer whose configuration was similar to that of FCN-LSTM, and the LSTM layers were
not augmented in sequential order (refer to Figure 1b). Subsequently, the LSTM/GRU layers of the
proposed network also contain ten hidden neurons similar to FCN-LSTM.

Sensors 2020, 20, 5030 9 of 21

3.3.2. Recurrent Neural Networks

RNNSs belong to the class of neural networks that are used to extract temporal behavior from
sequential data. Standard RNNs exhibit the vanishing gradient problem when long-term sequential
data are employed. This problem was solved using LSTMs by adding gating (input, output, and forget)
functions and a memory unit using which the memory of the previous states could be easily controlled
at each time step. Similarly, GRUs also adopt gating concepts with update gates. In our proposed model,
we have utilized both LSTM and GRU layers, as depicted in Figure 2. The accuracy obtained using GRU
is high for time-series data in the case of driver profiling. For a particular dataset, GRU outperformed
LSTM in other studies as well [7]. In the proposed framework, the LSTM/GRU receives multivariate
time-series data, which are obtained via dimension shuffling before the LSTM . An example of such data
is data with 15 features (multivariate) with a single time step being associated with each set of features.
In this regard, LSTM/GRU captures the temporal dependencies of the features in a fewer number of
iterations than that without dimension shuffling [31]. Although LSTMs resolved the vanishing gradient
problem, they still experienced difficulties because of the long-term dependencies in long sequences,
and these difficulties were overcome using attention mechanisms [33]. The attention mechanism
allows to focus on substantial features and helps to increase the accuracy. Accordingly, we explored
the attention-based LSTM layer, which, in our case, did not perform better than the basic LSTM
layer in terms of accuracy.As our model resembles the FCN-LSTM, where, they have also reported to
achieve better results using basic LSTM than attention-based LSTM in similar configuration. However,
in several studies related to time-series classification, attention mechanisms increased the accuracy
when the augmentation of the LSTM layer was sequential, similar to that in DeepConvRNN-attention.
Moreover, an attention-based LSTM layer is computationally more expensive than a basic LSTM,
and contrarily, we aim to develop a lightweight solution. In summary, in our proposed architecture,
the LSTM layer provides more accuracy than that of the attention-based LSTM, and GRU outperforms
both of them. Additionally, the GRU requires fewer parameters than LSTM because it has fewer
gate functions (only update gate). In driver-behavior identification, we successfully achieved the
highest accuracy by employing GRU on a particular dataset using conditions that consumed low
computational power.

3.3.3. Hyperparameter Optimization

The data-segmentation or windowing step is critical to building an accurate driver-identification
model. With regard to sequential or time-series data, determining the appropriate values of windowing
hyperparameters (i.e., window size and degree of overlap) is the most crucial part, and it directly
affects the model accuracy [45,46]. Hyperparameters, including the number of layers, kernel sizes
in each layer, were explained in the previous Section 3.3.1. Here, we focus on the importance of
window size and overlap. The input to the model depends on the window size(Wx), while the degree
of overlap determines the prior information in the sequential data. The shift value dx is opposite
to degree of overlap, which can be computed by using formula as overlap = Wx-dx, as depicted in
Figure 3b. A study [7] was conducted to select the optimum values of both the Wx (90, 60, etc.) and
dx (45, 10, 6, etc.); the best driver-identification performance was achieved for the window size (Wx)
of 60 s and shift (dx) of 6 s, as shown in Table 2. Similarly, in FCN-LSTM, the authors selected the
window size(Wx) as 60 and dx as 10. Our proposed model, being more compact than other algorithms,
requires the values of these hyperparameters to be optimal to compete with the performances of other
models. The best values were observed when the window size (Wx) was set to 40 s with a high degree
of overlap (shift value of dx = 6 means overlap is 34, that is, 40 — 6 = 34), as presented in Table 2.
Notably, a higher degree of overlap does not contribute to the network size; however, it affects the
performance as shown in Figure 3a. We also evaluated our results for the window size(Wx) of 60 s and
achieved optimum results when the value of dx is set to 10. However, the best value of dx is found to
be 6, for window size (Wx) of 40 s. The visualization of windowing operation is shown in Figure 3b,
where data from a particular driver A is segmented over time series using sliding window operation.

Sensors 2020, 20, 5030

10 of 21

Table 2. Performance Comparison of proposed framework for driver identification.

. Feature . .
Input Algorithm Accuracy FLOPs Memory Engineering Windowing
60 x 45 DeepConvLSTM 97.72 1.624M 788MB Yes Wx =60,dx=6
60 x 45 DeepConvGRU 95.19 1.623M 7.88MB Yes Wx =60,dx=6
60 x 45 DeepConvLSTM-Attention 97.86 1.632M 791 MB Yes Wx =60,dx=6
60 x 45 DeepConvGRU-Attention 98.36 1.631M 791MB Yes Wx =60,dx=6
60 x 15 FCM-LSTM 95.1 056M 328MB No Wx =60, dx =10
60 x 15 Proposed DepthConv-LSTM 97.78 0235M 1.74MB No Wx =60, dx =10
60 x 15 Proposed DepthConv- GRU 98.52 0234M 174MB No Wx =60, dx =10
40 x 15 Proposed DepthConv-LSTM 97.86 0233M 1.69MB No Wx =40,dx=6
40 x 15 Proposed DepthConv- GRU 98.72 0232M 1.69MB No Wx=40,dx=6
Driver A
Performance evaluation for W_=40 seconds g ﬂ ‘ ’]“
100 1 ‘ hl.” Feature 1
A

= —_m~ —B DepthConv-GRU -

= (=3 N = Soo

3 9 s

g AP Feature 2

e

% 90 RN R = T e

= RN Feraui converrer speea d

‘&) T mj Feature 15

85

5 10 15 20 25 30
dX Time step (opposite of overlap) in timing window

(a)

W,
Sliding Window >

Time (s)

(b)

Figure 3. (a) Performance evaluation of proposed method for fixed Wy= 40s, (b) Visualization
of windowing operation, where Wy is time series size, and dy is the shift between consecutive
sliding window.

4. Performance Evaluation

4.1. Experimental Setup

For our experiments, we have used NVIDIA Jetson platform(Xavier, TX2, and Nano). Jetson
Xavier is equipped with GPU (512-core Volta with Tensor Core), CPU (8-core ARMv8.2), and RAM
(16 GB LPDDR4). Similarly, the TX2 and Nano are replete with GPU of 256-core(Pascal) and 128-core
(Maxell) while RAM of values 8GB and 4GB, respectively. The respective embedded hardware is only
used for deployment (testing dataset execution) for most of the experiments. A detailed benchmarking
of these embedded hardware for numerous parameter indices is already performed in one of our
previous work [47]. All experiments are executed in container environment using NVIDIA docker
image. However, for training of all models, we have used desktop computer equipped with CPU
(core i7-9700), GPU (GeForce RTX 2060) and RAM of 16GB, respectively. In case of sparse learning
experiments (Section 5), we have utilized the Jetson platform using container environment. For this we
have used multiple instances of container for incremental learning for new classes as detail is provided
in Section 5, while visualization of deployment is shown in Figure 5. We have used TensorFlow(Keras)
to develop all codes. Furthermore, in our experiments, we have also used sklearn, pandas, matplot-lib,
numpy and other useful python libraries for data processing.

Sensors 2020, 20, 5030 11 of 21

4.2. Cross Validation of Time Series Data

We have utilized 5-Fold cross validation, in which the data was divided into five parts, where four
of them were used for training and the remaining one was employed for validation. The accuracy used
in the experiments is defined by Equation (4), where TP is number of true positives, TN is the number of
true negatives, FP is the number of false positives and FN is the number of false negatives, respectively.

TP+ TN
TP+TN+FP+FN’

Accuracy = (4)
The accuracy refers to the classification accuracy of the drivers, how the model predicts (driver
identification) drivers based on time-series CAN-BUS sensors data.

4.3. Computational Complexity of the Proposed Model

The proposed deep-learning framework performs efficiently by using only a few parameters.
It outperforms the state-of-the-art algorithms, as confirmed in Table 2. It achieves an accuracy of
98.72% with only 0.232 million FLOPs while employing only 119,352 parameters when using GRU as
an RNN unit. Similarly, using LSTM as an RNN unit, the proposed algorithm obtained an accuracy
of 97.86% by using only 119,832 parameters with 0.233 million FLOPs. Furthermore, our proposed
algorithm outperforms other state-of the-art algorithms in terms of accuracy by consuming two
times fewer FLOPs than those consumed by FCN-LSTM; furthermore, fewer parameters such as
FCN-LSTM consumes 284,294 parameters with basic LSTM (their codes are available on GitHub [48]).
DeepConvGRU-Attention achieved an accuracy of 98.36% by consuming 1.631 million FLOPs,
which is seven times more than those used by the proposed framework. Because our proposed
framework resembles FCN-LSTM with modifications, such as, the 1D CNNss are replaced by Depthwise
convolution (Section 3.3.1), here, we briefly compare our parameters. The 1D CNN in FCN-LSTM
with 128, 256, and 128 filters entails 15,488, 164,096, and 98,432 parameters, respectively. However,
our proposed framework utilized only two depth-wise convolutions with depth-multipliers of 20
and 10, which consume 3000 and 18,000 parameters, respectively. Although it sounds trivial to just
replace the convolution layers, nevertheless, for fine-tuning the network to achieve a competitive
accuracy, ample number of studies and efforts are involved in determining the optimum values for
the kernel sizes and all inter-dependent parameters in the framework. In terms of memory efficiency,
the model size of our proposed deep-learning framework is only 1.69 MB(MegaBytes), which is the
lowest among all the other candidates, as listed in Table 2. Unlike the different algorithms mentioned
in the table, which require feature engineering (moving mean, standard deviation, median, etc.), our
algorithm directly consumes raw features (only normalization), similar to the case of FCN-LSTM.
The proposed framework requires only a 40 s window (time steps) for inferring the driver identity,
compared with others, which require at least 60 s. For the fair comparison, we also evaluated our results
using 60 s window, where our proposed algorithm outperforms in terms of memory usage (1.74 MB)
and computational complexity (0.235 M parameters), achieving competitive accuracy. Subsequently,
with motivation to infer earlier than existing solutions, we targeted 40 s, and achieved outstanding
results in all performance metrics as shown in Table 2. Like all algorithms presented in Table 2, we do
not use any refinement technique, such as fine-tuning (reducing learning rate), and sparse learning at
this stage to investigate the actual performance of the proposed deep-learning architecture.

The following are the key factors involved in reducing both the number of parameters and size of
the proposed network:

o The input size (40 x 15) is the key to reducing the network size, which mainly contributes to
memory consumption. Although it does not consume parameters , it is indirectly involved in
reducing the number of parameters of the subsequent layers.

Sensors 2020, 20, 5030 12 of 21

¢ A max-pooling layer is utilized to effectively reduce the network size (memory and parameters)
by setting a high filter size, thereby alleviating the over-fitting problem. This, in turn, indirectly
affects the parameters of subsequent layers.

e Depthwise convolution layers with large-sized filters and few depth-multipliers can effectively
reduce the number of parameters.

o The augmentation of the LSTM layer is not sequential; instead, the input is separately fed to the
convolutional and LSTM layers in the proposed model, thereby reducing the size of the hidden
LSTM layer, such as a single layer with 10 hidden states in our case. However, DeepConvLSTM
uses two LSTM layers with 128 hidden neurons each to acquire a competitive accuracy.

The proposed model outperforms the other state-of-the-art algorithms in terms of accuracy,
with significantly low computational complexity (i.e., low number of FLOPs and parameters), and its
most compact size is presented in Table 2. Subsequently, the proposed model outperforms in terms of
inference time while running in embedded hardware (Jetson platform), as shown in Table 3.

Table 3. Performance comparison of Proposed Model with compressed version of competitive models.

Inference Time (us/Sample)

Algorithm Pruning FLOPs Memory Accuracy #of Channels (container-NVIDIA Docker)

) (MB) (%) Pruned/Total
Xavier TX2 Nano
0% 1.627 791 98.36 - ~505 ~1175 ~2580
DeepConv
o LSTM1(07/128)
GRU. 8.50% 1.482 7.48 98.04 LSTM2(11/128) 469 1040 2270
- Attention
o LSTM1 (20/128)
19% 1.314 6.64 96.89 LSTM2(15/128) ~452 ~997 ~2160
0% 0.566 3.28 95.10 - ~284 ~365 ~450
o Conv1(10/128)
FCN-LSTM 5.30% 0.535 3.14 94.32 Conv2(10/256) 253 342 416
Conv1(10/128)
12.20% 0.496 3.07 93.92 Conv2(20/256) ~241 ~333 ~371
Conv3(10/256)
Proposed o
DC-LSTM 0% 0.233 1.69 97.86 - ~188 ~207 ~230
Proposed 0% 0.232 1.69 98.72 - ~182 ~205 ~227
DC-GRU ? ' ' '

4.4. Robustness to Data Anomalies

The accuracy of driver-identification algorithms is directly associated with the reliability of car
sensors, which are prone to malfunction, noise, failures, and hacking attempts. Feeding the network
with this kind of anomalous and erroneous data can deteriorate the model accuracy. However, even
when fed with anomalous data, our network outperforms other networks , thereby demonstrating
its robustness (Table 4). Our robustness test is inspired by FCN-LSTM [8]. In this regard, n random
sensors are selected to be modified out of total 15 sensors (i.e., features), where n is 7 in this case.
Different rate of anomalies are simulated such that 1%, 10%, and 50% of total samples from validation
set were modified by random values in 7 features each (Table 4). Similarly, for each rate, two anomalies
duration (i.e., 1 s and 10 s) were simulated. In this case, 1 s and 10 s means, we modified out of 40 s (Wx)
for each input sample (40 x 15). Summarizing, 1% of anomaly means, 1% of total validation samples,
while 1 s means 1 of 40 s per sample data is modified with random noise. It can be seen in Table 4,
the minimum accuracy of proposed algorithm (Depthconv-LSTM), shortly DC-LSTM, obtained as
75.21% even when introduced with 50% anomalies. Similarly, proposed DC-GRU obtained minimum
of 75.43% accuracy even in the presence of 50% of anomalies. Our proposed solution outperforms

Sensors 2020, 20, 5030 13 of 21

the FCN-LSTM. Moreover, we have used outlier rejection algorithm, the one-class support vector
machine(SVM), to correct the anomalies. Previously, one-class SVM was found to be the best candidate
for anomaly detection, after detailed comparison [8]. One-Class svm identifies anomalies, which
can be used for correction and estimation of original data. In this regard, the trivial method is to
take average of neighbors. For instance, given the order sequence of any feature values {10,3000,20},
recorded at timestamps of t, t+1, t+2 after anomalies injection. Accordingly, the one-class SVM will
identify, t+1 location, as outlier, and to remove anomaly, we replace the values of t+1 with average
(i.e., 15). The detailed results are shown in Table 4 . Our proposed model is more robust to anomalies
than FCN-LSTM, which make it a favorable candidate to deploy in real-time conditions.

Table 4. Performance evaluation in the presence of Anomalous Data.

Accuracy with Anomalies Corrected Anomalies (One-Class SVM)
Anomaly Anomaly
Rate Duration Proposed Proposed . Proposed Proposed .
DC-GRU DC-LsT™M TNLSIM - heGru pDerstm FONISTM

0% ls %872 97.86 %1 98.72% 97.86% 95.10%
10s 98.72 97.86 95.1

1% Is 98.08 9722 9325 97.32 96.62 93.89
10s 98.08 97.22 92.6

10% ls 9274 92.52 8585 97.12 96.22 93.57
10s 93.16 92.09 84.89

30% ls 8269 81.62 7042 96.32 95.52 92.93
10s 81.2 81.62 69.77

50% Ls 72.86 735 57.23 95.14 94.51 91.64
10s 75.21 75.43 57.88

4.5. Comparison with Compressed versions of Existing Models

This study primarily aims to produce a lightweight solution. Most studies in the literature
focus on compression methods including network pruning, quantization, Huffman coding [49],
and sparse-regularization [50] of the existing architectures to remove unnecessary connections and
make the neural network more compact without compromising the accuracy. We have used depthwise
convolution to reduce the architecture size; however, the existing models can be compressed to
produce a lightweight solution. In addition, compression is easier than significantly changing
the architecture. Accordingly, we compare our results with those obtained using the compressed
versions of state-of-the-art frameworks in terms of driver identification. We successfully applied
channel pruning on each layer of DeepConvRNN-Attention and FCN-LSTM as shown in Figure 4b.
In Reference [51], it was reported that channel pruning was more sensitive in the initial and last layers.
However, the layers in the middle were less affected in terms of accuracy, indicating a possibility for
further pruning while maintaining the accuracy. To select unimportant channels to prune, we followed
a well-known L1-norm-based method [51]. The following are the steps for channel pruning.

e For each filter in a particular layer, compute the sum of its absolute kernel weights using equation
of L1 norm [51].

e Sort the filter on the basis of the L1 norm values calculated in the previous step.

e Prune the m filters that have the smallest L1 norm values, and remove the corresponding feature
maps from the current and next layers.

— To select the optimum values of the m filters to be pruned, we begin pruning with the smallest
number, that is, 10, and start evaluating the accuracy on a validation dataset.

Sensors 2020, 20, 5030 14 of 21

e To delete the channels from layer i and i+1, we use the Keras-surgeon [52] tool, which deletes the
channels and provides a new copy of the pruned model.

The channel pruning performed is visualized in Figure 4a. We applied channel pruning on
all the three 1D constitutional layers and LSTM layer of FCN-LSTM, as depicted in Figure 4b.
Similarly, we pruned the filters of both the depthwise convolution layers and two LSTM
layers of DeepConvLSTM-Attention, as depicted in Figure 4c. As depthwise convolutions utilize
fewer parameters, so pruning significantly affect the accuracy when applied at depthwise of
DeepConvGRU-Attention. The final configuration of pruning for selected layers, the effect of the
pruning on accuracy and computational complexity is summarized in Table 3. The proposed method
outperforms all listed algorithms in terms of accuracy, memory usage, and inference time in all
Jetson platform.

Ba5| lSTM

Channel Pruning
4> HE
Filter 1
Channel
) Prunlng Prunlng Prunlng
‘ s I .—' °
Filter 3]

Output Channels Channel Pruning Channel Pruning

= |
y 4
A
(Sgmotd)

Global Pooling
;

C)

Input

Convolution Layer

Output Layer

(a)
(c)

Depthwise Max Depthwise 128 128
Conv2D Pool Conv2D

Figure 4. (a) Channel pruning. Locations where channel pruning was applied in (b) FCN-LSTM and
(c) DeepConvLSTM-Attention.

5. Deploying the Proposed Model with Sparse Learning

5.1. Sparse Learning

Sparse learning is a technique in which a pre-trained network is analyzed to categorize the weaker
and the strong nodes among layers, which may exist in scattered locations. The best nodes from all or
selected layers are then frozen (non-trainable), and the weaker nodes in selected layers are re-trained.
During training, the weaker nodes are sparsely located among different layers, which is the reason to
regard it as sparse learning. In case of transfer learning, network adopts new classes or tasks by using
the knowledge of an existing weights without training from scratch [53]. However, in sparse learning,
only the connections of the selected nodes are trained when a new class is considered [54]. The training
method in sparse learning comprises two steps: freezing the non-target parameters (important nodes
for the existing classes) and performing conventional training on the selected parameters (weak nodes)
like in the case of transfer learning for new classes.

5.2. Node Selection Towards Sparse Learning

To train the proposed model to learn new data while retaining the performance of the existing
classes without affecting the network size, we implement sparse learning on the proposed model.
This enables our lightweight model to adapt to a greater number of classes without compromising
the accuracy and resources (parameters) with regard to the existing categories. Accordingly, we first
shortlist the strong nodes in the fully connected layers using two node-selection methods: (i) ranking
by the magnitude of nodes and (ii) the average activation method [54]. Thus, we deploy the proposed
adaptable model in a container environment, as depicted in Figure 5. To validate our idea, we first

Sensors 2020, 20, 5030 15 of 21

perform sparse learning without introducing new class data, as depicted in Table 5, that is, we employ
10 classes in the case of the initial network, with the test accuracy of 97.86%. We then freeze 20% of the
nodes (20% of 32 nodes is 7 nodes) via ranking by the magnitude of nodes. We retrain our network
to further finetune the weaker nodes (the remaining 28 nodes), thereby increasing the accuracy by
up to 0.86%. Similarly, the accuracy increased upon freezing 40% of the nodes (i.e., 40% of 32 nodes
is 13 nodes). The test accuracy is listed in Table 5. The detailed pattern of the validation accuracy
corresponding to each case is depicted in Figure 6a. The increase in the performance via sparse
learning, when no new data are introduced to the model, shows that more classes can be adjusted.
Because the number of categories is limited (maximum 10) in a particular dataset (Ocslab), we could
only generate cases within 10 classes. Thus, we attempted to mimic the real environment wherein
hundreds of classes would be available for sparse learning.

Proposed Framework

Sparse
Learning
-

B classes

a classes

Input

= =
- =
>

.

Fully Connected
Layer

I\ Pre-trained model (a classes) l I

Services (driver behavior identification ...)

Base\ine\{nodel Sparse learning(a + 5 classes)

Sparse learning(a + [classes)

Edge Sever

:|_Orchestration

.

NVIDIA Docker

NVIDIA Docker

1 Jauleuo)
T JBuURu0D
U Jauleon

Xavier TX2

Figure 5. Visualization of sparse-learning deployment. Our implementation focuses on the container
environment only for data.

The sparse learning conducted to adjust the new classes can be further divided into two cases.
Here, we assume that « is the number of existing classes and the number of new classes.

Table 5. Performances of the proposed model before and after using sparse learning.

of Classes ?:;;S; (]; i:r)i:f Deptll,lrggr?‘sl-eSSTM Dep{’ll;(g:)‘:lt%}RU Noé;&este}:s;tion
Accuracy (%) Accuracy (%)

10 Initial Network 97.86 98.72 -

10 80% re-train, 20% Freeze 98.72 98.72 Ranking Mg. of nodes
10 60% re-train, 40% Freeze 98.08 98.5 Ranking Mg. of nodes
7 Initial Network 99.11 99.4 -

7+3 80% re-train, 20% Freeze 97.86 99.15 Ranking Mg. of nodes

7+3 60% re-train, 40% Freeze 98.29 99.15 Ranking Mg. of nodes
4 Initial Network 99.51 99.51 -

4+6 80% re-train, 20% Freeze 96.37 98.08 Ranking Mg. of nodes

4+6 60% re-train, 40% Freeze 97.86 97.44 Ranking Mg. of nodes

4+6 re_train 0=<Av<Eq_value 96.79 98.08 Avg Activation Method

Sensors 2020, 20, 5030 16 of 21

Accuracy

10 A1

094

08 1

0.7 1

06 4

051

04

Sparse Learning (10-Classes) DepthConv-LSTM Sparse Learning (74 3-Classes) DepthConv-LSTM
10 A1

0.9 4
—— initial oy 08 — initial(7)
sparseLearn80% ; sparseLearn80%(7+3)
——— Sparselearn60% g 074 | —— Sparselearn60%(7+3)
0.6 1
05 1
0 220 4 e 8 100 120 140 0 22 40 6 8 100 120 140
epoch epoch
(a) (b)

Figure 6. Performance evaluation (DepthConv-LSTM) with and without sparse learning: (a) without
introducing new classes and (b) with the introduction of a smaller number of classes than existing.

Case 1 (a > B): As a proof of concept, we begin with seven (« = 7) randomly selected classes
(for simplicity, we consider A-G) and train the model from scratch (see Table 5) to obtain an initial
network with a significantly high test accuracy of 99.11%. The complete pattern exhibited by the
validation accuracy is depicted in Figure 7b. First, we freeze 20% of the nodes in the pre-trained
network for a classes. Later, we feed the network with the data of a+8 (7 + 3) classes and retrain
the 80% of weak nodes for fine tuning. The test accuracy decreases to 97.86%, similar to that in the
case of training 10 classes from scratch. However, upon freezing 40% of the nodes and re-training
only 60% of the nodes, the test accuracy becomes significantly high (see Table 5). Such sparse
learning can result in higher accuracy than that in the original training procedure of starting from
the scratch. Another supporting argument is the pattern followed by the validation accuracy:
when we retrain 80% of the nodes, the validation accuracy of the model starts from the seventies,
whereas when we retrain only 60% nodes, the validation accuracy for the first few epoch starts
from the nineties (see Figure 7b). Similar pattern can be found in case of DepthConv-GRU as
shown in Figure 9a,b.

Case 2 (« < B): We repeat similar experiments for the case where there are more new classes ()
than existing classes («). However, in practice, this case can degrade the network performance [54].
This is because the pre-trained model can find difficulties in adjusting to an enormous amount of
data as compared with the small amount of data previously used for training; thus, it may require
major weight updates to achieve an acceptable accuracy. To resolve this issue, the authors in [54]
proposed the following formula as an effective node-selection method:

i 1 i
0 < Al < - (1—tog(1+ E)) [Lxpical — e ®

This formula was previously validated on LeNet, AlexNet, and VGGNet to adapt to up to 40%
new classes without a significant loss in the accuracy corresponding to existing classes [54].
We exploited this formula for node selection in the fully connected layer of the proposed model.
We retrained the nodes whose magnitudes ranged from 0 to the value obtained using the formula.
Because all the nodes values were activated using ReLU, their magnitudes were greater or equal to
zero. Accordingly, we retrained all the nodes that lied in this range and froze the remaining ones.
When « =4, we obtained the initial test accuracy of 99.51% upon training only 4 classes (see Table 5).
However, upon freezing the nodes according to the formula and feeding the network with data
regarding a+p(4+6) classes, the accuracy suddenly dropped to 96.79%, which is lower than the
original accuracy (97.86%) of the network when trained from scratch. Similarly, upon freezing 20%
nodes using the previous ranking-by-magnitude method, we obtained a lower accuracy, that is,

Sensors 2020, 20, 5030

17 of 21

96.37%. We achieved an accuracy of 97.86% upon freezing 40% nodes and re-training the rest
using sparse learning. The corresponding validation accuracy curves for DepthConv-LSTM are
depicted in Figure 8a,b. Similar pattern can be found in case of DepthConv-GRU as shown in

Figure 9a,b.

Sparse Learning (10-Classes) DepthConv-GRU

10
09
H 08 = initial
g SparsLeam80%
§ 07 —— SparseLearn60%
06
05

T T T T T

0 2 4 6@ 8 100 120

epoch

(a)

140

Accuracy

10

09

08

07

06

Sparse Leaming (7+3-Classes) DepthConv-GRU

— nitial(7)
SparseLeamB80%(7+3)
—— SparseleamnB0%(7+3)

T T T T T

0 20 40 60 80 100 120 140
epoch

(b)

Figure 7. Performance evaluation (DepthConv-GRU) with and without sparse learning: (a) without

introducing new classes and (b) with the introduction of a smaller number of classes than existing.

After training the network, we froze the best nodes of the last fully connected layer, as depicted
in Figure 5 (see the dotted line). Each container could download the baseline model (the proposed
adaptable model) and add new classes using sparse learning. Our container-based solution can be later
deployed in the edge sever, where any type of container-orchestration method, such as Kubernetes or
SWAM, can use the container as the fundamental block [37,38].The location of the edge server will be
closed to the client (i.e., car in our case), and can be accessed through authorization (i.e., token, client
certification) based on container orchestration system (i.e., Kubernetes, SWAM,, etc.).

Sparse Learning (4+6-Classes) DepthConv-LSTM

10

09

08

— initial(4)
N sparseLeamnB80%(4+6)
| —— Sparseleamn60%(4+6)

0.7

Accuracy

061 |/

05

0 20 4 6 & 100 120
epoch

(a)

140

Accuracy

Sparse Learning (4+6-Classes) DepthConv-LSTM

—— Sparselearn80%(4+6)
Sparselearn60%(4+6)
-~ AvgActivationEq(4+6)

0 20 40 e 8 100 120 140

epoch

(b)

Figure 8. Performance evaluation (DepthConv-LSTM) upon introducing more classes than the existing

number of classes (a) using the ranking of nodes, (b) comparison of the ranking of nodes obtained

using the average activation method.

Sensors 2020, 20, 5030

Sparse Leamming (4+6-Classes) DepthConv-GRU

10 1

18 of 21

Sparse Learning (4 +6-Classes) DepthConv-GRU

10 ~; - [x —~ "
.Ww,_.,.v,,-ﬁ.-..w_ww._ L Y e W
09 M v 09 r»—"/
N1 /
081
08 /JI/
T | —— initial(4) %‘ [—— SparselLearn80%(446)
Eorq f SparselLeamB80%(4+6) 5 I SparseLeam60%(4+6)
§ | SparselLeamnB0%(446) § 0.7 4 [AuvgActivationEq(4+6)
06 1 |
06 /J
05 |
Ir’
04 051 /
0 0 4 60 B0 100 120 140 0 20 40 60 80 100 120 140

epoch epoch

(a) (b)

Figure 9. Performance evaluation (DepthConv-GRU) upon introducing more classes than the existing
number of classes (a) using the ranking of nodes, (b) comparison of the ranking of nodes obtained
using the average activation method.

6. Discussion and Conclusions

The proposed model is a lightweight deep-learning solution for driver identification. Notably,
it is more compact than the state-of-the-art algorithms and outperforms them in terms of accuracy
(see Table 2).

Compared with the state-of-the-art algorithms, the proposed solution is more robust to anomalies,
thereby providing a better solution in real-time situations in the case of any malicious noise in
sensors or the communication of CAN bus data. Moreover, our algorithm is equipped with a
sparse-learning feature that enables it to absorb a more significant number of classes than that by
traditional techniques in the container environment for driver-behavior identification. Furthermore,
our proposed deep-learning architecture is more compact than even the compressed versions of
conventional algorithms. To achieve a competitive accuracy, we fine-tune the degree of overlap in
the window (i.e., the length of time steps). The overlap does not contribute to the model size but is
crucial in the performance of the subsequent deep-learning architecture in time-series classification,
such as driver identification in our case. The method of augmenting the RNN layer(LSTM /GRU) with
a convolutional layer is also crucial in terms of the computational complexity and convergence of the
deep-learning architecture for driver-behavior identification. In case of sparse learning, when existing
number of classes are significantly more than new classes, we prefer ranking of magnitude technique
to use as node selection method at fully connected layer. Contrarily, in case, the number of new classes
are greater in number than existing classes data, we prefer to utilize average activation technique [54]
as node selection method for sparse learning. We successfully deployed the proposed deep learning
architecture on NVIDIA Docker to run it in a container environment using Jetson embedded platform
(Xavier, Tx2, Nano). Subsequently, the proposed model can be run as an instance(container), and adjust
a greater number of classes incrementally using sparse learning, by multiple containers in a real-time
container environment at edge server, under the umbrella of edge computing.

Author Contributions: Conceptualization, S.U. and D.-H.K.; Formal analysis, D.H.K.; Funding acquisition,
D.-HK.; Methodology, S.U.; Project administration, D.-H.K.; Resources, D.-H.K.; Supervision, D.-HK.;
Writing—original draft, S.U.; Writing—review and editing, D.-H.K. All authors have read and agreed to the
published version of the manuscript

Funding: This research was supported by the Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (N0.2019-0-00064, Intelligent Mobile Edge Cloud Solution
for Connected Car) and in part by the Inha University Research Grant.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 5030 19 of 21

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Carfora, M.F; Martinelli, F; Mercaldo, F; Nardone, V.; Orlando, A.; Santone, A.; Vaglini, G.
A “pay-how-you-drive” car insurance approach through cluster analysis. Soft Comput. 2019, 23, 2863-2875.
[CrossRef]

Troncoso, C.; Danezis, G.; Kosta, E.; Balasch, J.; Preneel, B. Pripayd: Privacy-friendly pay-as-you-drive
insurance. IEEE Trans. Dependable Secure Comput. 2010, 8, 742-755. [CrossRef]

Dai, R.; Lu, Y,; Ding, C.; Lu, G. The effect of connected vehicle environment on global travel efficiency and
its optimal penetration rate. J. Adv. Transp. 2017, 2017. [CrossRef]

Lee, J.; Kao, Hu.; Yang, S. Service innovation and smart analytics for industry 4.0 and big data environment.
Procedia CIRP 2014, 16, 3-8. [CrossRef]

Kwak, B.I.; Woo, J.; Kim, H.K. Know your master: Driver profiling-based anti-theft method. In Proceedings
of the 2016 IEEE 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand,
12-14 December 2016; pp. 211-218.

Kang, Y.G.; Park, K.H.; Kim, H.K. Automobile theft detection by clustering owner driver data. arXiv 2019,
arXiv:1909.08929.

Zhang, J.; Wu, Z.; Li, E; Xie, C,; Ren, T,; Chen, |.; Liu, L. A deep learning framework for driving behavior
identification on in-vehicle CAN-BUS sensor data. Sensors 2019, 19, 1356. [CrossRef]

el Mekki, A.; Bouhoute, A.; Berrada, I. Improving driver identification for the next-generation of in-vehicle
software systems. IEEE Trans. Veh. Technol. 2019, 68, 7406-7415. [CrossRef]

Janior, J.F,; Carvalho, E.; Ferreira, B.V.; de Souza, C.; Suhara, Y.; Pentland, A.; Pessin, G. Driver behavior
profiling: An investigation with different smartphone sensors and machine learning. PLoS ONE 2017,
12, €0174959.

Fugiglando, U.; Massaro, E.; Santi, P.; Milardo, S.; Abida, K.; Stahlmann, R.; Netter, F,; Ratti, C. Driving
behavior analysis through CAN bus data in an uncontrolled environment. IEEE Trans. Intell. Transp. Syst.
2018, 20, 737-748. [CrossRef]

Castignani, G.; Derrmann, T.; Frank, R.; Engel, T. Driver behavior profiling using smartphones: A low-cost
platform for driver monitoring. IEEE Intell. Transp. Syst. Mag. 2015, 7, 91-102. [CrossRef]

Park, K.H.; Kim, H.K. This car is mine!: Automobile theft countermeasure leveraging driver identification
with generative adversarial networks. arXiv 2019, arXiv:1911.09870.

Androidauto-Connect Your Phone to Car Display. Available online: https://www.android.com/auto/
(accessed on 7 June 2020).

Automotive Grade Linux. 2020. Available online: https://www.automotivelinux.org/ (accessed on
7 June 2020).

ONX in Automotive-QNX Software Systems. 2020. Available online: https://blackberry.qnx.com/en/
software-solutions /connected-autonomous-vehicles (accessed on 7 June 2020).

Kashevnik, A.; Lashkov, I.; Gurtov, A. Methodology and mobile application for driver behavior analysis and
accident prevention. IEEE Trans. Intell. Transp. Syst. 2019, 6, 2427-2436. [CrossRef]

Warren,].; Lipkowitz,]J.; Sokolov, V. Clusters of driving behavior from observational smartphone data.
IEEE Intell. Transp. Syst. Mag. 2019, 11, 171-180. [CrossRef]

Li, M.G,; Jiang, B.; Che, Z.; Shi, X.; Liu, M.; Meng, Y.; Ye, J.; Liu, Y. DBUS: Human driving behavior
understanding system. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
Seoul, Korea, 27-28 October 2019; d0i:10.1109/ICCVW.2019.00298. [CrossRef]

Ramanishka, V.; Chen, Yi.; Misu, T.; Saenko, K. Toward driving scene understanding: A dataset for learning
driver behavior and causal reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18-22 June 2018; pp. 7699-7707.

Fridman, L.; Brown, D.E.; Glazer, M.; Angell, W.; Dodd, S.; Jenik, B.; Terwilliger,].; Kindelsberger, J.; Ding, L.;
Seaman, S.; et al. MIT autonomous vehicle technology study: Large-scale deep learning based analysis of
driver behavior and interaction with automation. arXiv 2017, arXiv:1711.069761.

Wijnands, J.S.; Thompson, J.; Nice, K.A.; Aschwanden, G.D.P.A.; Stevenson, M. Real-time monitoring of
driver drowsiness on mobile platforms using 3D neural networks. Neural Comput. Appl. 2019. [CrossRef]
Kim, W.; Jung, Wo.; Choi, H.K. Lightweight driver monitoring system based on multi-task mobilenets.
Sensors 2019, 19, 3200. [CrossRef]

http://dx.doi.org/10.1007/s00500-018-3274-y
http://dx.doi.org/10.1109/TDSC.2010.71
http://dx.doi.org/10.1155/2017/2697678
http://dx.doi.org/10.1016/j.procir.2014.02.001
http://dx.doi.org/10.3390/s19061356
http://dx.doi.org/10.1109/TVT.2019.2924906
http://dx.doi.org/10.1109/TITS.2018.2836308
http://dx.doi.org/10.1109/MITS.2014.2328673
https://www.android.com/auto/
https://www.automotivelinux.org/
https://blackberry.qnx.com/en/software-solutions/connected-autonomous-vehicles
https://blackberry.qnx.com/en/software-solutions/connected-autonomous-vehicles
http://dx.doi.org/10.1109/TITS.2019.2918328
http://dx.doi.org/10.1109/MITS.2019.2919516
http://dx.doi.org/10.1109/ICCVW.2019.00298
http://dx.doi.org/10.1007/s00521-019-04506-0
http://dx.doi.org/10.3390/s19143200

Sensors 2020, 20, 5030 20 of 21

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Taamneh, S.; Tsiamyrtzis, P.; Dcosta, M.; Buddharaju, P,; Khatri, A.; Manser, M.; Ferris, T.; Wunderlich, R.;
Pavlidis, I. A multimodal dataset for various forms of distracted driving. Sci. Data 2017, 4, 170110. [CrossRef]
Zhang, X.; Zhao, X.; Rong, J. A study of individual characteristics of driving behavior based on hidden
Markov model. Sens. Transducers 2014, 167, 194-202.

Miyajima, C.; Nishiwaki, Y.; Ozawa, K,; Wakita, T.; Itou, K.; Takeda, K ; Itakura, F. Driver modeling based on
driving behavior and its evaluation in driver identification. Proc. IEEE 2007, 95, 427-437. [CrossRef]

Van Ly, M.; Martin, S.; Trivedi, M.M. Driver classification and driving style recognition using inertial
sensors. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia,
23-26 June 2013; pp. 1040-1045.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Harrahs adn Harverys, Lake
Tahoe, CA, USA, 3-8 December 2012; pp. 1097-1105.

Greff, K,; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey.
IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222-2232. [CrossRef]

Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer
and gyroscope sensors. In Proceedings of the 2016 IEEE International Joint Conference on Neural Networks
(IICNN), Vancouver, BC, Canada, 24-29 July 2016; pp. 381-388.

Cui, Z.; Chen, W.; Chen, Y. Multi-scale convolutional neural networks for time series classification. arXiv 2016,
arXiv:1603.06995.

Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification.
IEEE Access 2017, 6, 1662-1669. [CrossRef]

Liu, T.; Bao, J.; Wang, J.; Zhang, Y. A hybrid CNN-LSTM algorithm for online defect recognition of CO;
welding. Sensors 2018, 18, 4369. [CrossRef]

Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
arXiv 2014, arXiv:1409.0473.

Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong
baseline. In Proceedings of the 2017 IEEE International Joint Conference on Neural Networks (IJCNN),
Anchorage, AK, USA, 14-19 May 2017; pp. 1578-1585.

Brookhuis, K.A.; de Waard, D.; Janssen, WH. Behavioural impacts of advanced driver assistance
systems—An overview. Eur. |. Transp. Infrastruct. Res. 2019. [CrossRef]

Curry, E.; Sheth, A. Next-generation smart environments: From system of systems to data ecosystems.
IEEE Intell. Syst. 2018, 33, 69-76. [CrossRef]

Hui, K,; Le, M,; Tao, S. Container and microservice driven design for cloud infrastructure devops.
In Proceedings of the 2016 IEEE International Conference on Cloud Engineering (IC2E), Berlin, Germany,
4-8 April 2016; pp. 202-211.

Bernstein, D. Containers and cloud: From Ixc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81-84.
[CrossRef]

Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform.
J. Syst. Architect. 2019, 97, 428-442. [CrossRef]

Kim, C.E.; Oghaz, M.M.D; Fajtl, J.; Argyriou, V.; Remagnino, P. A comparison of embedded deep learning
methods for person detection. arXiv 2018, arXiv:1812.03451.

OCS Lab. Driving Dataset. Available online: http://ocslab.hksecurity.net/Datasets/driving-dataset
(accessed on 27 August 2020).

Information Protection R&D Data Challenge 2019. Available online: http://datachallenge.kr/challenge18/
vehicle/tutorial / (accessed on 25 June 2020).

Hall, M,; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10-18. [CrossRef]

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

Rastgoo, M.N. Driver Stress Level Detection Based on Multimodal Measurements. Ph.D. Thesis, Queensland
University of Technology, Queensland, Australia, 2019. Available online: https://eprints.qut.edu.au/134144/
(accessed on 8 July 2020).

http://dx.doi.org/10.1038/sdata.2017.110
http://dx.doi.org/10.1109/JPROC.2006.888405
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.3390/s18124369
http://dx.doi.org/10.18757/ejtir.2001.1.3.3667
http://dx.doi.org/10.1109/MIS.2018.033001418
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1016/j.sysarc.2019.01.011
http://ocslab.hksecurity.net/Datasets/driving-dataset
http://datachallenge.kr/challenge18/vehicle/tutorial/
http://datachallenge.kr/challenge18/vehicle/tutorial/
http://dx.doi.org/10.1145/1656274.1656278
https://eprints.qut.edu.au/134144/

Sensors 2020, 20, 5030 21 of 21

46.

47.

48.

49.

50.

51.

52.

53.

54.

Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A quantitative comparison of overlapping and
non-overlapping sliding windows for human activity recognition using inertial sensors. Sensors 2019,
19, 5026. [CrossRef]

Ullah, S.; Kim, D.H. Benchmarking Jetson Platform for 3D Point-Cloud and Hyper-Spectral Image
Classification. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), Busan, Korea, 19-22 February 2020; pp. 477-482.

A Driver Identification Framework on AutoMotive Grade Linux. Available online: https:/ /github.com/
vcar/AGL (accessed on 7 July 2020).

Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained
quantization and Huffman coding. arXiv 2015, arXiv:1510.00149.

Scardapane, S.; Comminiello, D.; Hussain, A.; Uncini, A. Group sparse regularization for deep neural
networks. Neurocomputing 2017, 241, 81-89. [CrossRef]

Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016,
arXiv:1608.08710.

Keras-Surgeon, for Network Pruning Available on Github. Available online: https://github.com/
BenWhetton /keras-surgeon (accessed on 5 July 2020).

Quattoni, A.; Collins, M.; Darrell, T. Transfer learning for image classification with sparse prototype
representations. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, AK, USA, 23-28 June 2008; pp. 1-8.

Ibrokhimov, B.; Hur, C.; Kang, S. Effective node selection technique towards sparse learning. Appl. Intell.
2020, 50, 3239-3251. [CrossRef]

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19225026
https://github.com/vcar/AGL
https://github.com/vcar/AGL
http://dx.doi.org/10.1016/j.neucom.2017.02.029
https://github.com/BenWhetton/keras-surgeon
https://github.com/BenWhetton/keras-surgeon
http://dx.doi.org/10.1007/s10489-020-01720-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Data Source
	Machine-Learning Models
	CNN-RNN Architectures
	Driver Identification Using DeepConvRNN-Attention
	Driver Identification Using FCN-LSTM

	Applied Platform

	Methodology
	Problem Formulation
	OCS Lab—Security Driving Dataset
	Our Proposed Framework
	Depthwise Convolution
	Recurrent Neural Networks
	Hyperparameter Optimization

	Performance Evaluation
	Experimental Setup
	Cross Validation of Time Series Data
	Computational Complexity of the Proposed Model
	Robustness to Data Anomalies
	Comparison with Compressed versions of Existing Models

	Deploying the Proposed Model with Sparse Learning
	Sparse Learning
	Node Selection Towards Sparse Learning

	Discussion and Conclusions
	References

