Table 3.
Algorithm | Pruning | FLOPs (M) |
Memory (MB) |
Accuracy (%) |
# of Channels Pruned/Total |
Inference Time (s/Sample) (Container-NVIDIA Docker) |
||
---|---|---|---|---|---|---|---|---|
Xavier | TX2 | Nano | ||||||
DeepConv GRU - Attention |
0% | 1.627 | 7.91 | 98.36 | - | ∼505 | ∼1175 | ∼2580 |
8.50% | 1.482 | 7.48 | 98.04 | LSTM1(07/128) LSTM2(11/128) |
∼469 | ∼1040 | ∼2270 | |
19% | 1.314 | 6.64 | 96.89 | LSTM1 (20/128) LSTM2(15/128) |
∼452 | ∼997 | ∼2160 | |
FCN-LSTM | 0% | 0.566 | 3.28 | 95.10 | - | ∼284 | ∼365 | ∼450 |
5.30% | 0.535 | 3.14 | 94.32 | Conv1(10/128) Conv2(10/256) |
∼253 | ∼342 | ∼416 | |
12.20% | 0.496 | 3.07 | 93.92 | Conv1(10/128) Conv2(20/256) Conv3(10/256) |
∼241 | ∼333 | ∼371 | |
Proposed DC-LSTM |
0% | 0.233 | 1.69 | 97.86 | - | ∼188 | ∼207 | ∼230 |
Proposed DC-GRU |
0% | 0.232 | 1.69 | 98.72 | - | ∼182 | ∼205 | ∼227 |